Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542463

ABSTRACT

DNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in a variety of species, its systemic analysis in potato (Solanum tuberosum L.) is lacking and its potential role in abiotic stress responses remains unclear. A total of 36 potential Dof genes in potato were examined at the genomic and transcriptomic levels in this work. Five phylogenetic groups can be formed from these 36 Dof proteins. An analysis of cis-acting elements revealed the potential roles of Dofs in potato development, including under numerous abiotic stress conditions. The cycling Dof factors (CDFs) might be the initial step in the abiotic stress response signaling cascade. In potato, five CDFs (StCDF1/StDof19, StCDF2/StDof4, StCDF3/StDof11, StCDF4/StDof24, and StCDF5/StDof15) were identified, which are homologs of Arabidopsis CDFs. The results revealed that these genes were engaged in a variety of abiotic reactions. Moreover, an expression analysis of StDof genes in two potato cultivars ('Long10' (drought tolerant) and 'DXY' (drought susceptible)) of contrasting tolerances under drought stress was carried out. Further, a regulatory network mediated by lncRNA and its target Dofs was established. The present study provides fundamental knowledge for further investigation of the roles of Dofs in the adaptation of potato to drought stress, aiming to provide insights into a viable strategy for crop improvement and stress-resistance breeding.


Subject(s)
Arabidopsis , Solanum tuberosum , Transcription Factors/genetics , Transcription Factors/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Drought Resistance , Phylogeny , Plant Breeding , Arabidopsis/genetics , Droughts , DNA/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Noncoding RNA Res ; 9(2): 486-507, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511053

ABSTRACT

Diabetes as a fastest growing diseases worldwide is characterized by elevated blood glucose levels. There's an enormous financial burden associated with this endocrine disorder, with unequal access to health care between developed and developing countries. PI3Ks (phosphoinositide 3-kinases) have been demonstrated to be crucial for glucose homeostasis, and malfunctioning of these molecules can contribute to an increase in glucose serum levels, the main pathophysiological feature of diabetes. Additionally, recent evidence suggests that miRNAs and lncRNAs are reciprocally interacting with this signaling pathway. It is therefore evident that abnormal regulation of miRNAs/lncRNAs in the lncRNAs/miRNAs/PI3K/AKT axis is related to clinicopathological characteristics and plays a crucial role in the regulation of biological processes. It has therefore been attempted in this review to describe the interaction between PI3K/AKT signaling pathway and various miRNAs/lncRNAs and their importance in DM biology. We also presented the clinical applications of PI3K/AKT-related ncRNAs/herbal medicine in patients with DM.

3.
Curr Neurovasc Res ; 21(1): 64-73, 2024.
Article in English | MEDLINE | ID: mdl-38409728

ABSTRACT

Electroacupuncture (EA) treatment plays a protective role in cerebral ischemiareperfusion (CIR) injury. However, the underlying molecular mechanism is still not fully elucidated. METHODS: All rats were randomly divided into five groups: the SHAM group, MCAO group, MCAO+EA (MEA) group, MCAO+METTL3 overexpression+EA (METTL3) group and MCAO+lncRNA H19 overexpression+EA (lncRNA H19) group. The middle cerebral artery occlusion (MCAO) rats were established to mimic CIR injury. The overexpression of lncRNA H19 and METTL3 was induced by stereotactic injection of lentiviruses into the rat lateral ventricles. The rats in the MEA, METTL3, and lncRNA H19 groups were treated with EA therapy on "Renzhong" (DU26) and "Baihui" (DU20) acupoints (3.85/6.25Hz; 1mA). Besides, the neurological deficit scoring, cerebral infarction area, pathological changes in brain tissue, total RNA m6A level, and the expression of METTL3, S1PR2, TLR4, NLRP3 and lncRNA H19 were detected in this experiment. RESULTS: EA improved the neurological deficit scoring, cerebral infarction area, and pathological injury in MCAO rats, while these beneficial effects of EA on CIR injury were attenuated by the overexpression of METTL3 or lncRNA H19. More importantly, EA down-regulated the total RNA m6A level and the expression of METTL3, S1PR2, TLR4, NLRP3 and lncRNA H19 in MCAO rats. Instead, the overexpression of METTL3 or lncRNA H19 was found to reverse the EA-induced down-regulation. CONCLUSION: The findings indicated that EA might down-regulate the S1PR2/TLR4/NLRP3 signaling pathway via m6A methylation of lncRNA H19 to alleviate CIR injury. Our findings provide a new insight into the molecular mechanism of EA on CIR injury.


Subject(s)
Electroacupuncture , NLR Family, Pyrin Domain-Containing 3 Protein , RNA, Long Noncoding , Rats, Sprague-Dawley , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Electroacupuncture/methods , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Rats , Signal Transduction/physiology , Male , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/metabolism , Brain Ischemia/therapy , Methylation
4.
Chin Herb Med ; 16(1): 82-93, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38375042

ABSTRACT

Objective: Hepatic fibrosis has been widely considered as a conjoint consequence of almost all chronic liver diseases. Chuanxiong Rhizoma (Chuanxiong in Chinese, CX) is a traditional Chinese herbal product to prevent cerebrovascular, gynecologic and hepatic diseases. Our previous study found that CX extracts significantly reduced collagen contraction force of hepatic stellate cells (HSCs). Here, this study aimed to compare the protection of different CX extracts on bile duct ligation (BDL)-induced liver fibrosis and investigate plausible underlying mechanisms. Methods: The active compounds of CX extracts were identified by high performance liquid chromatography (HPLC). Network pharmacology was used to determine potential targets of CX against hepatic fibrosis. Bile duct hyperplasia and liver fibrosis were evaluated by serologic testing and histopathological evaluation. The expression of targets of interest was determined by quantitative real-time PCR (qPCR) and Western blot. Results: Different CX extracts were identified by tetramethylpyrazine, ferulic acid and senkyunolide A. Based on the network pharmacological analysis, 42 overlap targets were obtained via merging the candidates targets of CX and liver fibrosis. Different aqueous, alkaloid and phthalide extracts of CX (CXAE, CXAL and CXPHL) significantly inhibited diffuse severe bile duct hyperplasia and thus suppressed hepatic fibrosis by decreasing CCCTC binding factor (CTCF)-c-MYC-long non-coding RNA H19 (H19) pathway in the BDL-induced mouse model. Meanwhile, CX extracts, especially CXAL and CXPHL also suppressed CTCF-c-MYC-H19 pathway and inhibited ductular reaction in cholangiocytes stimulated with taurocholate acid (TCA), lithocholic acid (LCA) and transforming growth factor beta (TGF-ß), as illustrated by decreased bile duct proliferation markers. Conclusion: Our data supported that different CX extracts, especially CXAL and CXPHL significantly alleviated hepatic fibrosis and bile duct hyperplasia via inhibiting CTCF-c-MYC-H19 pathway, providing novel insights into the anti-fibrotic mechanism of CX.

5.
Biol Pharm Bull ; 47(2): 399-410, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38220208

ABSTRACT

Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor ß (TGFß)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFß/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFß/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFß/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.


Subject(s)
Breast Neoplasms , Flavonoids , RNA, Long Noncoding , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Smad2 Protein/metabolism , Stem Cells/metabolism , Transforming Growth Factor beta/metabolism
6.
Chin J Nat Med ; 22(1): 31-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38278557

ABSTRACT

Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.


Subject(s)
Drugs, Chinese Herbal , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Matrix/metabolism
7.
Mol Neurobiol ; 61(2): 935-949, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37672149

ABSTRACT

Although the benefits of electroacupuncture (EA) for peripheral nerve injury (PNI) are well accepted in clinical practice, the underlying mechanism remains incompletely elucidated. In our study, we observed that EA intervention led to a reduction in the expression of the long non-coding RNA growth-arrest-specific transcript 5 (GAS5) and an increased in miR-21 levels within the injured nerve, effectively promoting functional recovery and nerve regeneration following sciatic nerve injury (SNI). In contrast, administration of adeno-associated virus expressing GAS5 (AAV-GAS5) weakened the therapeutic effect of EA. On the other hand, both silencing GAS5 and introducing a miR-21 mimic prominently enhanced the proliferation activity and migration ability of Schwann cells (SCs), while also inhibiting SCs apoptosis. On the contrary, inhibition of SCs apoptosis was found to be mediated by miR-21. Additionally, overexpression of GAS5 counteracted the effects of the miR-21 mimic on SCs. Moreover, SCs that transfected with the miR-21 mimic promoted neurite growth in hypoxia/reoxygenation-induced neurons, which might be prevented by overexpressing GAS5. Furthermore, GAS5 was found to be widely distributed in the cytoplasm and was negatively regulated by miR-21. Consequently, the targeting of GAS5 by miR-21 represents a potential mechanism through which EA enhances reinnervation and functional restoration following SNI. Mechanistically, the GAS5/miR-21 axis can modulate the proliferation, migration, and apoptosis of SCs while potentially influencing the neurite growth of neurons.


Subject(s)
Electroacupuncture , MicroRNAs , Peripheral Nerve Injuries , RNA, Long Noncoding , Sciatic Neuropathy , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/metabolism , Sciatic Neuropathy/metabolism , Nerve Regeneration/physiology , Sciatic Nerve/metabolism
8.
Plant Sci ; 339: 111948, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097046

ABSTRACT

Although long non-coding RNAs have been recognized to play important roles in plant, their possible functions and potential mechanism in Ginkgo biloba flavonoid biosynthesis are poorly understood. Flavonoids are important secondary metabolites and healthy components of Ginkgo biloba. They have been widely used in food, medicine, and natural health products. Most previous studies have focused on the molecular mechanisms of structural genes and transcription factors that regulate flavonoid biosynthesis. Few reports have examined the biological functions of flavonoid biosynthesis by long non-coding RNAs in G. biloba. Long noncoding RNAs associated with flavonoid biosynthesis in G. biloba have been identified through RNA sequencing, but the function of lncRNAs has not been reported. In this study, the expression levels of lnc10 and lnc11 were identified. Quantitative real-time polymerase chain reaction analysis revealed that lnc10 and lnc11 were expressed in all detected organs, and they showed significantly higher levels in immature and mature leaves than in other organs. In addition, to fully identify the function of lnc10 and lnc11 in flavonoid biosynthesis in G. biloba, lnc10 and lnc11 were cloned from G. biloba, and were transformed into Arabidopsis and overexpressed. Compared with the wild type, the flavonoid content was increased in transgenic plants. Moreover, the RNA-sequencing analysis of wild-type, lnc10-overexpression, and lnc11-overexpression plants screened out 2019 and 2552 differentially expressed genes, and the transcript levels of structural genes and transcription factors associated with flavonoid biosynthesis were higher in transgenic Arabidopsis than in the wild type, indicating that lnc10 and lnc11 activated flavonoid biosynthesis in the transgenic lines. Overall, these results suggest that lnc10 and lnc11 positively regulate flavonoid biosynthesis in G. biloba.


Subject(s)
Arabidopsis , RNA, Long Noncoding , Ginkgo biloba/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/analysis , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Extracts/metabolism , Flavonoids , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Leaves/metabolism
9.
J Ethnopharmacol ; 322: 117547, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38135231

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Maimendong and Qianjinweijing Tang (Jin formula) is a traditional Chinese medicine formula that has been proven effective in the treatment of lung cancer in long-term clinical practice. AIM OF THE STUDY: To evaluate the anti-tumor effects of Jin formula combined with cisplatin (JIN + DDP) in vivo and in vitro, as well as to explore the role of long non-coding RNA (lncRNA) in the anti-lung cancer mechanism of its action. MATERIALS AND METHODS: A Lewis lung cancer model was established in C57 BL/6 mice to study the in vivo anti-tumor effect of Jin formula combined with cisplatin. TUNEL staining and western blot were applied to study the effects of Jin formula combined cisplatin on apoptosis. The in vitro anti-cancer function of Jin formula combined with cisplatin was explored by cell viability assay, flow cytometry, wound healing assay and transwell assay. The changes in lncRNA expression profiles were determined by lncRNA microarray, and the differentially expressed lncRNA-p21 was verified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. The expression differences of lncRNA-p21 in tumor and normal tissues were analyzed by bioinformatics, and the expression differences of lncRNA-p21 in tumor cells and normal cells were detected by qRT-PCR. The role of lncRNA-p21 in the anti-cancer effect of Jin formula combined cisplatin was investigated by knockdown or overexpression of lncRNA-p21 and a series of cell experiments. The expression of MAPK pathway-related proteins was analyzed by western blot. RESULTS: Jin formula combined with cisplatin (JIN + DDP) can suppress tumor growth and promote apoptosis in Lewis lung cancer mouse model. LncRNA-p21 was significantly up-regulated in the JIN and JIN + DDP groups, and the expression of lncRNA-p21 in lung cancer tissues and cells was lower than that in normal tissues and cells. In vitro, JIN + DDP significantly induced apoptosis and inhibited the proliferation, migration, and invasion of H460 and H1650 lung cancer cells. The above effects can be enhanced by the overexpression of lncRNA-p21 and eliminated by knock-down of lncRNA-p21. Further studies revealed that JIN + DDP inhibited the expression of mitogen-activated protein kinase (MAPK) pathway-related proteins, whereas knock-down of lncRNA-p21 abrogated the inhibition of the MAPK signaling pathway. CONCLUSIONS: This study showed that Jin formula combined with cisplatin could effectively inhibit the progression of lung cancer partially through targeting lncRNA-p21.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm , Cell Line, Tumor , Cell Proliferation , Mitogen-Activated Protein Kinases/metabolism , Apoptosis , MicroRNAs/genetics
10.
J Ethnopharmacol ; 323: 117677, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38160870

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ankylosing spondylitis (AS) is a chronic rheumatic disease known for its insidious and refractory symptoms, primarily associated with immuno-inflammation in its early stages, that affects the self-perception of patients (SPP). The exploration of long noncoding RNA (lncRNA) in immuno-inflammation of AS has garnered considerable interest. Additionally, the effectiveness of traditional Chinese medicine Xinfeng Capsule (XFC) in mitigating immuno-inflammation in AS has also been observed. However, the specific mechanisms still need to be characterized. AIM OF THE STUDY: This study elucidated the mechanism of the lncRNA NONHSAT227927.1/TRAF2/NF-κB axis in the immuno-inflammation of AS and XFC in AS treatment. METHODS: LncRNA NONHSAT227927.1 and mRNA expression were assessed utilizing real-time fluorescence quantitative PCR. Protein level was determined using Western blot, and cytokine expression was measured using ELISA. Furthermore, mass spectrometry was used to analyze the binding proteins of lncRNA and rescue experiments were conducted to validate the findings. Inconsistencies in clinical baseline data were addressed using propensity score matching. The association between the XFC effect and indicator changes was evaluated using the Apriori algorithm. RESULTS: The study revealed a substantial elevation in the expression of lncRNA NONHSAT227927.1 and tumor necrosis factor receptor-associated factor 2 (TRAF2) in AS-peripheral blood mononuclear cells. Its expression was also notably reduced after XFC treatment. In addition to this, there was a positive correlation between lncRNA NONHSAT227927.1 and TRAF2 with clinical immuno-inflammatory indicators. On the other hand, they showed a negative association with the SPP indicators. In vitro experiments have demonstrated that lncRNA NONHSAT227927.1 activated the nuclear factor (NF)-κB-p65 pathway by promoting TRAF2 expression. This activation resulted in enhanced IL-6 and TNF-α levels and reduced IL-10 and IL-4 levels. Conversely, XFC decreased the expression of lncRNA NONHSAT227927.1 and TRAF2, inhibiting the stimulation of the NF-κB-p65 cascade and restoring balance to the cytokines. The association rule analysis results indicated a strong association between XFC and decreased levels of C-reactive protein, erythrocyte sedimentation rate, and immunoglobulin A. Furthermore, XFC was strongly associated with improved SPP indicators, including general health, vitality, mental health, and role-emotional. CONCLUSIONS: LncRNA NONHSAT227927.1 plays a pro-inflammatory role in AS. XFC treatment may reverse lncRNA NONHSAT227927.1 to suppress TRAF2-mediated NF-κB-p65 activation, which in turn suppresses immuno-inflammation and improves SPP, thereby making XFC a promising candidate for therapeutic applications in AS management.


Subject(s)
Drugs, Chinese Herbal , RNA, Long Noncoding , Spondylitis, Ankylosing , Humans , NF-kappa B/metabolism , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/genetics , RNA, Long Noncoding/genetics , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 2/pharmacology , Signal Transduction , Leukocytes, Mononuclear/metabolism , Inflammation , Cytokines/metabolism
11.
Arthritis Res Ther ; 25(1): 238, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062469

ABSTRACT

BACKGROUNDS: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovial hyperplasia. Maintaining a balance between the proliferation and apoptosis of rheumatoid arthritis synovial fibroblasts (RASFs) is crucial for preventing the erosion of bone and cartilage and, ultimately, mitigating the progression of RA. We found that the lncRNA LEF1-AS1 was expressed at low levels in the RASFs and inhibited their abnormal proliferation by targeting PIK3R2 protein and regulating the PI3K/AKT signal pathway through its interaction with miR-30-5p. In this study, we fabricated a nano-drug delivery system for LEF1-AS1 using Zn-Adenine nanoparticles (NPs) as a novel therapeutic strategy against RA. METHODS: The expression levels of LEF1-AS1, miR-30-5p, PIK3R2, p-PI3K, and p-AKT were detected in the primary RASFs and a human fibroblast-like synovial cell line (HFLS). Zn-Adenine nanoparticles (NPs) were functionalized with anti-CD305 antibody to construct (Zn-Adenine)@Ab. These NPs were then loaded with LEF1-AS1 to form (Zn-Adenine)@Ab@lncRNA LEF1-AS1. Finally, the (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs were locally injected into a rat model with collagen-induced arthritis (CIA). The arthritic injuries in each group were evaluated by HE staining and other methods. RESULTS: LEF1-AS1 was expressed at low levels in the primary RASFs. High expression levels of LEF1-AS1 were detected in the HFLS cells, which corresponded to a significant downregulation of miR-30-5p. In addition, the expression level of PIK3R2 was significantly increased, and that of p-PI3K and p-AKT were significantly downregulated in these cells. The (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly inhibited the proliferation of RASFs and decreased the production of inflammatory cytokines (IL-1ß, IL-6, TNF-α). Intra-articular injection (IAI) of (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly alleviated cartilage destruction and joint injury in the CIA-modeled rats. CONCLUSIONS: LEF1-AS1 interacts with miR-30-5p to inhibit the abnormal proliferation of RASFs by regulating the PI3K/AKT signal pathway. The (Zn-Adenine)@Ab NPs achieved targeted delivery of the loaded LEF1-AS1 into the RASFs, which improved the cellular internalization rate and therapeutic effects. Thus, LEF1-AS1 is a potential target for the treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , MicroRNAs , RNA, Long Noncoding , Humans , Rats , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Synovial Membrane/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation/physiology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Antibodies/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Fibroblasts/metabolism , Inflammation/metabolism , Zinc/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism
12.
Heliyon ; 9(11): e21064, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37964840

ABSTRACT

Background: Banxia Xiexin decoction (BXD) is a classic traditional Chinese medicine (TCM) formula clinically used to treat chronic gastritis, gastric ulcers, gastric cancer, and many other gastrointestinal diseases. Long noncoding RNAs (lncRNAs) have been shown to play an important role in maintaining the malignant phenotype of tumors. However, no relevant studies have shown whether Banxia Xiexin decoction regulates and controls lncRNA TUC338, and the effect of TUC338 on the regulation of gastric cancer invasion and metastasis remains unclear. Purpose: To investigate the ability of the traditional Chinese medicine (TCM) Banxia Xiexin decoction (BXD) to inhibit the migration and invasion of human gastric cancer AGS cells by regulating the long noncoding RNA (lncRNA) TUC338. Methods: UHPLC‒MS/MS was used to analyze the chemical components of BXD. MTT was performed to determine the effects of BXD on the proliferation of AGS cells. qRT‒PCR was used to determine the expression of lncRNA TUC338 in gastric cancer tissues, paracarcinoma tissues, AGS human gastric cancer cells and GES-1 normal gastric mucosa cells and to evaluate the effects of BXD on the expression of lncRNA TUC338 in AGS cells. Lentiviral transfection was used to establish human gastric cancer AGS cells with knocked down lncRNA TUC338 expression. The effects of lncRNA TUC338 knockdown on the migration and invasion of AGS cells were observed by a scratch assay and Transwell migration assay, respectively. Western blotting was performed to analyze the effects of lncRNA TUC338 knockdown on epithelial-to-mesenchymal transition (EMT) in AGS cells. We performed quality control on three batches of BXD. We used UHPLC‒MS/MS to control the quality of three random batches of BXD used throughout the study. Results: Ninety-five chemical components were identified from the water extract of BXD, some of which have anticancer effects. The expression of TUC.338 in gastric cancer tissues was higher than that in para-carcinoma tissues. BXD inhibited the invasion and migration of gastric cancer cells by inhibiting the expression of lncRNA TUC338, which reduced EMT. After knockdown of lncRNA TUC338, the migration and invasion of AGS cells were reduced; the expression of the EMT-related protein E-cadherin was increased, and the expression of N-cadherin and vimentin was reduced. Conclusions: The present results suggest that BXD has potential as an effective treatment for gastric cancer through the inhibition of lncRNA TUC338 expression.

13.
Phytomedicine ; 120: 155072, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714063

ABSTRACT

BACKGROUND: Plant polyphenols have shown promising applications in oncotherapy. Increasing evidence reveals that polyphenols possess the antitumor potential for multiple cancers. Non-coding RNAs (ncRNAs), mainly including small ncRNAs (microRNA) and long ncRNAs (lncRNAs), play critical roles in cancer initiation and progression. PURPOSE: To establish the modulation of ncRNAs by polyphenols as a novel and promising approach in anticancer treatment. STUDY DESIGN: The present research employed ncRNA, miRNA, lncRNA, and regulatory mechanism as keywords to retrieve the literature from PubMed, Web of Science, Science direct, and Google Scholar, in a 20-year period from 2003 to 2023. This study critically reviewed the current literature and presented the regulation of prominent ncRNAs by polyphenols. A comprehensive total of 169 papers were retrieved on polyphenols and their related ncRNAs in cancers. RESULTS: NcRNAs, mainly including miRNA and lncRNA, play critical roles in cancer initiation and progression, which are potential modulatory targets of bioactive polyphenols, such as resveratrol, genistein, curcumin, EGCG, quercetin, in cancer management. The mechanism involved in polyphenol-mediated ncRNA regulation includes epigenetic and transcriptional modification, and post-transcriptional processing. CONCLUSION: Regulatory ncRNAs are potential therapeutic targets of bioactive polyphenols, and these phytochemicals could modulate the level of these ncRNAs directly and indirectly. A better comprehension of the ncRNA regulation by polyphenols in cancers, their functional outcomes on tumor pathophysiology and regulatory molecular mechanisms, may be helpful to develop effective strategies to fight the devastating disease.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Polyphenols/pharmacology , MicroRNAs/genetics , Resveratrol , Cognition
14.
Brain Sci ; 13(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37759919

ABSTRACT

Data mining involves the computational analysis of a plethora of publicly available datasets to generate new hypotheses that can be further validated by experiments for the improved understanding of the pathogenesis of neurodegenerative diseases. Although the number of sequencing datasets is on the rise, microarray analysis conducted on diverse biological samples represent a large collection of datasets with multiple web-based programs that enable efficient and convenient data analysis. In this review, we first discuss the selection of biological samples associated with neurological disorders, and the possibility of a combination of datasets, from various types of samples, to conduct an integrated analysis in order to achieve a holistic understanding of the alterations in the examined biological system. We then summarize key approaches and studies that have made use of the data mining of microarray datasets to obtain insights into translational neuroscience applications, including biomarker discovery, therapeutic development, and the elucidation of the pathogenic mechanisms of neurodegenerative diseases. We further discuss the gap to be bridged between microarray and sequencing studies to improve the utilization and combination of different types of datasets, together with experimental validation, for more comprehensive analyses. We conclude by providing future perspectives on integrating multi-omics, to advance precision phenotyping and personalized medicine for neurodegenerative diseases.

15.
BMC Genomics ; 24(1): 464, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592228

ABSTRACT

BACKGROUND: Folic acid is a water-soluble B vitamin (B9), which is closely related to the body's immune and other metabolic pathways. The folic acid synthesized by rumen microbes has been unable to meet the needs of high-yielding dairy cows. The incidence rate of subclinical mastitis in dairy herds worldwide ranged between 25%~65% with no obvious symptoms, but it significantly causes a decrease in lactation and milk quality. Therefore, this study aims at exploring the effects of folic acid supplementation on the expression profile of lncRNAs, exploring the molecular mechanism by which lncRNAs regulate immunity in subclinical mastitic dairy cows. RESULTS: The analysis identified a total of 4384 lncRNA transcripts. Subsequently, differentially expressed lncRNAs in the comparison of two groups (SF vs. SC, HF vs. HC) were identified to be 84 and 55 respectively. Furthermore, the weighted gene co-expression network analysis (WGCNA) and the KEGG enrichment analysis result showed that folic acid supplementation affects inflammation and immune response-related pathways. The two groups have few pathways in common. One important lncRNA MSTRG.11108.1 and its target genes (ICAM1, CCL3, CCL4, etc.) were involved in immune-related pathways. Finally, through integrated analysis of lncRNAs with GWAS data and animal QTL database, we found that differential lncRNA and its target genes could be significantly enriched in SNPs and QTLs related to somatic cell count (SCC) and mastitis, such as MSTRG.11108.1 and its target gene ICAM1, CXCL3, GRO1. CONCLUSIONS: For subclinical mastitic cows, folic acid supplementation can significantly affect the expression of immune-related pathway genes such as ICAM1 by regulating lncRNAs MSTRG.11108.1, thereby affecting related immune phenotypes. Our findings laid a ground foundation for theoretical and practical application for feeding folic acid supplementation in subclinical mastitic cows.


Subject(s)
Mastitis, Bovine , RNA, Long Noncoding , Female , Cattle , Animals , Humans , RNA, Long Noncoding/genetics , Mastitis, Bovine/genetics , Mastitis, Bovine/prevention & control , Folic Acid/pharmacology , Dietary Supplements
16.
Life Sci ; 329: 121910, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37406766

ABSTRACT

BACKGROUND: Moxibustion is an important external therapy of traditional medicine that operates on some acupoints on the skin and is usually used for immune-related diseases. However, whether the immune function of the skin, especially the immune-related lncRNAs, contributes to the mechanism of moxibustion remains unclear. METHODS: Adjuvant arthritis (AA) was induced by injection of Complete Freund's adjuvant (CFA) into the right hind paw of mice. Moxibustion was administered on the Zusanli (ST36) acupoint for 3 weeks. The alteration of foot volume and cytokine concentration in serum was used to evaluate the anti-inflammation effect of moxibustion. CD83 expression in the local skin of ST36 was measured by immunofluorescence staining. Transcriptome RNA sequencing (RNA-seq) and lncRNA-mRNA network analysis were performed to construct a moxibustion-induced Immune-related lncRNA-mRNA co-expression network. qRT-PCR was used to validate the RNA-seq data. RESULTS: Moxibustion at ST36 relieved the foot swelling, decreased the TNF-α and IL-1ß concentrations in serum, and obviously increased the CD83 expression at the local skin of ST36. A total of 548 differentially expressed lncRNAs and 520 linked mRNAs were screened out. The significantly and predominately enriched Go term was inflammatory and immune response, and the main pathways related to inflammatory and immune responses include Toll-like receptor, cytokine-cytokine receptor, and MAPK signaling. The immune-related lncRNA-mRNA co-expression network showed 88 lncRNAs and 36 mRNAs, and Ccrl2 is the central hub of this network. CONCLUSION: Local immune activation is significantly triggered by moxibustion in ST36 of AA mice. The Ccrl2-centered immune-related lncRNA-mRNA co-expression network would be a promising target for decoding the mechanism of moxibustion for immune-related diseases.


Subject(s)
Arthritis, Experimental , Moxibustion , RNA, Long Noncoding , Mice , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/therapy , RNA, Long Noncoding/genetics , Skin , RNA, Messenger/genetics , Receptors, CCR
17.
Adv Sci (Weinh) ; 10(25): e2207549, 2023 09.
Article in English | MEDLINE | ID: mdl-37401236

ABSTRACT

LncRNAs play a critical role in oral squamous cell carcinoma (OSCC) progression. However, the function and detailed molecular mechanism of most lncRNAs in OSCC are not fully understood. Here, a novel nuclear-localized lncRNA, DUXAP9 (DUXAP9), that is highly expressed in OSCC is identified. A high level of DUXAP9 is positively associated with lymph node metastasis, poor pathological differentiation, advanced clinical stage, worse overall survival, and worse disease-specific survival in OSCC patients. Overexpression of DUXAP9 significantly promotes OSCC cell proliferation, migration, invasion, and xenograft tumor growth and metastasis, and upregulates N-cadherin, Vimentin, Ki67, PCNA, and EZH2 expression and downregulates E-cadherin in vitro and in vivo, whereas knockdown of DUXAP9 remarkably suppresses OSCC cell proliferation, migration, invasion, and xenograft tumor growth in vitro and in vivo in an EZH2-dependent manner. Yin Yang 1 (YY1) is found to activate the transcriptional expression of DUXAP9 in OSCC. Furthermore, DUXAP9 physically interacts with EZH2 and inhibits EZH2 degradation via the suppression of EZH2 phosphorylation, thereby blocking EZH2 translocation from the nucleus to the cytoplasm. Thus, DUXAP9 can serve as a promising target for OSCC therapy.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Yin-Yang , Cell Line, Tumor , Cell Proliferation/genetics , Mouth Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , CDC2 Protein Kinase
18.
Theriogenology ; 207: 72-81, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37269598

ABSTRACT

This study investigated how lncRNA Meg3 affects the onset of puberty in female rats. We determined Meg3 expression in the hypothalamus-pituitary-ovary axis of female rats at the infancy, prepubertal, pubertal, and adult life stages, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). We also assessed the effects of Meg3 knockdown on the expression levels of puberty-related genes and Wnt/ß-catenin proteins in the hypothalamus, time of puberty onset, levels of reproductive genes and hormones, and ovarian morphology in female rats. Meg3 expression in the ovary varied significantly between prepuberty and puberty (P < 0.01). Meg3 knockdown decreased the expression of Gnrh, and Kiss1 mRNA (P < 0.05) and increased the expression of Wnt (P < 0.01) and ß-catenin proteins (P < 0.05) in the hypothalamic cells. Onset of puberty in Meg3 knockdown rats was delayed compared to the control group (P < 0.05). Meg3 knockdown decreased Gnrh mRNA levels (P < 0.05) and increased Rfrp-3 mRNA levels (P < 0.05) in the hypothalamus. The serum concentrations of progesterone (P4) and estradiol (E2) of Meg3 knockdown rats were lower than those in the control animals (P < 0.05). Higher longitudinal diameter and ovary weight were found in Meg3 knockdown rats (P < 0.05). These findings suggest that Meg3 regulates the expression of Gnrh, Kiss-1 mRNA and Wnt/ß-catenin proteins in the hypothalamic cells, and Gnrh, Rfrp-3 mRNA of the hypothalamus and the serum concentration of P4 and E2, and its knockdown delays the onset of puberty in female rats.


Subject(s)
RNA, Long Noncoding , Rats , Female , Animals , RNA, Long Noncoding/metabolism , Rats, Sprague-Dawley , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Kisspeptins/metabolism , Sexual Maturation/physiology , RNA, Messenger/metabolism
19.
J Trace Elem Med Biol ; 79: 127208, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269647

ABSTRACT

OBJECTIVE: Parkinson's disease (PD) is a neurodegenerative disease that is associated with oxidative stress. Due to the anti-inflammatory and antioxidant functions of Selenium (Se), this molecule may have neuroprotective functions in PD; however, the involvement of Se in such a protective function is unclear. METHODS: 1-methyl-4-phenylpyridinium (MPP+), which inhibits mitochondrial respiration, is generally used to produce a reliable cellular model of PD. In this study, a MPP+-induced PD model was used to test if Se could modulate cytotoxicity, and we further capture gene expression profiles following PC12 cell treatment with MPP+ with or without Se by genome wide high-throughput sequencing. RESULTS: We identified 351 differentially expressed genes (DEGs) and 14 differentially expressed long non-coding RNAs (DELs) in MPP+-treated cells when compared to controls. We further document 244 DEGs and 27 DELs in cells treated with MPP+ and Se vs. cells treated with MPP+ only. Functional annotation analysis of DEGs and DELs revealed that these groups were enriched in genes that respond to reactive oxygen species (ROS), metabolic processes, and mitochondrial control of apoptosis. Thioredoxin reductase 1 (Txnrd1) was also identified as a biomarker of Se treatment. CONCLUSIONS: Our data suggests that the DEGs Txnrd1, Siglec1 and Klf2, and the DEL AABR07044454.1 which we hypothesize to function in cis on the target gene Cdkn1a, may modulate the underlying neurodegenerative process, and act a protective function in the PC12 cell PD model. This study further systematically demonstrated that mRNAs and lncRNAs induced by Se are involved in neuroprotection in PD, and provides novel insight into how Se modulates cytotoxicity in the MPP+-induced PD model.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Selenium , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , Selenium/pharmacology , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Apoptosis/genetics
20.
Gene ; 877: 147564, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37311497

ABSTRACT

The present study aims to investigate the mechanism of Geniposide in the treatment of depression. By screening the effective components and targets of Zhi-zi-chi decoction, 140 candidate targets related to depression were identified. Further transcriptome sequencing was conducted to screen differentially expressed mRNAs and lncRNAs; 7 candidate Geniposide treatment targets for depression were obtained. KEGG/GO enrichment analysis and molecular docking were performed to select the optimal drug target, revealing that Creb1 is an important target. Additionally, Six3os1 is the lncRNA with the smallest P-value among the differentially expressed lncRNAs, and the JASPAR database revealed a binding site between Creb1 and the Six3os1 promoter. The intersection of Synapse-related genes obtained from the GeneCards database and differentially expressed mRNAs produced 6 synaptic-related genes. RNA-protein interaction prediction revealed that Six3os1 interacts with the protein encoded by these genes. Geniposide upregulates the expression of Creb1 and Six3os1. Creb1 can transcriptionally activate Six3os1, thereby upregulating the expression of the synaptic-related proteins Htr3a and Htr2a, improving depression.


Subject(s)
Drugs, Chinese Herbal , RNA, Long Noncoding , Molecular Docking Simulation , RNA, Long Noncoding/genetics , Depression/drug therapy , Depression/genetics , Drugs, Chinese Herbal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL