Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Pharm Nanotechnol ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38409695

ABSTRACT

The process of producing the metallic nanoparticles (MNPs) in a sustainable and environment- friendly process is very desirable due to environmental hazards posed by climatic changes. Biomedical one of the fields classified under nanoscience, nanoparticles have a potential synthetic application, which makes it a vast area of research. These particles can be prepared using chemical, physical, and biological methods. One of the methods of synthesis of nanoparticles is by the use of plant extracts, known as green synthesis. Because of its low cost and nontoxicity, it has gained attention in recent times. This review was conducted to find the possible outcomes and uses of metallic nanoparticles synthesized using different parts like gum, root, stem, leaf, fruits, etc. of Azadirachta indica (AI). AI, a popular medicinal plant commonly known as neem, has been studied for the green synthesis of NPs by using the capping and reducing agents secreted by the plant. Various phytochemicals identified in neem are capable of metal ion reduction. Green synthesis of NPs from neem is an eco-friendly and low-cost method. These NPs are reported to exhibit good antimicrobial activity. The review covers the preparation, characterization, and mechanism associated with the antibacterial, anticancer, and neurological diseases of the MNPs. Furthermore, the limitations associated with the existing NPs and the prospects of these NPs are also examined.

2.
Anticancer Agents Med Chem ; 24(8): 627-636, 2024.
Article in English | MEDLINE | ID: mdl-38299417

ABSTRACT

Cervical cancer emerges as a prominent health issue, demanding attention on a global level for women's well-being, which frequently calls for more specialized and efficient treatment alternatives. Traditional therapies may have limited tumour targeting and adverse side effects. Recent breakthroughs have induced a transformative shift in the strategies employed against cervical cancer. biocompatible herbal nanoparticles and metallic particles made of gold, silver, and iron have become promising friends in the effort to fight against this serious disease and understand the possibility of these nanoparticles for targeted medication administration. this review article delves into the latest advancements in cervical cancer research. The safety and fabrication of these nanomaterials and their remarkable efficacy against cervical tumour spots are addressed. This review study, in short, provides an extensive introduction to the fascinating field of metallic and herbal nanoparticles in cervical cancer treatment. The information that has been examined points to a bright future in which women with cervical cancer may experience fewer side effects, more effective therapy, and an improved quality of life. This review holds promise and has the potential to fundamentally reshape the future of cervical cancer treatment by addressing urgent issues and unmet needs in the field.


Subject(s)
Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Humans , Female , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Metal Nanoparticles/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
3.
Mol Biol Rep ; 51(1): 62, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170277

ABSTRACT

BACKGROUND: Breast carcinoma is the second leading cause of cancer related-deaths among women. Given its high incidence and mortality rates, searching for innovative treatments represents a formidable challenge within the medical and pharmaceutical industries. This study delves into the preparation, characterization, and anticancer properties of silver chloride nanoparticles (AgCLNPs) as a novel therapeutic approach for breast cancer cells, employing a biological synthesis method. METHODS: This investigation, utilized spirulina platensis extract to synthesize silver chloride nanoparticles (AgCLNPs-SP). The formation, size, and structure of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), X-ray crystallography (XRD), and Energy-dispersive X-ray spectroscopy (EDS) analysis. Additionally, the apoptotic and anticancer properties of AgCLNPs-SP were thoroughly examined. RESULTS: The results, revealed AgCLNPs-SP to exhibit a spherical, morphology with a size range of 40-70 nm, primarily silver and chlorine. The dose-dependent response of AgCLNP-SP against MDA-MB231 cells was ascertained using the MTT Assay, with an IC50 value of 34 µg/mL. Furthermore, the Annexin V-FITC/ PI apoptosis assay demonstrated a significant proportion of early apoptosis (43.67%) in MDA-MB231 cells. This apoptosis process was substantiated by up-regulation in mRNA expression levels of P53, CAD, and Bax genes, alongside a down-regulation of the of bcl2 gene expression. Additionally, an augmented production of reactive oxygen species (ROS), cell cycle analysis, Hoechst staining assay, and evaluated levels of Caspase - 3, -8 and - 9 were observed in AgCLNPs-SP-treated MDA_MB231 cancer cells. CONCLUSIONS: In conclusion, the results suggest that AgCLNPs-SP may be a promising agent for treating breast cancer.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Microalgae , Female , Humans , Metal Nanoparticles/chemistry , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Chlorides , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Environ Sci Pollut Res Int ; 31(9): 13046-13062, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38240974

ABSTRACT

Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.


Subject(s)
Metal Nanoparticles , Nanoparticles , Tillandsia , Zinc Oxide , Humans , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Nanoparticles/chemistry , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
5.
Biol Trace Elem Res ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878232

ABSTRACT

In recent years, biologically synthesized metal nanoparticles have emerged as a dynamic field of research with significant implications for biomedical applications. This review explores the latest trends in the synthesis of metal nanoparticles using biological methods, encompassing plant extracts and microorganisms such as bacteria, yeasts, and fungi. These innovative approaches offer a sustainable, cost-effective, and environmentally friendly alternative to conventional chemical synthesis methods. Moreover, this review delves into the multifaceted biomedical applications of biologically synthesized metal nanoparticles. These applications include drug delivery systems, diagnostics, therapeutics, and imaging technologies, showcasing the versatility and promise of these nanomaterials in addressing contemporary biomedical challenges. In addition, the review addresses the critical issue of cytotoxicity, offering insights into the safety and viability of these biologically derived NPs for medical use. The exploration of recent trends and advancements in this field underscores the transformative potential of biologically synthesized metal nanoparticles in revolutionizing biomedical research and healthcare.

6.
J Funct Biomater ; 14(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37623670

ABSTRACT

Nanomaterials (NMs) synthesized from natural sources have been attracting greater attention, due to their intrinsic advantages including biocompatibility, stimuli-responsive property, nontoxicity, cost-effectiveness, and non-immunogenic characteristics in the biological environment. Among various biomedical applications, a breakthrough has been achieved in the development of drug delivery systems (DDS). Biocompatibility is necessary for treating a disease safely without any adverse effects. Some components in DDS respond to the physiological environment, such as pH, temperature, and functional group at the target, which facilitates targeted drug release. NM-based DDS is being applied for treating cancer, arthritis, cardiovascular diseases, and dermal and ophthalmic diseases. Metal nanomaterials and carbon quantum dots are synthesized and stabilized using functional molecules extracted from natural sources. Polymers, mucilage and gums, exosomes, and molecules with biological activities are directly derived from natural sources. In DDS, these functional components have been used as drug carriers, imaging agents, targeting moieties, and super disintegrants. Plant extracts, biowaste, biomass, and microorganisms have been used as the natural source for obtaining these NMs. This review highlights the natural sources, synthesis, and application of metallic materials, polymeric materials, carbon dots, mucilage and gums, and exosomes in DDS. Aside from that, challenges and future perspectives on using natural resources for DDS are also discussed.

7.
Medicina (Kaunas) ; 59(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37374226

ABSTRACT

Metabolic syndrome is a multifaceted pathophysiologic condition that is largely caused by an imbalance between caloric intake and energy expenditure. The pathogenesis of metabolic syndrome is determined by an individual's genetic/epigenetics and acquired factors. Natural compounds, notably plant extracts, have antioxidant, anti-inflammatory, and insulin-sensitizing properties and are considered to be a viable option for metabolic disorder treatment due to their low risk of side effects. However, the limited solubility, low bioavailability, and instability of these botanicals hinder their performance. These specific limitations have prompted the need for an efficient system that reduces drug degradation and loss, eliminates unwanted side effects, and boosts drug bioavailability, as well as the percentage of the drug deposited in the target areas. The quest for an enhanced (effective) drug delivery system has led to the formation of green-engineered nanoparticles, which has increased the bioavailability, biodistribution, solubility, and stability of plant-based products. The unification of plant extracts and metallic nanoparticles has helped in the development of new therapeutics against metabolic disorders such as obesity, diabetes mellitus, neurodegenerative disorders, non-alcoholic fatty liver, and cancer. The present review outlines the pathophysiology of metabolic diseases and their cures with plant-based nanomedicine.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Metabolic Diseases , Metabolic Syndrome , Metal Nanoparticles , Nanoparticles , Humans , Tissue Distribution , Nanoparticles/therapeutic use , Metabolic Diseases/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
8.
Curr Mol Med ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231732

ABSTRACT

RESEARCH BACKGROUND: Breast cancer is the second leading cause of death all over the world and is not only limited to females but also affects males. For estrogen receptor-positive breast cancer, tamoxifen has been considered the gold-line therapy for many decades. However, due to the side effects associated with the use of tamoxifen, its use is only limited to individuals in high-risk groups and limits its clinical application to moderate and/or lower-risk groups. Thus, there is a necessity to decrease the dose of tamoxifen, which can be achieved by targeting the drug to breast cancer cells and limiting its absorption to other body parts. PROBLEM STATEMENT: Artificial antioxidants used in the formulation preparation are assumed to upsurge the risk of cancer and liver damage in humans. The need of the hour is to explore bio-efficient antioxidants from natural plant sources as they are safer and additionally possess antiviral, anti-inflammatory, and anticancer properties. Objectives of the study and research: The objective of this hypothesis is to prepare tamoxifen-loaded PEGylated NiO nanoparticles using green chemistry, tumbling the toxic effects of the conventional method of synthesis for targeted delivery to breast cancer cells. Significance of the research work: The significance of the work is to hypothesize a green method for the synthesis of NiO nanoparticles that are eco-friendly, cost-effective, decrease multidrug resistance, and can be used for targeted therapy. Garlic extract contains an organosulfur compound (Allicin) which has drug-metabolizing, anti-oxidant, and tumour growth inhibition effects. In breast cancer, allicin sensitizes estrogen receptors, increasing the anticancer efficacy of tamoxifen and reducing offsite toxicity. Thus, this garlic extract would act as a reducing agent and a capping agent. The use of nickel salt can help in targeted delivery to breast cancer cells and, in turn, reduces drug toxicity in different organs. Future directions/recommendations: This novel strategy may aim for cancer management with less toxic agents acting as an apt therapeutic modality.

9.
Front Bioeng Biotechnol ; 11: 1159193, 2023.
Article in English | MEDLINE | ID: mdl-37200842

ABSTRACT

Nanotechnology is an emerging applied science delivering crucial human interventions. Biogenic nanoparticles produced from natural sources have received attraction in recent times due to their positive attributes in both health and the environment. It is possible to produce nanoparticles using various microorganisms, plants, and marine sources. The bioreduction mechanism is generally employed for intra/extracellular synthesis of biogenic nanoparticles. Various biogenic sources have tremendous bioreduction potential, and capping agents impart stability. The obtained nanoparticles are typically characterized by conventional physical and chemical analysis techniques. Various process parameters, such as sources, ions, and temperature incubation periods, affect the production process. Unit operations such as filtration, purification, and drying play a role in the scale-up setup. Biogenic nanoparticles have extensive biomedical and healthcare applications. In this review, we summarized various sources, synthetic processes, and biomedical applications of metal nanoparticles produced by biogenic synthesis. We highlighted some of the patented inventions and their applications. The applications range from drug delivery to biosensing in various therapeutics and diagnostics. Although biogenic nanoparticles appear to be superior to their counterparts, the molecular mechanism degradation pathways, kinetics, and biodistribution are often missing in the published literature, and scientists should focus more on these aspects to move them from the bench side to clinics.

10.
Biomimetics (Basel) ; 8(1)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36975332

ABSTRACT

Biomimetic nanotechnology pertains to the fundamental elements of living systems and the translation of their properties into human applications. The underlying functionalities of biological materials, structures and processes are primarily rooted in the nanoscale domain, serving as a source of inspiration for materials science, medicine, physics, sensor technologies, smart materials science and other interdisciplinary fields. The Biomimetics Special Issues Biomimetic Nanotechnology Vols. 1-3 feature a collection of research and review articles contributed by experts in the field, delving into significant realms of biomimetic nanotechnology. This publication, Vol. 3, comprises four research articles and one review article, which offer valuable insights and inspiration for innovative approaches inspired by Nature's living systems. The spectrum of the articles is wide and deep and ranges from genetics, traditional medicine, origami, fungi and quartz to green synthesis of nanoparticles.

11.
Insects ; 14(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36975906

ABSTRACT

Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.

12.
Pharmaceutics ; 15(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36839850

ABSTRACT

Among various routes of metallic nanoparticle (NPs) fabrication, phytosynthesis has significant advantages over other conventional approaches. Plant-mediated synthesis of NPs is a fast, one-step, ecobenign, and inexpensive method with high scalability. Herein, silver (Ag) and gold (Au)-NPs were extracellularly synthesized using aqueous Haloxylon salicornicum (H@Ag-, H@Au-NPs) leaf extracts. GC-MS was performed to analyze the chemical compositions of H. salicornicum extract. H@Ag- and H@Au-NPs were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission and scanning electron microscopy, and Zetasizer. H@Ag- and H@Au-NPs have surface plasmon resonance at 435.5 and 530.3 nm, respectively. FTIR and GC-MS data suggest that secondary plant metabolites and hydrocarbons might be responsible for the reduction and stabilization of NPs. XRD demonstrated that both NPs have a crystalline nature. H@Ag-NPs have a uniform spherical shape, whereas H@Au-NPs are spherical with few oval and triangular shapes, and their average nanosizes were 19.1 ± 0.8 and 8.1 ± 0.3 nm, respectively. Hydrodynamic diameters of H@Ag-NPs and H@Au-NPs were 184.7 nm, 56.4, and 295.4 nm, and their potential charges were -24.0 and -24.4 mV, respectively. The inhibitory activity of 500 µg/mL H@Ag- and H@Au-NPs was tested against Sw480, Sw620, HCT-116, and Caco-2 colon cancer cell lines and two normal cell lines, including HFs and Vero. H@Ag-NPs revealed potent anticancer activity against all cancer cells at low concentrations. Sw480 was the most sensitive cell to H@Ag-NPs, whereas Sw620 was the least permeable one. These findings suggested that the antiproliferative activity of H@Ag-NPs is cell-response-dependent and may be influenced by a variety of factors, including the cellular metabolic state, which influences cellular charge and interactions with charged NPs. Although H@Au-NPs were smaller, their reactivity against cancer cells was weak, suggesting that the chemical properties, metal structure, quantity and chemistry of the functional groups on the NP surface may influence their reactivity. The biocidal activity of 1 mg/mL H@Ag- and H@Au-NPs against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Klebsiella pneumoniae was assessed. H@Ag-NPs showed biocidal activity against Gram-positive bacteria compared to Gram-negative bacteria, whereas H@Au-NPs showed no inhibitory activity. FRAP and DPPH assays were used to determine the scavenging activity of the plant extracts and both NPs. H@Ag-NPs (1 mg/mL) had the greatest scavenging activity compared to tested drugs. These findings suggest that H@Ag-NPs are potent anticancer, antibacterial, and antioxidant agents, while H@Au-NPs may be used as a drug vehicle for pharmaceutical applications.

13.
Microorganisms ; 11(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36838343

ABSTRACT

Nanoparticles (1 to 100 nm) have unique physical and chemical properties, which makes them suitable for application in a vast range of scientific and technological fields. In particular, metal nanoparticle (MNPs) research has been showing promising antimicrobial activities, paving the way for new applications. However, despite some research into their antimicrobial potential, the antimicrobial mechanisms are still not well determined. Nanoparticles' biosynthesis, using plant extracts or microorganisms, has shown promising results as green alternatives to chemical synthesis; however, the knowledge regarding the mechanisms behind it is neither abundant nor consensual. In this review, findings from studies on the antimicrobial and biosynthesis mechanisms of MNPs were compiled and evidence-based mechanisms proposed. The first revealed the importance of enzymatic disturbance by internalized metal ions, while the second illustrated the role of reducing and negatively charged molecules. Additionally, the main results from recent studies (2018-2022) on the biosynthesis of MNPs using microorganisms were summarized and analyzed, evidencing a prevalence of research on silver nanoparticles synthesized using bacteria aiming toward testing their antimicrobial potential. Finally, a synopsis of studies on MNPs applied to cultural heritage materials showed potential for their future use in preservation.

14.
Materials (Basel) ; 16(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36676521

ABSTRACT

Type 1 diabetes is caused by the inability of the pancreatic beta cells to produce sufficient amounts of insulin, an anabolic hormone promoting the absorption of the blood glucose by various cells in the body, primarily hepatocytes and skeletal muscle cells. This form of impaired metabolism has been traditionally treated with subcutaneous insulin injections. However, because one such method of administration does not directly correspond to the glucose concentrations in the blood and may fail to reduce hyperglycemia or cause hypoglycemia, the delivery of insulin in a glucose-dependent manner has been researched intensely in the present and past. This study tested the novel idea that the supplementation of polymeric reservoirs containing insulin with metallic nanoparticle precursors responsive to the redox effect of glucose could be used to create triggers for the release of insulin in direct response to the concentration of glucose in the tissue. For that purpose, manganese oxide nanoparticles were dispersed inside a poly(ε-caprolactone) matrix loaded with an insulin proxy and the resulting composite was exposed to different concentrations of glucose. The release of the insulin proxy occurred in direct proportion to the concentration of glucose in the medium. Mechanistically, as per the central hypothesis of the study, glucose reduced the manganese cations contained within the metal oxide phase, forming finer and more dissipative zero-valent metallic nanoparticles, thus disrupting the polymeric network, opening up pores in the matrix and facilitating the release of the captured drug. The choice of manganese for this study over other metals was justified by its use as a supplement for protection against diabetes. Numerical analysis of the release mechanism revealed an increasingly nonlinear and anomalous release accompanied by a higher diffusion rate at the expense of chain rigidity as the glucose concentration increased. Future studies should focus on rendering the glucose-controlled release (i) feasible within the physiological pH range and (ii) sensitive to physiologically relevant glucose concentrations. These technical improvements of the fundamental new concept proven here may bring it closer to a real-life application for the mitigation of symptoms of hyperglycemia in patients with diabetes.

15.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499707

ABSTRACT

Chronic wounds represent a challenge for the health area, as they directly impact patients' quality of life and represent a threat to public health and the global economy due to their high cost of treatment. Alternative strategies must be developed for cost-effective and targeted treatment. In this scenario, the emerging field of nanobiotechnology may provide an alternative platform to develop new therapeutic agents for the chronic wound healing process. This manuscript aims to demonstrate that the application of metallic nanoparticles (gold, silver, copper, and zinc oxide) opened a new chapter in the treatment of wounds, as they have different properties such as drug delivery, antimicrobial activity, and healing acceleration. Furthermore, metallic nanoparticles (NPs) produced through green synthesis ensure less toxicity in biological tissues, and greater safety of applicability, other than adding the effects of NPs with those of extracts.


Subject(s)
Metal Nanoparticles , Nanoparticles , Humans , Green Chemistry Technology , Quality of Life , Plant Extracts/pharmacology , Metal Nanoparticles/therapeutic use , Silver/therapeutic use , Silver/pharmacology , Anti-Bacterial Agents/pharmacology
16.
Pharmaceutics ; 14(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36365255

ABSTRACT

In the quest to effectively diagnose and treat the diseases that afflict mankind, the development of a tool capable of simultaneous detection and treatment would provide a significant cornerstone for the survival and control of these diseases. Theranostics denotes a portmanteau of therapeutics and diagnostics which simultaneously detect and treat ailments. Research advances have initiated the advent of theranostics in modern medicine. Overall, theranostics are drug delivery systems with molecular or targeted imaging agents integrated into their structure. The application of theranostics is rising exponentially due to the urgent need for treatments that can be utilized for diagnostic imaging as an aid in precision and personalised medicine. Subsequently, the emergence of nanobiotechnology and the green synthesis of metallic nanoparticles (MNPs) has provided one such avenue for nanoscale development and research. Of interest is the drastic rise in the use of medicinal plants in the synthesis of MNPs which have been reported to be potentially effective in the diagnosis and treatment of diseases. At present, medicinal plant-derived MNPs have been cited to have broad pharmacological applications and have been studied for their potential use in the treatment and management of cancer, malaria, microbial and cardiovascular diseases. The subject of this article regards the role of medicinal plants in the synthesis of MNPs and the potential role of MNPs in the field of theranostics.

17.
Biomedicines ; 10(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36359308

ABSTRACT

Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.

18.
Polymers (Basel) ; 14(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35893954

ABSTRACT

Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.

19.
Sensors (Basel) ; 22(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35808164

ABSTRACT

During recent decades, metal oxide semiconductors (MOS) have sparked more attention in various applications and industries due to their excellent sensing characteristics, thermal stability, abundance, and ease of synthesis. They are reliable and accurate for measuring and monitoring environmentally important toxic gases, such as NO2, NO, N2O, H2S, CO, NH3, CH4, SO2, and CO2. Compared to other sensing technologies, MOS sensors are lightweight, relatively inexpensive, robust, and have high material sensitivity with fast response times. Green nanotechnology is a developing branch of nanotechnology and aims to decrease the negative effects of the production and application of nanomaterials. For this purpose, organic solvents and chemical reagents are not used to prepare metal nanoparticles. On the contrary, the synthesis of metal or metal oxide nanoparticles is done by microorganisms, either from plant extracts or fungi, yeast, algae, and bacteria. Thus, this review aims at illustrating the possible green synthesis of different metal oxides such as ZnO, TiO2, CeO2, SnO2, In2O3, CuO, NiO, WO3, and Fe3O4, as well as metallic nanoparticles doping.


Subject(s)
Metal Nanoparticles , Oxides , Gases , Metal Nanoparticles/chemistry , Nanotechnology , Oxides/chemistry , Semiconductors
20.
Nanomaterials (Basel) ; 12(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683697

ABSTRACT

Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL