Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Neurogenet ; 37(4): 115-123, 2023.
Article in English | MEDLINE | ID: mdl-37922205

ABSTRACT

Oxidative stress plays a significant role in the development of Parkinson's disease (PD). Previous studies implicate nuclear receptor subfamily 4 group A member 1 (NR4A1) in oxidative stress associated with PD. However, the molecular mechanism underlying the regulation of NR4A1 expression remains incompletely understood. In the present study, a PD cell model was established by using 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Cell viability and apoptosis were assessed by using CCK-8 assay and flow cytometry, respectively. The activities of LDH and SOD, and ROS generation were used as an indicators of oxidative stress. ChIP-PCR was performed to detect the interaction between Yin Yang 1 (YY1) and the NR4A1 promoter. MPP+ treatment inhibited SH-SY5Y cell viability in a dose- and time-dependent manner. NR4A1 and YY1 expression were decreased in MPP+-treated SH-SY5Y cells. Increasing NR4A1 or YY1 alleviated MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells, whereas reduction of NR4A1 aggravated MPP+-induced cell injury. Transcription factor YY1 facilitated NR4A1 expression by binding with NR4A1 promoter. In addition, in MPP+-treated SH-SY5Y cells, the inhibition of NR4A1 to apoptosis and oxidative stress was further enhanced by overexpression of YY1. The reduction of NR4A1 led to an elevation of apoptosis and oxidative stress in MPP+-induced SH-SY5Y cells, and this effect was partially reversed by the overexpression of YY1. In conclusion, YY1 suppresses MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells by binding with NR4A1 promoter and boosting NR4A1 expression. Our findings suggest that NR4A1 may be a candidate target for PD treatment.HIGHLIGHTSNR4A1 and YY1 are decreased in MPP+-treated SH-SY5Y cells.NR4A1 prevents oxidative stress and apoptosis in MPP+-treated SH-SY5Y cells.YY1 binds with NR4A1 promoter and increases NR4A1 expression.YY1 enhances the inhibition of NR4A1 to SH-SY5Y cell apoptosis and oxidative stress.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Apoptosis , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Oxidative Stress , Yin-Yang
2.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836615

ABSTRACT

The affinity of specific phenolic compounds (PCs) and capsaicinoids (CAPs) present in three Capsicum annuum varieties (Friariello, Cayenne and Dzuljunska Sipka) to the transient receptor potential vanilloid member 1 (TRPV1) was investigated by integrating an analytic approach for the simultaneous extraction and analysis through high-performance liquid chromatography coupled with ion trap mass spectrometry (HPLC/ITMS) and UV detection (HPLC-UV) of PCs and CAPs and structural bioinformatics based on the protein modelling and molecular simulations of protein-ligand docking. Overall, a total of 35 compounds were identified in the different samples and CAPs were quantified. The highest content of total polyphenols was recorded in the pungent Dzuljunska Sipka variety (8.91 ± 0.05 gGAE/Kg DW) while the lowest was found in the non-pungent variety Friariello (3.58 ± 0.02 gGAE/Kg DW). Protein modelling generated for the first time a complete model of the homotetrameric human TRPV1, and it was used for docking simulations with the compounds detected via the analytic approach, as well as with other compounds, as an inhibitor reference. The simulations indicate that different capsaicinoids can interact with the receptor, providing details on the molecular interaction, with similar predicted binding energy values. These results offer new insights into the interaction of capsaicinoids with TRPV1 and their possible actions.


Subject(s)
Capsicum , Humans , Capsicum/chemistry , Capsaicin/pharmacology , Capsaicin/analysis , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Mass Spectrometry , Phenols/pharmacology , Phenols/analysis , Fruit/chemistry
3.
Drug Chem Toxicol ; 46(3): 482-490, 2023 May.
Article in English | MEDLINE | ID: mdl-35361025

ABSTRACT

N-acetyl cysteine (NAC) is a nutritional supplement and greatly applied as an antioxidant in vivo and in vitro. Therefore, this study aimed to assess the metabolic and antioxidant protective effect of NAC against selenium (Se) toxicity and gamma irradiation in rats by measuring biochemical and molecular parameters. This study was conducted on sixty rats divided into six equal different groups; control, NAC, Rad, Se, Rad + NAC, and Se + NAC groups. Oxidative/nitrosative makers (LPO, NO, and NOS), antioxidants status markers (GSH, GPx, and SOD), liver metabolic markers (LDH, SDH, and ATP), and plasma metabolic markers (Glucose, total cholesterol, and total proteins) were measured using commercial colorimetric kits while plasma corticosterone concentration was measured using commercial ELISA kit. Also, Levels of NR3C1 and Glut-2 genes expression using reverse transcription-quantitative polymerase chain reaction were done. Our results revealed that Se toxicity and gamma irradiation induced significant increases in oxidative/nitrosative stress markers and a significant decrease in antioxidant status markers in the liver and adrenal tissues. Moreover, metabolic disorders were recorded as manifested by elevation of plasma ALT, Albumin, glucose and cholesterol, and decrease in protein levels associated with a significant increase in corticosterone concentration. This was also accompanied by a significant decrease in SDH activity and ATP production in the hepatic tissue. Molecular analysis showed a marked increase in NR3C1 mRNA and decrease in Glut-2 mRNA in liver tissue. However, NAC supplementation attenuated the changes induced by these toxins. Finally, we could conclude that, oral supplementation of NAC can modulate the metabolic disturbances and has protective effects in rats exposed to Se toxicity and gamma irradiation.


Subject(s)
Acetylcysteine , Antioxidants , Gamma Rays , Liver , Selenium , Animals , Rats , Acetylcysteine/metabolism , Acetylcysteine/pharmacology , Adenosine Triphosphate/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Cholesterol/metabolism , Cholesterol/pharmacology , Corticosterone/metabolism , Corticosterone/pharmacology , Liver/drug effects , Liver/metabolism , Liver/radiation effects , Oxidative Stress , Selenium/toxicity , Gamma Rays/adverse effects , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Adrenal Glands/radiation effects
4.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6414-6422, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38211999

ABSTRACT

This study investigated the therapeutic effect of Shegan Mahuang Decoction(SGMHD) on cold-induced asthma in rats and explored its underlying mechanism. Seventy-two healthy male SD rats of specific pathogen free(SPF) grade were randomly divided into a blank group, a model group, a positive control group(dexamethasone, 0.4 mg·kg~(-1)), and low-, medium-, and high-dose SGMHD groups(3.2, 6.4, and 12.8 g·kg~(-1)). The blank group received saline, while the other groups were sensitized by intraperitoneal injection of ovalbumin(OVA) solution. Subsequently, the rats were placed in a cold chamber adjustable to 0-2 ℃, and OVA solution was ultrasonically nebulized to induce cold-induced asthma in rats. After three weeks of treatment, the general behaviors of rats were observed. Hematoxylin-eosin(HE) staining was used to evaluate pathological changes in lung tissues, periodic acid-Schiff(PAS) staining assessed mucin changes, and Masson staining was performed to examine collagen deposition. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of the inflammatory factors interleukin-4(IL-4) and vascular endothelial growth factor(VEGF) in serum and bronchoalveolar lavage fluid(BALF). Real-time quantitative polymerase chain reaction(RT-PCR) was employed to assess the mRNA expression levels of transient receptor potential vanilloid subfamily member 1(TRPV1), nuclear respiratory factor 1(NRF-1), and mitochondrial transcription factor A(mtTFA) in lung tissues. Western blot was used to measure the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues. Compared with the blank group, the model group exhibited signs of rapid respiration, increased frequency of defecation with looser stools, and disheveled and dull fur. Pathological results showed significant infiltration of inflammatory cells in lung tissues, narrowing of bronchial lumens, increased mucin secretion, and enhanced collagen deposition in the model group. Additionally, the levels of IL-4 and VEGF in serum and BALF were significantly elevated, and the mRNA and protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were significantly increased. Compared with the model group, SGMHD improved the behaviors of rats, alleviated pathological changes in lung tissues, mucin production, and collagen deposition, significantly decreased the levels of IL-4 and VEGF in serum and BALF, and reduced the mRNA expression levels of TRPV1, NRF-1, and mtTFA in lung tissues, with the medium-dose SGMHD group showing the most significant effect. Moreover, the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were also reduced, with the medium-dose SGMHD group exhibiting the most significant effect. In conclusion, this study demonstrates that SGMHD can alleviate airway inflammation and inhibit airway remodeling in cold-induced asthma rats. These effects may be associated with the modulation of the TRPV1/NRF-1/mtTFA signaling pathway.


Subject(s)
Asthma , Drugs, Chinese Herbal , Interleukin-4 , Rats , Male , Animals , Mice , Interleukin-4/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Rats, Sprague-Dawley , Asthma/drug therapy , Asthma/genetics , Lung , Bronchoalveolar Lavage Fluid , RNA, Messenger/metabolism , Collagen/metabolism , Mucins/metabolism , Mucins/pharmacology , Mucins/therapeutic use , Ovalbumin , Disease Models, Animal , Mice, Inbred BALB C , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
5.
Pulm Circ ; 12(3): e12138, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36186720

ABSTRACT

Qingke Pingchuan granules (QKPCG), a patented traditional Chinese medicine, clinically, are recommended for acute tracheobronchitis, cough, community-acquired pneumonia, and other respiratory diseases. However, its potential protective effect and mechanism of action in acute lung injury (ALI) have not been explored. We aimed to explore the mechanisms underlying the protective role of QKPCG in ALI. The therapeutic efficacy of QKPCG was investigated in a lipopolysaccharide (LPS)-induced ALI mouse model. Mice were divided into three groups, namely, the Control, LPS, and LPS + QKPCG groups. Mice in the LPS + QKPCG group were administered QKPCG intragastrically as a treatment once a day for a total of three days. QKPCG effectively increased survival and reduced lung injury in treated mice. It significantly reduced the LPS-induced expression of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), IL-1α, and IL-1ß. RNA-sequencing followed by real-time quantitative polymerase chain reaction validation suggested a critical role of the secretoglobin family 1A member 1 (Scgb1a1) gene in mediating the protective effect of QKPCG. Further, QKPCG reversed the LPS-induced downregulation of the Clara cell 10 kDa protein (CC10), a pulmonary surfactant protein encoded by Scgb1a1, which is mainly secreted by club cells in the lungs. Exogenous supplementation of CC10 alleviated LPS-induced ALI. Hematoxylin and eosin staining and enzyme-linked immunosorbent assay results further confirmed the anti-inflammatory properties of CC10, which were suggested as mediated via the inhibition of NFκB phosphorylation. In summary, our study provides evidence of the beneficial role of QKPCG in alleviating lung injury, mediated via the decreased disruption of club cells and higher expression of CC10, which leads to NFκB pathway inhibition.

6.
Int J Biol Sci ; 18(13): 5168-5184, 2022.
Article in English | MEDLINE | ID: mdl-35982894

ABSTRACT

High-dose ascorbate confers tubular mitophagy responsible for septic acute kidney injury (AKI) amelioration, yet its biological roles in immune regulation remain poorly understood. Methods: The role of tubular mitophagy in macrophage polarization upon high-dose ascorbate treatment was assessed by fluorescence-activated cell sorter analysis (FACS) in vitro and by immunofluorescence in AKI models of LPS-induced endotoxemia (LIE) from Pax8-cre; Atg7 flox/flox mice. The underlying mechanisms were revealed by RNA-sequencing, gene set enrichment analysis (GSEA), luciferase reporter, chromatin immunoprecipitation (ChIP) and adeno-associated viral vector serotype 9 (AAV9) delivery assays. Results: High-dose ascorbate enables conversion of macrophages from a pro-inflammatory M1 subtype to an anti-inflammatory M2 subtype in murine AKI models of LIE, leading to decreased renal IL-1ß and IL-18 production, reduced mortality and alleviated tubulotoxicity. Blockade of tubular mitophagy abrogates anti-inflammatory macrophages polarization under the high-dose ascorbate-exposed coculture systems. Similar abrogations are verified in LIE mice with tubular epithelium-specific ablation of Atg7, where the high-dose ascorbate-inducible renal protection and survival improvement are substantially weaker than their control littermates. Mechanistically, high-dose ascorbate stimulates tubular secretion of serpin family G member 1 (SerpinG1) through maintenance of mitophagy, for which nuclear factor-erythroid 2 related factor 2 (NRF2) transactivation is required. SerpinG1 perpetuates anti-inflammatory macrophages to prevent septic AKI, while kidney-specific disruption of SerpinG1 by adeno-associated viral vector serotype 9 (AAV9)-short hairpin RNA (shRNA) delivery thwarts the anti-inflammatory macrophages polarization and anti-septic AKI efficacy of high-dose ascorbate. Conclusion: Our study identifies SerpinG1 as an intermediate of tubular mitophagy-orchestrated myeloid function during septic AKI and reveals a novel rationale for ascorbate-based therapy.


Subject(s)
Acute Kidney Injury , Ascorbic Acid , Complement C1 Inhibitor Protein , Macrophages , NF-E2-Related Factor 2 , Acute Kidney Injury/drug therapy , Animals , Ascorbic Acid/pharmacology , Complement C1 Inhibitor Protein/genetics , Kidney , Kidney Tubules/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , Transcriptional Activation
7.
J Lipid Res ; 63(8): 100241, 2022 08.
Article in English | MEDLINE | ID: mdl-35714730

ABSTRACT

Obesity is associated with inflammation, insulin resistance, and type 2 diabetes, which are major risk factors for CVD. One dietary component of ruminant animal foods, 10,12-conjugated linoleic acid (10,12 CLA), has been shown to promote weight loss in humans. Previous work has shown that 10,12 CLA is atheroprotective in mice by a mechanism that may be distinct from its weight loss effects, but this exact mechanism is unclear. To investigate this, we evaluated HDL composition and function in obese LDL receptor (Ldlr-/-) mice that were losing weight because of 10,12 CLA supplementation or caloric restriction (CR; weight-matched control group) and in an obese control group consuming a high-fat high-sucrose diet. We show that 10,12 CLA-HDL exerted a stronger anti-inflammatory effect than CR- or high-fat high-sucrose-HDL in cultured adipocytes. Furthermore, the 10,12 CLA-HDL particle (HDL-P) concentration was higher, attributed to more medium- and large-sized HDL-Ps. Passive cholesterol efflux capacity of 10,12 CLA-HDL was elevated, as was expression of HDL receptor scavenger receptor class B type 1 in the aortic arch. Murine macrophages treated with 10,12 CLA in vitro exhibited increased expression of cholesterol transporters Abca1 and Abcg1, suggesting increased cholesterol efflux potential of these cells. Finally, proteomics analysis revealed elevated Apoa1 content in 10,12 CLA-HDL-Ps, consistent with a higher particle concentration, and particles were also enriched with alpha-1-antitrypsin, an emerging anti-inflammatory and antiatherosclerotic HDL-associated protein. We conclude that 10,12 CLA may therefore exert its atheroprotective effects by increasing HDL-P concentration, HDL anti-inflammatory potential, and promoting beneficial effects on cholesterol efflux.


Subject(s)
Diabetes Mellitus, Type 2 , Linoleic Acids, Conjugated , Animals , Cholesterol , Diet, High-Fat , Dietary Supplements , Humans , Mice , Obesity , Sucrose , Weight Loss
8.
J Tradit Chin Med ; 42(3): 446-450, 2022 06.
Article in English | MEDLINE | ID: mdl-35610015

ABSTRACT

OBJECTIVE: To investigate the effect of the decoction of Fuzheng Jiedu Xiaoji formula (, FJXF) plus chemoembolization (TACE) on primary liver cancer (PLC) in patients, and study the underlying mechanism. METHODS: Patients with PLC who met the inclusion criteria were randomized into case group and control group. The case group was treated with FJXF combined with TACE. The control group was treated with TACE alone. The short-term clinical effect was evaluated; liver biochemistry, liver function index and multidrug resistance-associated indicators were detected. RESULTS: FJXF combined with TACE in the case group significantly increased the disease control rate than TACE alone in the control group (83.3% 61.1%). There was a reduction in the serum alpha-fetoprotein at 8 weeks after treatment in each group, while no difference between the two groups. The same trend can be observed for transaminase and direct bilirubin in both groups. In the case group, it showed a significant increase for albumin at 8 weeks after treatment, while no change in the control group. Multidrug resistance-associated indicators for multidrug resistance protein 1 and p-glycoprotein were upregulated in the case group but remained stable in the control group. CONCLUSIONS: FJXF combined TACE had a better short-term effect than TACE alone in patients with PLC. The potential mechanism was probably associated with alleviated multidrug resistance induced by FJXF. Additionally, FJXF didn't increase the risk of liver damage in the combined therapy.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Drugs, Chinese Herbal , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Chemoembolization, Therapeutic/adverse effects , Combined Modality Therapy , Drugs, Chinese Herbal/therapeutic use , Humans , Liver Neoplasms/drug therapy , Treatment Outcome
9.
Biochem Biophys Rep ; 29: 101223, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35146136

ABSTRACT

Selenium is a chalcogen element that is essential in animals, but is highly toxic when ingested above the nutritional requirement. Selenite is used as a supplement in patients receiving total parenteral nutrition. However, the therapeutic and toxic doses of selenite are separated by a narrow range. This ambivalent character of selenite implies the presence of cellular mechanisms that precisely control selenite homeostasis. Here, we investigated mechanisms that determine cellular susceptibility to selenite exposure. The resistance to selenite exposure was significantly different among cell lines. We determined the expression levels of TPMT (thiopurine S-methyltransferase) and SLC4A1 (solute carrier family 4 member 1), which encode selenium methyltransferase and selenite transporter, respectively. We also examined the effect of inhibition of Band 3 protein activity, which is encoded by SLC4A1, on the cellular sensitivity to selenite. The data suggest that the expression level of SLC4A1 is the determinant of cellular sensitivity to selenite.

10.
Oral Dis ; 28(6): 1674-1681, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33811796

ABSTRACT

OBJECTIVES: Signals from inflamed tooth pulp activate thalamic neurons to evoke central sensitization. We aimed to gain insights into the mechanisms mediating the early phase of pulpal inflammation-induced thalamic neural and glial activation. MATERIALS AND METHODS: Pulpal inflammation was induced via the application of mustard oil (MO) to the upper first molar of Wistar rats with local anesthesia (LA) or saline injection. After 0.5, 1, 2, and 24 hr, contralateral thalami were subjected to microarrays, a real-time polymerase chain reaction and immunohistochemistry to identify differentially expressed genes and assess potassium voltage-gated channel subfamily A member 1 (Kv1.1)-expressing axons and glial fibrillary acidic protein (GFAP)-expressing astrocytes. RESULTS: The Kv1.1 gene (Kcna1) was down-regulated and the density of Kv1.1-expressing axons decreased in non-anesthetized rats, but not in anesthetized rats 1 hr after the MO treatment. The density of GFAP-expressing astrocytes increased in both groups until 24 hr after the MO treatment, with a greater increase being observed in the saline-injection group than in the LA group. CONCLUSIONS: MO induced the transient down-regulation of Kcna1, transiently reduced the density of Kv1.1-expressing axons, and increased astrocytes in thalami within 1 hr of pulpal application. These results suggest central sensitization represented by neuronal hyperexcitability and astrocyte activation.


Subject(s)
Dental Pulp , Thalamus , Animals , Down-Regulation , Inflammation , Rats , Rats, Wistar
11.
Exp Ther Med ; 22(1): 735, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34055052

ABSTRACT

Oleanolic acid (OA) is a natural compound that can be found in a number of edible and medicinal plants and confers diverse biological actions. However, the direct target of OA in human tumor cells remains poorly understood, preventing its application in clinical and health settings. A previous study revealed that overexpression of caveolin-1 in human leukemia HL-60 cells can increase its sensitivity to OA. The present study aimed to investigate the effects of OA on the doxorubicin-resistant human breast cancer MCF-7 cell line (MCF-7/DOX), harringtonine-resistant human leukemia HL-60 cells (HL-60/HAR) and their corresponding parental cell lines. Western blotting was performed to measure protein expression levels, whilst Cell Counting Kit-8 (CCK-8) assays, cell cycle analysis (by flow cytometry) and apoptosis assays (with Annexin V/PI staining) were used to assess drug sensitivity. CCK-8 assay results suggested that MCF-7/DOX cells, which overexpress the caveolin-1 protein, have similar OA susceptibility to their parent line. In addition, sensitivity of MCF-7/DOX cells to OA was not augmented by knocking down caveolin-1 using RNA interference. HL-60/HAR cells exhibited a four-fold increased sensitivity to OA compared with that in their parental HL-60 cells according to CCK-8 assay. Both of the resistant cell lines exhibited higher numbers of cells at G1 phase arrest compared with those in their parent lines, as measured via flow cytometry. Treatment of both MCF-7 cell lines with 100 µM OA for 48 h induced apoptosis, with increased effects observed in resistant cells. However, no PARP-1 or caspase-3 cleavage was observed, with some positive Annexin V staining found after HL-60/HAR cells were treated with OA, suggesting that cell death occurred via non-classical apoptosis or through other cell death pathways. It was found that OA was not a substrate of ATP-binding cassette subfamily B member 1 (ABCB1) in drug-resistant cells, as indicated by the accumulation of rhodamine 123 assessed using flow cytometry. However, protein expression of ABCB1 in both of the resistant cell lines was significantly decreased after treatment with OA in a concentration-dependent manner. Collectively, these results suggest that OA could reduce ABCB1 protein expression and induce G1 phase arrest in multidrug-resistant cancer cells. These findings highlight the potential of OA for cancer therapy.

12.
Ann Transl Med ; 9(2): 156, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33569458

ABSTRACT

BACKGROUND: The present study analyzed gene polymorphisms in the potassium voltage-gated channel KQT-like subfamily member 1 (KCNQ1) and the long noncoding RNA, KCNQ1OT1, and their impacts on genetic susceptibility and survival in a Chinese Han population with gastric cancer (GC). METHODS: We designed a case-control study that included 681 patients with GC and 756 healthy controls. Three single-nucleotide polymorphisms (SNPs) in the KCNQ1 gene region and eight SNPs in the KCNQ1OT1 gene region were selected for further research. RESULTS: Among the 11 SNPs, we found no significant differences in the genotype and allele frequencies between GC patients and the healthy population. Hierarchical analysis by the log-additive model indicated that the KCNQ1 rs231348 CT genotype was significantly associated with an increased GC risk in individuals aged ≥55 years, regardless of gender. The KCNQ1OT1 rs231352 CC and rs7128926 AA genotypes increased the risk of GC in individuals with stage III/IV tumors larger than 5 cm in diameter. On evaluating the genotype polymorphism and survival analysis, we detected that the AA genotypes of the KCNQ1OT1 rs7128926 and rs7939976 polymorphisms presented a significant survival advantage over the GA/GG genotypes, especially in patients with the following characteristics: age >55, Helicobacter pylori infection, BMI >24, tumor in the non-cardia region with a diameter greater than 5 cm, clinical stage II, and postoperative adjuvant chemotherapy. CONCLUSIONS: Our results suggest that the KCNQ1 rs231348 and KCNQ1OT1 rs231352 polymorphisms might be independent predictors of the risk of GC susceptibility depending on certain factors, such as the age of the individual and the tumor stage and diameter. Simultaneously, genotype polymorphism of the rs7128926 and rs7939976 loci of the KCNQ1OT1 gene independently predicted the recurrence-free survival (RFS) and overall survival (OS) of GC patients.

13.
Bioorg Med Chem Lett ; 31: 127639, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33129991

ABSTRACT

Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the transient receptor potential family, detects a wide range of environmental stimuli, such as low temperature, abnormal pH, and reactive irritants. TRPA1 is of great interest as a target protein in fields related to pharmaceuticals and foods. In this study, a library of natural products was explored to identify TRPA1 activators by pharmacophore screening of known TRPA1 agonists and biological assays for agonist activity. The study identified six natural compounds as novel TRPA1 agonists. The discovery of these compounds may prove useful in elucidating the TRPA1 activation mechanism.


Subject(s)
Biological Products/pharmacology , Drug Discovery , TRPA1 Cation Channel/agonists , Biological Products/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Structure , Structure-Activity Relationship
14.
J Tradit Chin Med ; 40(4): 562-570, 2020 08.
Article in English | MEDLINE | ID: mdl-32744023

ABSTRACT

OBJECTIVE: To investigate the antagonistic effect of the extract of Baizhu (Rhizoma Atractylodis Macrocephalae) (RAM) on the intestinal absorption of brucine and strychnine in Strychnos nux-vomica (NUX) and propose the mechanism of these effects. METHODS: The apparent permeability value (Papp) and absorption rate constant (Ka) were chosen as indices. The everted intestinal sac model and in situ single-pass intestinal perfusion model were used to study the effects of the RAM extract on the absorption of brucine and strychnine. To confirm the results, the brucine and strychnine concentrations in hepatic portal venous blood were determined. Western blotting was used to study P-glycoprotein (P-gp) expression in the Caco-2 cell line. RESULTS: Papp and Ka of brucine and strychnine were significantly increased in the presence of a P-gp inhibitor, but no significant increase was noted in the presence of a tight junction regulator. The RAM extract inhibited the absorption of brucine and strychnine and enhanced P-gp expression. CONCLUSION: The primary absorption mechanism for brucine and strychnine is passive transport, which is affected by P-gp.


Subject(s)
Atractylodes/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Intestinal Absorption/drug effects , Strychnine/analogs & derivatives , Strychnine/pharmacokinetics , Strychnos nux-vomica/chemistry , Animals , Caco-2 Cells , Cell Line, Tumor , Drugs, Chinese Herbal/administration & dosage , Humans , Male , Rats , Rats, Sprague-Dawley , Rhizome/chemistry , Strychnine/administration & dosage
15.
Acupunct Med ; 38(2): 101-108, 2020 04.
Article in English | MEDLINE | ID: mdl-31941349

ABSTRACT

BACKGROUND: Acupuncture has been clinically recommended as a method of pain relief by the World Health Organization and is widely used by medical doctors. Fibromyalgia (FM) pain has a complex physiological and psychological origin and can be pharmacologically treated with duloxetine, milnacipran and pregabalin. However, these drugs produce undesirable side effects, such as headaches, nausea and diarrhoea. Acupuncture may serve as an effective alternative treatment for pain relief with few side effects. AIMS: We hypothesised that acupuncture would reduce FM pain by influencing transient receptor potential cation channel subfamily V member 1 (TRPV1) and the downstream phosphorylated extracellular signal-regulated kinases (pERK), which are located in the central thalamus, amygdala and cortex. METHODS: A FM mouse model was established by injecting two doses of acid saline into 32 female C57/B6 mice. The mice were then assigned to different subgroups (n=8 each) and treated with electroacupuncture (EA) or EA sham control. TRPV1 and pERK expression levels were measured using Western blotting and immunohistochemistry. RESULTS: Our results demonstrated that the expression of TRPV1 and pERK in the thalamus, amygdala and somatosensory cortex was normal in the control mice, but significantly increased in FM mice; these FM-induced changes in expression were attenuated by EA. CONCLUSION: Our data suggest that EA can reverse the central sensitisation of the TRPV1-ERK signalling pathway in the mouse brain. Thus, our findings provide mechanistic evidence supporting the potential therapeutic efficacy of EA for treating FM pain.


Subject(s)
Brain/metabolism , Electroacupuncture , Fibromyalgia/therapy , Pain Management/methods , Signal Transduction , Animals , Disease Models, Animal , Female , Mice , TRPV Cation Channels/metabolism , eIF-2 Kinase/metabolism
16.
Skin Pharmacol Physiol ; 33(6): 331-341, 2020.
Article in English | MEDLINE | ID: mdl-33401283

ABSTRACT

BACKGROUND: Capsaicin, the main pungent ingredient in hot chili peppers, causes excitation of small sensory neurons. It also provides the basic pungent flavor in Capsicum fruits. SUMMARY: Capsaicin plays a vital role as an agonist for the TRPV1 (transient receptor potential cation channel, subfamily V, member 1) receptor. TRPV1 is essential for the reduction of oxidative stress, pain sensations, and inflammation. Therefore, it has many pros related to health issue. Activation and positive impact of TRPV1 via capsaicin has been studied in various dermatological conditions and in other skin-related issues. Past studies documented that capsaicin plays a vital role in the prevention of atopic dermatitis as well as psoriasis. Moreover, TRPV1 is also very important for skin health because it acts as a capsaicin receptor. It is found in nociceptive nerve fibers and nonneural structures. It prompts the release of a compound that is involved in communicating pain between the spinal cord nerves and other parts of the body. Key Messages: Here, we summarize the growing evidence for the beneficial role of capsaicin and TRPV1 and how they help in the relief of skin diseases such as inflammation, permeation, dysfunction, atopic dermatitis, and psoriasis and in pain amplification syndrome.


Subject(s)
Capsaicin/therapeutic use , Capsicum/chemistry , Inflammation/prevention & control , Skin/drug effects , Spices/analysis , Animals , Humans , Inflammation/metabolism , Inflammation/pathology , TRPV Cation Channels/metabolism
17.
Phytomedicine ; 62: 152953, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31128486

ABSTRACT

BACKGROUND: Triptolide (TPL) can enhance the sensitivity of pancreatic cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but available research is limited to whether TPL can affect the relevant downstream signaling pathways of TRAIL. Current knowledge is far from adequate to fully understand the mechanisms by which TPL increases TRAIL sensitivity of pancreatic cancer. PURPOSE: We aimed to find TPL-regulated upstream components of the signaling pathways of TRAIL to further understand the regulatory mechanism by which TPL increases the sensitivity to TRAIL. METHODS: Microarray analysis and the adherent cell cytometry system Celigo were used to identify the TRAIL-related genes. Western blot analysis, cell proliferation assays, tumorigenicity assays in nude mice, flow cytometry, and transmission electron microscopy were performed to analyze the function of Pumilio RNA-binding family member 1 (PUM1) in TPL-mediated enhancement of sensitivity to TRAIL. The effect of PUM1 silencing on the p27-CDK2 complex was examined by immunoprecipitation. RESULTS: PUM1 expression was decreased by TPL and TPL + TRAIL but was not decreased by TRAIL alone. PUM1 silencing enhanced low-concentration-TRAIL-induced suppression of proliferation and promotion of apoptosis and increased p27 expression and the amount of the p27-CDK2 complex in pancreatic cancer cells. PUM1 overexpression attenuated the effects of TPL treatment (TRAIL-induced cell proliferation suppression and apoptosis promotion), while PUM1 silencing and TPL enhanced low-concentration-TRAIL-induced autophagy activation in pancreatic cancer cells. Moreover, PUM1 overexpression attenuated the effect of TPL treatment on TRAIL-induced autophagy activation in pancreatic cancer cells. CONCLUSION: PUM1 silencing increased the sensitivity of pancreatic cancer cells to TRAIL in vivo and in vitro, indicating that PUM1 may be a new target for increasing the sensitivity of cancer cells to TRAIL. In addition, our results indicate that TPL enhances TRAIL sensitivity of pancreatic cancer cells by activating autophagy via downregulation of PUM1. This novel concept may have significant implications for the development of new strategies to enhance TRAIL sensitivity of tumors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/drug effects , Diterpenes/pharmacology , Pancreatic Neoplasms/drug therapy , Phenanthrenes/pharmacology , RNA-Binding Proteins/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes/administration & dosage , Down-Regulation/drug effects , Epoxy Compounds/administration & dosage , Epoxy Compounds/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, Nude , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phenanthrenes/administration & dosage , RNA-Binding Proteins/genetics , TNF-Related Apoptosis-Inducing Ligand/administration & dosage , Xenograft Model Antitumor Assays
18.
Br J Nutr ; 121(7): 818-830, 2019 04.
Article in English | MEDLINE | ID: mdl-30688182

ABSTRACT

The objective of this study was to investigate the effects of dietary pyrroloquinoline quinone disodium (PQQ·Na2) supplementation on the reproductive performance and intestinal barrier functions of gestating and lactating female Sprague-Dawley (SD) rats and their offspring. Dietary supplementation with PQQ·Na2 increased the number of implanted embryos per litter during gestation and lactation at GD 20 and increased the number of viable fetuses per litter, and the weight of uterine horns with fetuses increased at 1 d of newborn. The mRNA expression levels of catalase (CAT), glutathione peroxidase (GPx2), superoxide dismutase (SOD1), solute carrier family 2 member 1 (Slc2a1) and solute carrier family 2 member 3 (Slc2a3) in the placenta were increased with dietary PQQ·Na2 supplementation. Dietary supplementation with PQQ·Na2 in gestating and lactating rats increased the CAT, SOD and GPx activities of the jejunal mucosa of weaned rats on PD 21. Dietary supplementation with PQQ·Na2 in female rats affected the expression of tight junction proteins (claudin, zonula occludens-1 (ZO-1) and occludin) in the jejunal mucosa of their offspring by increasing the expression of ZO-1 mRNA in the expression of ZO-1 and claudin mRNA in the jejunal mucosa of weaned rats on PD 21. In conclusion, dietary supplementation with PQQ·Na2 in gestating and lactating female rats had positive effects on their reproductive performance and on the intestinal barrier of weaned rats.


Subject(s)
Dietary Supplements , Intestinal Mucosa/drug effects , Lactation/drug effects , Maternal Nutritional Physiological Phenomena/drug effects , PQQ Cofactor/administration & dosage , Reproduction/drug effects , Animal Feed , Animals , Female , Placenta/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Weaning
19.
Adv Exp Med Biol ; 975 Pt 1: 475-495, 2017.
Article in English | MEDLINE | ID: mdl-28849476

ABSTRACT

The cysteine dioxygenase (Cdo1)-null mouse is unable to synthesize hypotaurine and taurine by the cysteine/cysteine sulfinate pathway and has very low taurine levels in all tissues. The lack of taurine is associated with a lack of taurine conjugation of bile acids, a dramatic increase in the total and unconjugated hepatic bile acid pools, and an increase in betaine and other molecules that serve as organic osmolytes. We used the Cdo1-mouse model to determine the effects of taurine deficiency on expression of proteins involved in sulfur amino acid and bile acid metabolism. We identified cysteine sulfinic acid decarboxylase (Csad), betaine:homocysteine methytransferase (Bhmt), cholesterol 7α-hydroxylase (Cyp7a1), and cytochrome P450 3A11 (Cyp3a11) as genes whose hepatic expression is strongly regulated in response to taurine depletion in the Cdo1-null mouse. Dietary taurine supplementation of Cdo1-null mice restored hepatic levels of these four proteins and their respective mRNAs to wild-type levels, whereas dietary taurine supplementation had no effect on abundance of these proteins or mRNAs in wild-type mice.


Subject(s)
Cysteine Dioxygenase/deficiency , Gene Expression/physiology , Liver/metabolism , Taurine/metabolism , Animals , Female , Gene Expression/drug effects , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Taurine/pharmacology
20.
Cell Mol Gastroenterol Hepatol ; 3(3): 422-446, 2017 May.
Article in English | MEDLINE | ID: mdl-28462382

ABSTRACT

BACKGROUND & AIMS: Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum. Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes. When enterocyte function is disrupted by disease or injury, intestinal failure can occur. One approach to alleviate intestinal failure would be to restore lost enterocyte functions. The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated. We previously showed that GATA binding protein 4 (GATA4) is essential to define jejunal enterocytes. The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium. METHODS: To test this hypothesis, we generated a novel Gata4 conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent. RESULTS: We found that GATA4-expressing ileum lost ileal identity. The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum. Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity. Furthermore, our study implicates GATA4 as a transcriptional repressor of fibroblast growth factor 15 (Fgf15), which encodes an enterokine that has been implicated in an increasing number of human diseases. CONCLUSIONS: Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4's function as a crucial dominant molecular determinant of jejunal enterocyte identity. Microarray data from this study have been deposited into NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO series accession number GSE75870.

SELECTION OF CITATIONS
SEARCH DETAIL