Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 697
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Environ Pollut ; 349: 123881, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38580063

ABSTRACT

Microalgae and macrophytes are commonly used as human and animal food supplements. We examined the cultivation of the microalgae Chlorella sorokiniana and the duckweed Lemna minor in thermal waters under batch and sequencing batch conditions and we characterized the produced biomass for the presence of essential nutrients as well as for heavy metals and radioisotope content. The highest specific growth rate for the microalgae was observed when 5 or 15 mg/L N were supplemented while the optimal conditions for Lemna minor were observed in the co-presence of 5 mg/L N and 1.7 mg/L P. Lemna minor presented higher concentrations of proteins and lipids comparing to the studied microalgae. Both organisms contained high amounts of lutein (up to 1378 mg/kg for Lemna minor) and chlorophyll (up to 1518 mg/kg for Lemna minor) while ß-carotene and tocopherols were found at lower concentrations, not exceeding a few tens of mg/kg. The heavy metal content varied between the two species. Lemna minor accumulated more Cd, Cu, K, Mn, Na, Ni, and Zn whereas Al, Ca and Mg were higher in Chlorella sorokiniana. Both organisms could be a significant source of essential metals but the occasional exceedance of the statutory levels of toxic metals in food products raises concern for potential risk to either humans or animals. Application of gamma-spectroscopy to quantify the effective dose to humans from 228Ra, 226Ra and 40K showed that Chlorella sorokiniana was well under the radiological limits while the collected mass of Lemna minor was too small for radiological measurements with confidence.


Subject(s)
Araceae , Biomass , Chlorella , Metals, Heavy , Microalgae , Radioisotopes , Metals, Heavy/analysis , Metals, Heavy/metabolism , Chlorella/growth & development , Chlorella/metabolism , Araceae/metabolism , Microalgae/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Chlorophyll/metabolism
2.
J Environ Manage ; 358: 120859, 2024 May.
Article in English | MEDLINE | ID: mdl-38615398

ABSTRACT

This study was conducted to investigate the feasibility of microalgal biomass production and nutrient removal from recirculating aquaculture systems (RAS) water (RASW) with low phosphate concentration. For this purpose, Nannochloropsis oculata, Pavlova gyrans, Tetraselmis suecica, Phaeodactylum tricornutum, and their consortium were cultivated in RASW and RASW supplemented with vitamins (+V). Among them, N. oculata showed the maximum biomass production of 0.4 g/L in RASW. Vitamins supplementation significantly increased the growth of T. suecica from 0.16 g/L in RASW to 0.33 g/L in RASW + V. Additionally, T. suecica showed the highest nitrate (NO3-N) removal efficiency of 80.88 ± 2.08 % in RASW and 83.82 ± 2.08 % in RASW + V. Accordingly, T. suecica was selected for scaling up study of microalgal cultivation in RASW and RASW supplemented with nitrate (RASW + N) in 4-L airlift photobioreactors. Nitrate supplementation enhanced the growth of T. suecica up to 2.2-fold (day 15). The fatty acid nutritional indices in T. suecica cultivated in RASW and RASW + N showed optimal polyunsaturated fatty acids (PUFAs)/saturated fatty acid (SFAs), omega-6 fatty acid (n-6)/omega-3 fatty acid (n-3), indices of atherogenicity (IA), and thrombogenicity (IT)). Overall, the findings of this study revealed that despite low phosphate concentration, marine microalgae can grow in RASW and relatively reduce the concentration of nitrate. Furthermore, the microalgal biomass cultivated in RASW consisting of pigments and optimal fatty acid nutritional profile can be used as fish feed, thus contributing to a circular bioeconomy.


Subject(s)
Aquaculture , Biomass , Microalgae , Phosphates , Microalgae/growth & development , Microalgae/metabolism , Phosphates/metabolism , Nitrates/metabolism , Nutrients/metabolism
3.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667769

ABSTRACT

Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.


Subject(s)
Biological Products , Microalgae , Biological Products/chemistry , Humans , Animals , Dietary Supplements
4.
Mar Drugs ; 22(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38535440

ABSTRACT

The microalgae Phaeodactylum tricornutum (PT) is distinguished by its rich nutrient profile, characterized by well-documented neuroprotective activities, including fucoxanthin (FX), a major carotenoid and polyunsaturated omega-3 fatty acids (n-3 PUFA). The current study aims to evaluate the protective effects of a standardized extract of PT (Mi136) containing 2% FX on cognitive function, oxidative stress, and inflammation parameters in a mouse model of accelerated aging. Seventy-two (72) male mice were randomly assigned to the blank control group (BC), negative control group (NC), and four similar microalgae extract of PT groups (branded as BrainPhyt™) with different human equivalent doses to evaluate potential dose-response effects. From day 01 to day 51, mice in the BC group were injected with a 0.9% normal saline solution, while mice in all other groups were subcutaneously injected with D-galactose (D-Gal) at a dose of 150 mg/kg once per day, five days per week. Results indicated that, for the three higher microalgae extract of PT dose groups, spatial cognitive function, swim latency, and step-through latency impairments induced by chronic D-Gal intoxication were significantly and fully inhibited, with mean values similar to those in the BC group during each day of testing. Similar benefits were observed in biochemical analysis, specifically regarding brain and plasma levels of lipid peroxidation, TNF-α, and IL-6 markers. These data underscore the positive effects of a standardized extract of PT containing 2% FX on cognitive function parameters such as spatial working memory, long-term memory, and short-term memory through the regulation of oxidative stress and inflammation pathways.


Subject(s)
Cognitive Dysfunction , Fatty Acids, Omega-3 , Microalgae , Humans , Male , Animals , Mice , Galactose , Cognition , Inflammation
5.
Chemosphere ; 354: 141700, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490615

ABSTRACT

Wastewater treatment plants play a crucial role in water security and sanitation, ensuring ecosystems balance and avoiding significant negative effects on humans and environment. However, they determine also negative pressures, including greenhouse gas and odourous emissions, which should be minimized to mitigate climate changes besides avoiding complaints. The research has been focused on the validation of an innovative integrated biological system for the sustainable treatment of complex gaseous emissions from wastewater treatment plants. The proposed system consists of a moving bed biofilm reactor coupled with an algal photobioreactor, with the dual objective of: i) reducing the inlet concentration of the odourous contaminants (in this case, hydrogen sulphide, toluene and p-xylene); ii) capturing and converting the carbon dioxide emissions produced by the degradation process into exploitable algal biomass. The first reactor promoted the degradation of chemical compounds up to 99.57% for an inlet load (IL) of 22.97 g m-3 d-1 while the second allowed the capture of the CO2 resulting from the degradation of gaseous compounds, with biofixation rate up to 81.55%. The absorbed CO2 was converted in valuable feedstocks, with a maximum algal biomass productivity in aPBR of 0.22 g L-1 d-1. Dairy wastewater has been used as alternative nutrient source for both reactors, with a view of reusing wastewater while cultivating biomass, framing the proposed technology in a context of a biorefinery within a circular economy perspective. The biomass produced in the algal photobioreactor was indeed characterized by a high lipid content, with a maximum percentage of lipids per dry weight biomass of 35%. The biomass can therefore be exploited for the production of alternative and clean energy carrier. The proposed biotechnology represents an effective tool for shifiting the conventional plants in carbon neutral platform for implementing principles of ecological transition while achieving high levels of environmental protection.


Subject(s)
Microalgae , Water Purification , Humans , Wastewater , Carbon Dioxide/metabolism , Ecosystem , Odorants , Microalgae/metabolism , Biotechnology , Water Purification/methods , Biomass , Nutrients
6.
Foods ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38472838

ABSTRACT

Much attention has been given to the use of microalgae to produce functional foods that have valuable bioactive chemicals, including essential amino acids, polyunsaturated fatty acids, vitamins, carotenoids, fiber, and minerals. Microalgal biomasses are increasingly being used to improve the nutritional values of foods because of their unique nutrient compositions that are beneficial to human health. Their protein content and amino acid composition are the most important components. The microalgal biomass used in the therapeutic supplement industry is dominated by bio-compounds like astaxanthin, ß-carotene, polyunsaturated fatty acids like eicosapentaenoic acid and docosahexaenoic acid, and polysaccharides such as ß-glucan. The popularity of microalgal supplements is growing because of the health benefits of their bioactive substances. Moreover, some microalgae, such as Dunaliella, Arthrospira (Spirulina), Chlorella, and Haematococcus, are commonly used microalgal species in functional food production. The incorporation of microalgal biomass leads not only to enhanced nutritional value but also to improved sensory quality of food products without altering their cooking or textural characteristics. Microalgae, because of their eco-friendly potential, have emerged as one of the most promising and novel sources of new functional foods. This study reviews some recent and relevant works, as well as the current challenges for future research, using different methods of chemical modification in foods with the addition of a few commercial algae to allow their use in nutritional and sensory areas. It can be concluded that the production of functional foods through the use of microalgae in foods has become an important issue.

7.
J Environ Manage ; 355: 120441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430879

ABSTRACT

Microalgae possess the prospective to be efficiently involved in bioremediation and biodiesel generation. However, conditions of stress often restrict their growth and diminish different metabolic processes. The current study evaluates the potential of GABA to improve the growth of the microalga Chlorella sorokiniana under Cr (III) stress through the exogenous administration of GABA. The research also investigates the concurrent impact of GABA and Cr (III) stress on various metabolic and biochemical pathways of the microalgae. In addition to the control, cultures treated with Cr (III), GABA, and both Cr (III) and GABA treated were assessed for accurately analysing the influence of GABA. The outcomes illustrated that GABA significantly promoted growth of the microalgae, resulting in higher biomass productivity (19.14 mg/L/day), lipid productivity (3.445 mg/L/day) and lipid content (18%) when compared with the cultures under Cr (III) treatment only. GABA also enhanced Chl a content (5.992 µg/ml) and percentage of protein (23.75%). FAMEs analysis by GC-MS and total lipid profile revealed that GABA treatment can boost the production of SFA and lower the level of PUFA, a distribution ideal for improving biodiesel quality. ICP-MS analysis revealed that GABA supplementation could extend Cr (III) mitigation level up to 97.7%, suggesting a potential strategy for bioremediation. This novel study demonstrates the merits of incorporating GABA in C. sorokiniana cultures under Cr (III) stress, in terms of its potential in bioremediation and biodiesel production without disrupting the pathways of photosynthesis and protein production.


Subject(s)
Chlorella , Microalgae , Biofuels , Prospective Studies , Proteins/metabolism , Microalgae/metabolism , Biomass , Lipids , Dietary Supplements , gamma-Aminobutyric Acid/metabolism
8.
Sci Total Environ ; 925: 171812, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508267

ABSTRACT

Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.


Subject(s)
Agricultural Inoculants , Microalgae , Salvia miltiorrhiza , Rhizosphere , Antioxidants/metabolism , Salvia miltiorrhiza/metabolism , Charcoal/metabolism , Soil , Copper/toxicity , Copper/metabolism
9.
Bioresour Technol ; 398: 130523, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437962

ABSTRACT

This work presents dynamic optimization strategies of batch hydrothermal liquefaction of two microalgal species, Aurantiochytrium sp. KRS101 and Nannochloropsis sp. to optimize the reactor temperature profiles. Three dynamic optimization problems are solved to maximize the endpoint biocrude yield, minimize the final time, and minimize the reactor thermal energy. The biocrude maximization and time minimization problems demonstrated 11% and 6.18% increment in the optimal biocrude yields and reduction of 78.2% and 61.66% in batch times compared to the base cases for the microalgae with higher lipid and protein fractions, respectively. The energy minimization problem revealed a significant reduction in the reactor thermal energies to generate the targeted biocrude yields compared to the biocrude maximization. Therefore, the identified optimal temperature trajectories outperformed the conventional fixed temperature profiles and could improve the overall economics of the batch bio-oil production from the algal-based biorefineries by significantly enhancing the reactor performance.


Subject(s)
Microalgae , Plant Oils , Polyphenols , Microalgae/metabolism , Water/metabolism , Biomass , Temperature
10.
Biomass Convers Biorefin ; 14(7): 8127-8152, 2024.
Article in English | MEDLINE | ID: mdl-38510795

ABSTRACT

Biorefinery approaches offer the potential to improve the economics of the microalgae industry by producing multiple products from a single source of biomass. Chromochloris zofingiensis shows great promise for biorefinery due to high biomass productivity and a diverse range of products including secondary carotenoids, predominantly astaxanthin; lipids such as TAGs; carbohydrates including starch; and proteins and essential amino acids. Whilst this species has been demonstrated to accumulate multiple products, the development of an integrated downstream process to obtain these is lacking. The objective of this review paper is to assess the research that has taken place and to identify the steps that must be taken to establish a biorefinery approach for C. zofingiensis. In particular, the reasons why C. zofingiensis is a promising species to target for biorefinery are discussed in terms of cellular structure, potential products, and means to accumulate desirable components via the alteration of culture conditions. Future advances and the challenges that lie ahead for successful biorefinery of this species are also reviewed along with potential solutions to address them. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-022-02955-7.

11.
Mar Pollut Bull ; 201: 116235, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508122

ABSTRACT

Marine oil pollution is one of the major global environmental pollution problems. Marine microalgae are the foundation of the marine food chain, providing the main primary productivity of the ocean. They not only maintain the energy flow and material cycle of the entire marine ecosystem, but also play an important role in regulating global climate change. Exploring the impact of petroleum pollutants on marine microalgae is extremely important for studying marine environmental pollution. This review first introduced the sources, compositions, and forms of petroleum pollutants and their migration and transformation processes in the ocean. Then, the toxic effects of petroleum pollutants on marine microalgae were summarized. The growth of marine microalgae showed low-concentration promotion and high-concentration inhibition. The population growth and interspecific relationships of marine microalga was changed and the photosynthesis of marine microalgae was influenced. Finally, potential research directions and suggestions for marine microalgae in the future were proposed.


Subject(s)
Environmental Pollutants , Microalgae , Petroleum , Water Pollutants, Chemical , Petroleum/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity
12.
J Oleo Sci ; 73(4): 583-591, 2024.
Article in English | MEDLINE | ID: mdl-38556291

ABSTRACT

In this study, it is demonstrated that natural microalgae oils, which contain fatty acid components including docosahexaenoic acid (DHA), could be directly applied to fabricate vesicular structures in aqueous phase through a forced formation process. The microalgae oil vesicles had initial average diameters of 170- 230 nm with negative charges apparently caused by dissociation of the fatty acid components. The vesicles possessed excellent stability with lifetimes for at least 450 days. The formation of the vesicular structures with hydrophilic cores/regions was confirmed by the transmission electron microscopy (TEM) image and successful encapsulation of a hydrophilic material. For encapsulation of a hydrophobic material, lutein, the vesicle size was increased probably due to the insertion of lutein into the hydrophobic vesicular bilayer structures. The analysis of Fourier transform infrared (FTIR) spectroscopy suggested that the vesicular bilayer fluidity was decreased by encapsulating lutein. However, the lutein-encapsulating microalgae oil vesicles still possessed high stability and the vesicular structures could maintain intact even at an environmental temperature up to 60℃. Applicability of the microalgae oil vesicles as drug delivery carriers was also demonstrated by successful encapsulation of curcumin. However, when the loaded curcumin was increased to a certain amount, physical stability of the microalgae oil vesicles was significantly reduced. This is probably because the vesicular structures with only limited spaces for accommodating hydrophobic materials were strongly affected by encapsulating a large amount of curcumin. It is interesting to note that by adding egg L-α-phosphatidylcholine, the curcumin encapsulation-induced instability of the microalgae oil vesicles could be alleviated. The results indicated that vesicular structures could be fabricated from microalgae oils and the microalgae oil vesicles were capable of encapsulating hydrophilic or hydrophobic materials for drug delivery applications. The findings lay a background for further dosage form development of nutritional supplements encapsulated by natural microalgae oils.


Subject(s)
Curcumin , Microalgae , Microalgae/chemistry , Lutein , Oils , Drug Carriers/chemistry , Docosahexaenoic Acids
13.
J Environ Manage ; 356: 120669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520852

ABSTRACT

The objective of this review was to provide quantitative insights into algal growth and nutrient removal in anaerobic digestate. To synthesize the relevant literature, a meta-analysis was conducted using data from 58 articles to elucidate key factors that impact algal biomass productivity and nutrient removal from anaerobic digestate. On average, algal biomass productivity in anaerobic digestate was significantly lower than that in synthetic control media (p < 0.05) but large variation in productivity was observed. A mixed-effects multiple regression model across study revealed that biological or chemical pretreatment of digestate significantly increase productivity (p < 0.001). In contrast, the commonly used practice of digestate dilution was not a significant factor in the model. High initial total ammonia nitrogen suppressed algal growth (p = 0.036) whereas initial total phosphorus concentration, digestate sterilization, CO2 supplementation, and temperature were not statistically significant factors. Higher growth corresponded with significantly higher NH4-N and phosphorus removal with a linear relationship of 6.4 mg NH4-N and 0.73 mg P removed per 100 mg of algal biomass growth (p < 0.001). The literature suggests that suboptimal algal growth in anaerobic digestate could be due to factors such as turbidity, high free ammonia, and residual organic compounds. This analysis shows that non-dilution approaches, such as biological or chemical pretreatment, for alleviating algal inhibition are recommended for algal digestate treatment systems.


Subject(s)
Ammonia , Microalgae , Anaerobiosis , Nutrients , Biomass , Phosphorus , Nitrogen
14.
World J Microbiol Biotechnol ; 40(5): 150, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38548998

ABSTRACT

Microalgae have emerged as potential candidates for biomass production and pollutant removal. However, expensive biomass harvesting, insufficient biomass productivity, and low energy intensity limit the large-scale production of microalgae. To break through these bottlenecks, a novel technology of immobilized microalgae culture coupled with wastewater treatment has received increasing attention in recent years. In this review, the characteristics of two immobilized microalgae culture technologies are first presented and then their mechanisms are discussed in terms of biofilm formation theories, including thermodynamic theory, Derjaguin-Landau-Verwei-Overbeek theory (DLVO) and its extended theory (xDLVO), as well as ionic cross-linking mechanisms in the process of microalgae encapsulated in alginate. The main factors (algal strains, carriers, and culture conditions) affecting the growth of microalgae are also discussed. It is also summarized that immobilized microalgae show considerable potential for nitrogen and phosphorus removal, heavy metal removal, pesticide and antibiotic removal in wastewater treatment. The role of bacteria in the cultivation of microalgae by immobilization techniques and their application in wastewater treatment are clarified. This is economically feasible and technically superior. The problems and challenges faced by immobilized microalgae are finally presented.


Subject(s)
Microalgae , Water Purification , Wastewater , Phosphorus , Nitrogen/analysis , Biomass
15.
Environ Sci Pollut Res Int ; 31(12): 18785-18796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349495

ABSTRACT

Recovering renewable chemicals from de-fatted microalgal residue derived from lipid extraction within the algal-derived biofuel sector is crucial, given the rising significance of microalgal-derived biodiesel as a potential substitute for petroleum-based liquid fuels. As a circular economy strategy, effective valorization of de-fatted biomass significantly improves the energetic and economic facets of establishing a sustainable algal-derived biofuel industry. In this scenario, this study investigates flash catalytic pyrolysis as a sustainable pathway for valorizing Scenedesmus sp. post-extraction residue (SPR), potentially yielding a bio-oil enriched with upgraded characteristics, especially renewable aromatic hydrocarbons. In the scope of this study, volatile products from catalytic and non-catalytic flash pyrolysis were characterized using a micro-furnace type temperature programmable pyrolyzer coupled with gas chromatographic separation and mass spectrometry detection (Py-GC/MS). Flash pyrolysis of SPR resulted in volatile products with elevated oxygen and nitrogen compounds with concentrations of 46.4% and 26.4%, respectively. In contrast, flash pyrolysis of lyophilized microalgal biomass resulted in lower concentrations of these compounds, with 40.9% oxygen and 17.3% nitrogen. Upgrading volatile pyrolysis products from SPR led to volatile products comprised of only hydrocarbons, while completely removing oxygen and nitrogen-containing compounds. This was achieved by utilizing a low-cost HZSM-5 catalyst within a catalytic bed at 500 °C. Catalytic experiments also indicate the potential conversion of SPR into a bio-oil rich in monocyclic aromatic hydrocarbons, primarily BETX, with toluene comprising over one-third of its composition, thus presenting a sustainable pathway for producing an aromatic hydrocarbon-rich bio-oil derived from SPR. Another significant finding was that 97.8% of the hydrocarbon fraction fell within the gasoline range (C5-C12), and 35.5% fell within the jet fuel range (C8-C16). Thus, flash catalytic pyrolysis of SPR exhibits significant promise for application in drop-in biofuel production, including green gasoline and bio-jet fuel, aligning with the principles of the circular economy, green chemistry, and bio-refinery.


Subject(s)
Hydrocarbons, Aromatic , Plant Oils , Polyphenols , Scenedesmus , Scenedesmus/metabolism , Pyrolysis , Gasoline , Biofuels , Hot Temperature , Gas Chromatography-Mass Spectrometry , Hydrocarbons/chemistry , Catalysis , Nitrogen , Oxygen , Biomass
16.
J Environ Manage ; 354: 120258, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387343

ABSTRACT

Global sustainable development faces several challenges in addressing the needs of a growing population. Regarding food industries, the heightening pressure to meet these needs has resulted in increased waste generation. Thus, recognising these wastes as valuable resources is crucial to integrating sustainable models into current production systems. For instance, the current 24 billion tons of nutrient-rich livestock wastewater (LW) generated yearly could be recovered and valorised via biological uptake through microalgal biomass. Microalgae-based livestock wastewater treatment (MbLWT) has emerged as an effective technology for nutrient recovery, specifically targeting carbon, nitrogen, and phosphorus. However, the viability and efficacy of these systems rely on the characteristics of LW, including organic matter and ammonium concentration, content of suspended solids, and microbial load. Thus, this systematic literature review aims to provide guidance towards implementing an integral MbLWT system for nutrient control and recovery, discussing several pre-treatments used in literature to overcome the challenges regarding LW as a suitable media for microalgae cultivation.


Subject(s)
Livestock , Microalgae , Nitrogen , Nutrients , Phosphorus , Waste Disposal, Fluid , Wastewater , Microalgae/growth & development , Microalgae/metabolism , Animals , Waste Disposal, Fluid/methods , Carbon , Biomass
17.
Fish Shellfish Immunol ; 146: 109411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301813

ABSTRACT

This study looked at the toxic impacts of water-born acrylamide (ACR) on Nile tilapia (Oreochromis niloticus) in terms of behaviors, growth, immune/antioxidant parameters and their regulating genes, biochemical indices, tissue architecture, and resistance to Aeromonas hydrophila. As well as the probable ameliorative effect of Chlorella vulgaris (CV) microalgae as a feed additive against ACR exposure was studied. The 96-h lethal concentration 50 of ACR was investigated and found to be 34.67 mg/L for O. niloticus. For the chronic exposure study, a total of 180 healthy O. niloticus (24.33 ± 0.03 g) were allocated into four groups in tri-replicates (15 fish/replicate), C (control) and ACR groups were fed a basal diet and exposed to 0 and 1/10 of 96-h LC50 of ACR (3.46 mg/L), respectively. ACR+ CV5 and ACR+ CV10 groups were fed basal diets with 5 % and 10 % CV supplements, respectively and exposed to 1/10 of 96-h LC50 of ACR for 60 days. After the exposure trial (60 days) the experimental groups were challenged with A. hydrophila. The findings demonstrated that ACR exposure induced growth retardation (P˂0.01) (lower final body weight, body weight gain, specific growth rate, feed intake, protein efficiency ratio, final body length, and condition factor as well as higher feed conversion ratio). A substantial decrease in the immune/antioxidant parameters (P˂0.05) (lysozyme, serum bactericidal activity %, superoxide dismutase, and reduced glutathione) and neurotransmitter (acetylcholine esterase) (P˂0.01) was noticed with ACR exposure. A substantial increase (P˂0.01) in the serum levels of hepato-renal indicators, lipid peroxidation biomarker, and cortisol was noticed as a result of ACR exposure. ACR exposure resulted in up-regulation (P˂0.05) of the pro-inflammatory cytokines and down-regulation (P˂0.05) of the antioxidant-related gene expression. Furthermore, the hepatic, renal, brain, and splenic tissues were badly affected by ACR exposure. ACR-exposed fish were more sensitive to A. hydrophila infection and recorded the lowest survival rate (P˂0.01). Feeding the ACR-exposed fish with CV diets significantly improved the growth and immune/antioxidant status, as well as modulating the hepatorenal functions, stress, and neurotransmitter level compared to the exposed-non fed fish. In addition, modulation of the pro-inflammatory and antioxidant-related gene expression was noticed by CV supplementation. Dietary CV improved the tissue architecture and increased the resistance to A. hydrophila challenge in the ACR-exposed fish. Noteworthy, the inclusion of 10 % CV produced better results than 5 %. Overall, CV diets could be added as a feed supplement in the O. niloticus diet to boost the fish's health, productivity, and resistance to A. hydrophila challenge during ACR exposure.


Subject(s)
Chlorella vulgaris , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Antioxidants/metabolism , Disease Resistance , Diet/veterinary , Dietary Supplements , Neurotransmitter Agents/metabolism , Body Weight , Growth Disorders , Acrylamides , Animal Feed/analysis , Fish Diseases/chemically induced , Gram-Negative Bacterial Infections/veterinary
18.
J Hazard Mater ; 468: 133833, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401215

ABSTRACT

Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.


Subject(s)
Diatoms , Microalgae , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum/toxicity , Petroleum/analysis , Water , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Carbon
19.
Front Nutr ; 11: 1293909, 2024.
Article in English | MEDLINE | ID: mdl-38379539

ABSTRACT

Introduction: AlmegaPL® is an oil rich in polar-lipid (> 15% w/w) derived from the microalga Nannochloropsis, that contains exclusively eicosapentaenoic acid (EPA > 25% w/w), without the DHA that is present in all other natural sources of omega-3. Previous findings from a randomized controlled clinical trial demonstrated the ability of AlmegaPL® supplementation to reduce cholesterol levels. Methods: In this post-market cohort study, we built upon previous findings and targeted the actual end-users of the supplement. Participants were recruited from a new subscriber database of AlmegaPL® capsules (1000-1100 mg/day) to capture the complexity of real-world clinical and consumer settings. Changes in circulating triglycerides (TG), remnant cholesterol (RC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol (TC), high-sensitivity C-reactive protein (hs-CRP), glucose and glycated hemoglobin (HbA1c) were monitored at baseline, Month 3, and Month 6 of supplementation using the at-home Baseline Heart Health Testing Kit by Imaware® (Houston, TX, USA). Results: Participants, who had, on average, normal TG level at baseline (1.62 ± 0.60 mmol/L), experienced a significant and progressive decrease in TG at Month 3 (8.0%; -0.13 ± 0.59 mmol/L; p < 0.001) and Month 6 (14.2%; -0.23 ± 0.64 mmol/L; p < 0.001) (primary outcome). Furthermore, after 6 months of supplementation, TC and non-HDL-cholesterol decreased by 5.0% (-0.26 ± 0.98 mmol/L; p < 0.001) and 5.5% (-0.21 ± 0.86 mmol/L; p < 0.001) respectively, primarily driven by a 14.9% reduction in RC (-0.11 ± 0.29 mmol/L; p < 0.001). Discussion: Consistent with our previous clinical trial, the decrease in RC was not coupled to an increase in LDL, which seems to be a benefit associated with EPA-only based formulations. In addition, this study demonstrated the AlmegaPL® capacity to maintain already healthy TG levels by further inducing a 14.9% decrease. Collectively, these findings highlight AlmegaPL® uniqueness as a natural over-the-counter option for EPA-only polar lipid that appears particularly effective in maintaining blood lipid levels in a generally healthy, normolipidemic population. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05267301.

20.
Anim Sci J ; 95(1): e13929, 2024.
Article in English | MEDLINE | ID: mdl-38400743

ABSTRACT

This study aimed to investigate the effect of supplementing Isochrysis galbana (I. galbana) at levels of 0 (control), 1, 2, 3, 4, and 5 (g/100 g DM) of the diet on the gas production kinetics, methane production, rumen fermentation parameters, and relative microbial population in vitro. Supplementation of I. galbana at high level (5 g/100 g DM) caused a significant decrease in total gas production (p < 0.05). High supplementation rates (4 and 5 g/100 g DM) decreased CH4 production relative to the control by 18.4% and 23.2%, respectively. Although rumen ammonia nitrogen (N-NH3) and total volatile fatty acids (VFA) concentrations were affected by dietary treatments, but the VFA profile did not changed. The relative proportion of protozoa and methanogenic archaea as well as Anaerovibrio lipolytica, Prevotella spp., Ruminococcus flavefaciens, and Fibrobacter succinogenes were decreased significantly as a result of microalgae supplementation. However, the relative abundance of Ruminococcus albus, Butyrivibrio fibrisolvens and Selenomonas ruminantium were significantly increased (p < 0.05), related to the control group. As well, the pH was not affected by dietary treatments. It was concluded that I. galbana reduced in vitro CH4 production and methanogenic archaea that its worth to be investigated further in in vivo studies.


Subject(s)
Dietary Supplements , Haptophyta , Animals , Dietary Supplements/analysis , Rumen/metabolism , Fermentation , Diet , Fatty Acids, Volatile/metabolism , Archaea , Methane/metabolism , Animal Feed/analysis , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL