Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
Add more filters

Publication year range
1.
Acta Psychol (Amst) ; 244: 104195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412710

ABSTRACT

This study adopts a cross-linguistic perspective and investigates how musical expertise affects the perception of duration and pitch in language. Native speakers of Chinese (N = 44) and Estonian (N = 46), each group subdivided into musicians and non-musicians, participated in a mismatch negativity (MMN) experiment where they passively listened to both Chinese and Estonian stimuli, followed by a behavioral experiment where they attentively discriminated the stimuli in the non-native language (i.e., Chinese to Estonian participants and Estonian to Chinese participants). In both experiments, stimuli of duration change, pitch change, and duration plus pitch change were discriminated. We found higher behavioral sensitivity among Chinese musicians than non-musicians in perceiving the duration change in Estonian and higher behavioral sensitivity among Estonian musicians than non-musicians in perceiving all types of changes in Chinese, but no corresponding effect was found in the MMN results, which suggests a more salient effect of musical expertise on foreign language processing when attention is required. Secondly, Chinese musicians did not outperform non-musicians in attentively discriminating the pitch-related stimuli in Estonian, suggesting that musical expertise can be overridden by tonal language experience when perceiving foreign linguistic pitch, especially when an attentive discrimination task is administered. Thirdly, we found larger MMN among Chinese and Estonian musicians than their non-musician counterparts in perceiving the largest deviant (i.e., duration plus pitch) in their native language. Taken together, our results demonstrate a positive effect of musical expertise on language processing.


Subject(s)
Music , Pitch Perception , Humans , Electroencephalography/methods , Language , Linguistics , Acoustic Stimulation/methods
2.
Cortex ; 172: 114-124, 2024 03.
Article in English | MEDLINE | ID: mdl-38295554

ABSTRACT

Event-related potentials (ERPs) acquired during task-free passive listening can be used to study how sensitivity to common pattern repetitions and rare deviations changes over time. These changes are purported to represent the formation and accumulation of precision in internal models that anticipate future states based on probabilistic and/or statistical learning. This study features an unexpected finding; a strong order-dependence in the speed with which deviant responses are elicited that anchors to first learning. Participants heard four repetitions of a sequence in which an equal number of short (30 msec) and long (60 msec) pure tones were arranged into four blocks in which one was common (the standard, p = .875) and the other rare (the deviant, p = .125) with probabilities alternating across blocks. Some participants always heard the sequences commencing with the 30 msec deviant block, and others always with the 60 msec deviant block first. A deviance-detection component known as mismatch negativity (MMN) was extracted from responses and the point in time at which MMN reached maximum amplitude was used as the dependent variable. The results show that if participants heard sequences commencing with the 60 msec deviant block first, the MMN to the 60 msec and 30 msec deviant peaked at an equivalent latency. However, if participants heard sequences commencing with the 30 msec deviant first, the MMN peaked earlier to the 60 msec deviant. Furthermore, while the 30 msec MMN latency did not differ as a function of sequence composition, the 60 msec MMN latency did and was earlier when the sequences began with a 30 msec deviant first. By examining MMN latency effects as a function of age and hearing level it was apparent that the differentiation in 30 msec and 60 msec MMN latency expands with older age and raised hearing threshold due to prolongation of the time taken for the 30 msec MMN to peak. The observations are discussed with reference to how the initial sound composition may tune the auditory system to be more sensitive to different cues (i.e., offset responses vs perceived loudness). The order-effect demonstrates a remarkably powerful anchoring to first learning that might reflect initial tuning to the most valuable discriminating feature within a given listening environment, an effect that defies explanation based on statistical information alone.


Subject(s)
Electroencephalography , Evoked Potentials, Auditory , Humans , Evoked Potentials, Auditory/physiology , Acoustic Stimulation/methods , Electroencephalography/methods , Reaction Time/physiology , Evoked Potentials/physiology
3.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38183184

ABSTRACT

Auditory sensory processing is assumed to occur in a hierarchical structure including the primary auditory cortex (A1), superior temporal gyrus, and frontal areas. These areas are postulated to generate predictions for incoming stimuli, creating an internal model of the surrounding environment. Previous studies on mismatch negativity have indicated the involvement of the superior temporal gyrus in this processing, whereas reports have been mixed regarding the contribution of the frontal cortex. We designed a novel auditory paradigm, the "cascade roving" paradigm, which incorporated complex structures (cascade sequences) into a roving paradigm. We analyzed electrocorticography data from six patients with refractory epilepsy who passively listened to this novel auditory paradigm and detected responses to deviants mainly in the superior temporal gyrus and inferior frontal gyrus. Notably, the inferior frontal gyrus exhibited broader distribution and sustained duration of deviant-elicited responses, seemingly differing in spatio-temporal characteristics from the prediction error responses observed in the superior temporal gyrus, compared with conventional oddball paradigms performed on the same participants. Moreover, we observed that the deviant responses were enhanced through stimulus repetition in the high-gamma range mainly in the superior temporal gyrus. These features of the novel paradigm may aid in our understanding of auditory predictive coding.


Subject(s)
Auditory Cortex , Electrocorticography , Humans , Electroencephalography , Evoked Potentials, Auditory/physiology , Auditory Cortex/physiology , Temporal Lobe/physiology , Acoustic Stimulation , Auditory Perception/physiology
4.
Hear Res ; 441: 108923, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091866

ABSTRACT

According to the latest frameworks, auditory perception and memory involve the constant prediction of future sound events by the brain, based on the continuous extraction of feature regularities from the environment. The neural hierarchical mechanisms for predictive processes in perception and memory for sounds are typically studied in relation to simple acoustic features in isolated sounds or sound patterns inserted in highly certain contexts. Such studies have identified reliable prediction formation and error signals, e.g., the N100 or the mismatch negativity (MMN) evoked responses. In real life, though, individuals often face situations in which uncertainty prevails and where making sense of sounds becomes a hard challenge. In music, not only deviations from predictions are masterly set up by composers to induce emotions but sometimes the sheer uncertainty of sound scenes is exploited for aesthetic purposes, especially in compositional styles such as Western atonal classical music. In very recent magnetoencephalography (MEG) and electroencephalography (EEG) studies, experimental and technical advances in stimulation paradigms and analysis approaches have permitted the identification of prediction-error responses from highly uncertain, atonal contexts and the extraction of prediction-related responses from real, continuous music. Moreover, functional connectivity analyses revealed the emergence of cortico-hippocampal interactions during the formation of auditory memories for more predictable vs. less predictable patterns. These findings contribute to understanding the general brain mechanisms that enable us to predict even highly uncertain sound environments and to possibly make sense of and appreciate even atonal music.


Subject(s)
Evoked Potentials, Auditory , Music , Humans , Acoustic Stimulation , Evoked Potentials, Auditory/physiology , Music/psychology , Electroencephalography , Neurophysiology , Auditory Perception/physiology
5.
Psychophysiology ; 61(2): e14450, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37779371

ABSTRACT

There are sounds that most people perceive as highly unpleasant, for instance, the sound of rubbing pieces of polystyrene together. Previous research showed larger physiological and neural responses for such aversive compared to neutral sounds. Hitherto, it remains unclear whether habituation, i.e., diminished responses to repeated stimulus presentation, which is typically reported for neutral sounds, occurs to the same extent for aversive stimuli. We measured the mismatch negativity (MMN) in response to rare occurrences of aversive or neutral deviant sounds within an auditory oddball sequence in 24 healthy participants, while they performed a demanding visual distractor task. Deviants occurred as single events (i.e., between two standards) or as double deviants (i.e., repeating the identical deviant sound in two consecutive trials). All deviants elicited a clear MMN, and amplitudes were larger for aversive than for neutral deviants (irrespective of their position within a deviant pair). This supports the claim of preattentive emotion evaluation during early auditory processing. In contrast to our expectations, MMN amplitudes did not show habituation, but increased in response to deviant repetition-similarly for aversive and neutral deviants. A more fine-grained analysis of individual MMN amplitudes in relation to individual arousal and valence ratings of each sound item revealed that stimulus-specific MMN amplitudes were best predicted by the interaction of deviant position and perceived arousal, but not by valence. Deviants with perceived higher arousal elicited larger MMN amplitudes only at the first deviant position, indicating that the MMN reflects preattentive processing of the emotional content of sounds.


Subject(s)
Electroencephalography , Evoked Potentials, Auditory , Humans , Evoked Potentials, Auditory/physiology , Habituation, Psychophysiologic , Auditory Perception/physiology , Sound , Acoustic Stimulation
6.
Alzheimers Dement ; 20(1): 511-524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37695013

ABSTRACT

INTRODUCTION: Post-operative delirium (POD) is associated with increased morbidity and mortality but is bereft of treatments, largely due to our limited understanding of the underlying pathophysiology. We hypothesized that delirium reflects a disturbance in cortical connectivity that leads to altered predictions of the sensory environment. METHODS: High-density electroencephalogram recordings during an oddball auditory roving paradigm were collected from 131 patients. Dynamic causal modeling (DCM) analysis facilitated inference about the neuronal connectivity and inhibition-excitation dynamics underlying auditory-evoked responses. RESULTS: Mismatch negativity amplitudes were smaller in patients with POD. DCM showed that delirium was associated with decreased left-sided superior temporal gyrus (l-STG) to auditory cortex feedback connectivity. Feedback connectivity also negatively correlated with delirium severity and systemic inflammation. Increased inhibition of l-STG, with consequent decreases in feed-forward and feed-back connectivity, occurred for oddball tones during delirium. DISCUSSION: Delirium is associated with decreased feedback cortical connectivity, possibly resulting from increased intrinsic inhibitory tone. HIGHLIGHTS: Mismatch negativity amplitude was reduced in patients with delirium. Patients with postoperative delirium had increased feedforward connectivity before surgery. Feedback connectivity was diminished from left-side superior temporal gyrus to left primary auditory sensory area during delirium. Feedback connectivity inversely correlated with inflammation and delirium severity.


Subject(s)
Delirium , Evoked Potentials, Auditory , Humans , Feedback , Evoked Potentials, Auditory/physiology , Electroencephalography , Inflammation , Acoustic Stimulation/methods
7.
Cereb Cortex ; 33(22): 11070-11079, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37815245

ABSTRACT

Adolescence is a critical period for psychological difficulties. Auditory mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are representative electrophysiological indices that mature during adolescence. However, the longitudinal association between MMN/ASSR and psychological difficulties among adolescents remains unclear. We measured MMN amplitude for duration and frequency changes and ASSR twice in a subsample (n = 67, mean age 13.4 and 16.1 years, respectively) from a large-scale population-based cohort. No significant longitudinal changes were observed in any of the electroencephalography indices. Changes in SDQ-TD were significantly associated with changes in duration MMN, but not frequency MMN and ASSR. Furthermore, the subgroup with higher SDQ-TD at follow-up showed a significant duration MMN decrease over time, whereas the subgroup with lower SDQ-TD did not. The results of our population neuroscience study suggest that insufficient changes in electroencephalography indices may have been because of the short follow-up period or non-monotonic change during adolescence, and indicated that the longitudinal association with psychological difficulties was specific to the duration MMN. These findings provide new insights that electrophysiological change may underlie the development of psychosocial difficulties emerging in adolescence.


Subject(s)
Electroencephalography , Evoked Potentials, Auditory , Humans , Adolescent , Evoked Potentials, Auditory/physiology , Acoustic Stimulation/methods , Auditory Perception/physiology
8.
Neurosci Lett ; 815: 137478, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37714286

ABSTRACT

In music and language domains, it has been suggested that patterned transitions of sounds can be acquired implicitly through statistical learning. Previous studies have investigated the statistical learning of auditory regularities by recording early neural responses to a sequence of tones presented at high or low transition probabilities. However, it remains unclear whether the statistical learning of musical chord transitions is reflected in endogenous, regularity-dependent components of the event-related potential (ERP). The present study aimed to record the mismatch negativity (MMN) elicited by chord transitions that deviated from newly learned transitional regularities. Chords were generated in a novel 18 equal temperament pitch class scale to avoid interference from the existing tonal representations of the 12 equal temperament pitch class system. Thirty-six adults without professional musical training listened to a sequence of randomly inverted chords in which certain chords were presented with high (standard) or low (deviant) transition probabilities. An irrelevant timbre change detection task was assigned to make them attend to the sequence during the ERP recording. After that, a familiarity test was administered in which the participants were asked to choose the more familiar chord sequence out of two successive sequences. The results showed that deviant transitions elicited the MMN, although the participants could not recognize the standard transition beyond the level of chance. These findings suggest that humans can statistically learn new transitional regularities of chords in a novel musical scale, even though they did not recognize them explicitly. This study provides further evidence that music-syntactic regularities can be acquired implicitly through statistical learning.


Subject(s)
Evoked Potentials, Auditory , Music , Adult , Humans , Evoked Potentials, Auditory/physiology , Acoustic Stimulation/methods , Electroencephalography , Auditory Perception/physiology , Learning
9.
Schizophr Res ; 261: 60-71, 2023 11.
Article in English | MEDLINE | ID: mdl-37708723

ABSTRACT

BACKGROUND: Reduced auditory mismatch negativity (MMN) is robustly impaired in schizophrenia. However, mechanisms underlying dysfunctional MMN generation remain incompletely understood. This study aimed to examine the role of evoked spectral power and phase-coherence towards deviance detection and its impairments in schizophrenia. METHODS: Magnetoencephalography data was collected in 16 male schizophrenia patients and 16 male control participants during an auditory MMN paradigm. Analyses of event-related fields (ERF), spectral power and inter-trial phase-coherence (ITPC) focused on Heschl's gyrus, superior temporal gyrus, inferior/medial frontal gyrus and thalamus. RESULTS: MMNm ERF amplitudes were reduced in patients in temporal, frontal and subcortical regions, accompanied by decreased theta-band responses, as well as by a diminished gamma-band response in auditory cortex. At theta/alpha frequencies, ITPC to deviant tones was reduced in patients in frontal cortex and thalamus. Patients were also characterized by aberrant responses to standard tones as indexed by reduced theta-/alpha-band power and ITPC in temporal and frontal regions. Moreover, stimulus-specific adaptation was decreased at theta/alpha frequencies in left temporal regions, which correlated with reduced MMNm spectral power and ERF amplitude. Finally, phase-reset of alpha-oscillations after deviant tones in left thalamus was impaired, which correlated with impaired MMNm generation in auditory cortex. Importantly, both non-rhythmic and rhythmic components of spectral activity contributed to the MMNm response. CONCLUSIONS: Our data indicate that deficits in theta-/alpha- and gamma-band activity in cortical and subcortical regions as well as impaired spectral responses to standard sounds could constitute potential mechanisms for dysfunctional MMN generation in schizophrenia, providing a novel perspective towards MMN deficits in the disorder.


Subject(s)
Magnetoencephalography , Schizophrenia , Humans , Male , Acoustic Stimulation , Electroencephalography , Evoked Potentials, Auditory/physiology , Frontal Lobe , Temporal Lobe , Case-Control Studies
10.
Hum Brain Mapp ; 44(17): 5871-5891, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37721377

ABSTRACT

The brain is subjected to multi-modal sensory information in an environment governed by statistical dependencies. Mismatch responses (MMRs), classically recorded with EEG, have provided valuable insights into the brain's processing of regularities and the generation of corresponding sensory predictions. Only few studies allow for comparisons of MMRs across multiple modalities in a simultaneous sensory stream and their corresponding cross-modal context sensitivity remains unknown. Here, we used a tri-modal version of the roving stimulus paradigm in fMRI to elicit MMRs in the auditory, somatosensory and visual modality. Participants (N = 29) were simultaneously presented with sequences of low and high intensity stimuli in each of the three senses while actively observing the tri-modal input stream and occasionally reporting the intensity of the previous stimulus in a prompted modality. The sequences were based on a probabilistic model, defining transition probabilities such that, for each modality, stimuli were more likely to repeat (p = .825) than change (p = .175) and stimulus intensities were equiprobable (p = .5). Moreover, each transition was conditional on the configuration of the other two modalities comprising global (cross-modal) predictive properties of the sequences. We identified a shared mismatch network of modality general inferior frontal and temporo-parietal areas as well as sensory areas, where the connectivity (psychophysiological interaction) between these regions was modulated during mismatch processing. Further, we found deviant responses within the network to be modulated by local stimulus repetition, which suggests highly comparable processing of expectation violation across modalities. Moreover, hierarchically higher regions of the mismatch network in the temporo-parietal area around the intraparietal sulcus were identified to signal cross-modal expectation violation. With the consistency of MMRs across audition, somatosensation and vision, our study provides insights into a shared cortical network of uni- and multi-modal expectation violation in response to sequence regularities.


Subject(s)
Magnetic Resonance Imaging , Motivation , Humans , Acoustic Stimulation , Auditory Perception/physiology , Brain
11.
Cereb Cortex ; 33(16): 9542-9553, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37344250

ABSTRACT

Segregation and integration are two fundamental yet competing computations in cognition. For example, in serial speech processing, stable perception necessitates the sequential establishment of perceptual representations to remove irrelevant features for achieving invariance. Whereas multiple features need to combine to create a coherent percept. How to simultaneously achieve seemingly contradicted computations of segregation and integration in a serial process is unclear. To investigate their neural mechanisms, we used loudness and lexical tones as a research model and employed a novel multilevel oddball paradigm with Electroencephalogram (EEG) recordings to explore the dynamics of mismatch negativity (MMN) responses to their deviants. When two types of deviants were presented separately, distinct topographies of MMNs to loudness and tones were observed at different latencies (loudness earlier), supporting the sequential dynamics of independent representations for two features. When they changed simultaneously, the latency of responses to tones became shorter and aligned with that to loudness, while the topographies remained independent, yielding the combined MMN as a linear additive of single MMNs of loudness and tones. These results suggest that neural dynamics can be temporally synchronized to distinct sensory features and balance the computational demands of segregation and integration, grounding for invariance and feature binding in serial processing.


Subject(s)
Electroencephalography , Speech Perception , Electroencephalography/methods , Speech Perception/physiology , Speech , Evoked Potentials, Auditory/physiology , Acoustic Stimulation/methods
12.
Cereb Cortex ; 33(15): 9417-9428, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37310190

ABSTRACT

Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1)-a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence-a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations-and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that although basic adaptation to redundant stimuli was present early (50 ms) in layer 4 responses, DD emerged later (150-230 ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7 Hz) and high-gamma (70-80 Hz) oscillations in L2/3 and decreased beta oscillations (26-36 Hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, whereas "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.


Subject(s)
Brain , Visual Cortex , Animals , Mice , Wakefulness , Electroencephalography , Evoked Potentials, Auditory/physiology , Acoustic Stimulation
13.
Schizophr Res ; 256: 63-71, 2023 06.
Article in English | MEDLINE | ID: mdl-37156071

ABSTRACT

The mismatch negativity (MMN) is an evoked potential that indexes auditory regularity violations. Since the 90's, a reduced amplitude of this brain activity in patients with schizophrenia has been consistently reported. Recently, this alteration has been related to the presence of auditory hallucinations (AHs) rather than the schizophrenia diagnostic per se. However, making this attribution is rather problematic due to the high heterogeneity of symptoms in schizophrenia. In an attempt to isolate the AHs influence on the MMN amplitude from other cofounding variables, we artificially induced AHs in a non-clinical population by Pavlovian conditioning. Before and after conditioning, volunteers (N = 31) participated in an oddball paradigm that elicited an MMN. Two different types of deviants were presented: a frequency and a duration deviant, as the MMN alteration seems to be especially present in schizophrenia with the latter type of deviant. Hence, this pre-post design allowed us to compare whether experiencing conditioning-induced AHs exert any influence on MMN amplitudes. Our results show that duration-deviant related MMN reductions significantly correlate with the number of AHs experienced. Moreover, we found a significant correlation between AHs proneness (measured with the Launay-Slade Hallucination Extended Scale) and the number of AHs experienced during the paradigm. In sum, our study shows that AHs can be conditioned and exert similar effects on MMN modulation in healthy participants as has been reported for patients with schizophrenia. Thus, conditioning paradigms offer the possibility to study the association between hallucinations and MMN reductions without the confounding variables present in schizophrenia patients.


Subject(s)
Electroencephalography , Schizophrenia , Humans , Acoustic Stimulation , Hallucinations/etiology , Evoked Potentials/physiology , Evoked Potentials, Auditory/physiology
14.
Biol Psychol ; 180: 108570, 2023 05.
Article in English | MEDLINE | ID: mdl-37116608

ABSTRACT

BACKGROUND: MMN and P3a are EEG-derived event related potentials that are thought to be prospective biomarkers for schizophrenia and, potentially, early-phase psychosis (EPP). METHODS: EPP (n = 12) and healthy control (HC; n = 35) participants listened to a multi-feature optimal paradigm with five deviant types (gap, duration, location, intensity, and frequency). RESULTS: There was a significant amplitude difference between the EPP and HC group with duration MMN (p = .02). No significant amplitude differences between groups were found for the P3a waveform. There were several correlations for the EPP group with the BNSS, SOFAS, and PANSS-general questionnaires. Length of illness was not associated with MMN or P3a. CONCLUSIONS: The optimal paradigm is suitable for eliciting multiple deviant types within a short amount of time in both clinical and healthy populations. This study confirms duration MMN deficits within an EPP group and that MMN is related to functional outcomes and positive and negative symptomology.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Acoustic Stimulation , Electroencephalography , Evoked Potentials , Evoked Potentials, Auditory
15.
Exp Brain Res ; 241(5): 1319-1327, 2023 May.
Article in English | MEDLINE | ID: mdl-37004533

ABSTRACT

Multiple sclerosis (MS) is one of the most common neurological diseases in North America and it is frequently associated with sensory processing difficulties, cognitive deficits, and psychiatric illness. While many studies have examined cognitive deficits in MS measured by behavioural responses and neuroimaging techniques, only a few studies have examined neurophysiological measures of auditory functioning in MS, such as the mismatch negativity (MMN). The MMN is an event-related potential that indicates automatic auditory change detection. This study examined whether MMN endpoints measured by electroencephalography (EEG) differ in individuals with relapsing-remitting MS compared to healthy controls and whether the symptomatology of MS, including symptoms of depression and fatigue, are related to MMN measures. A multi-feature MMN paradigm, which includes five distinct deviant tones, was used to assess auditory cortex function in MS. There were no significant differences in MMN amplitudes or latencies between the MS and control group (p < 0.05) and corresponding effect sizes were small. However, there was a correlation between reduced MMN amplitudes in response to an intensity deviant and physician-reported disability. The intensity MMN may be more sensitive to deterioration in this population. Ultimately, this study provides a comprehensive profile of early auditory processing abilities in MS and suggests that a reduction in the MMN response may be representative of disease severity in MS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Acoustic Stimulation/methods , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Auditory Perception/physiology , Evoked Potentials/physiology , Electroencephalography/methods , Evoked Potentials, Auditory/physiology
16.
Hum Brain Mapp ; 44(9): 3644-3668, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37067073

ABSTRACT

The human brain is constantly subjected to a multimodal stream of probabilistic sensory inputs. Electroencephalography (EEG) signatures, such as the mismatch negativity (MMN) and the P3, can give valuable insight into neuronal probabilistic inference. Although reported for different modalities, mismatch responses have largely been studied in isolation, with a strong focus on the auditory MMN. To investigate the extent to which early and late mismatch responses across modalities represent comparable signatures of uni- and cross-modal probabilistic inference in the hierarchically structured cortex, we recorded EEG from 32 participants undergoing a novel tri-modal roving stimulus paradigm. The employed sequences consisted of high and low intensity stimuli in the auditory, somatosensory and visual modalities and were governed by unimodal transition probabilities and cross-modal conditional dependencies. We found modality specific signatures of MMN (~100-200 ms) in all three modalities, which were source localized to the respective sensory cortices and shared right lateralized prefrontal sources. Additionally, we identified a cross-modal signature of mismatch processing in the P3a time range (~300-350 ms), for which a common network with frontal dominance was found. Across modalities, the mismatch responses showed highly comparable parametric effects of stimulus train length, which were driven by standard and deviant response modulations in opposite directions. Strikingly, P3a responses across modalities were increased for mispredicted stimuli with low cross-modal conditional probability, suggesting sensitivity to multimodal (global) predictive sequence properties. Finally, model comparisons indicated that the observed single trial dynamics were best captured by Bayesian learning models tracking unimodal stimulus transitions as well as cross-modal conditional dependencies.


Subject(s)
Auditory Perception , Electroencephalography , Humans , Bayes Theorem , Auditory Perception/physiology , Brain/diagnostic imaging , Brain/physiology , Hearing , Acoustic Stimulation , Evoked Potentials, Auditory/physiology
17.
Article in English | MEDLINE | ID: mdl-36931469

ABSTRACT

BACKGROUND: Amplitude reduction of mismatch negativity (MMN), an event-related potential component indexing NMDA receptor-dependent auditory echoic memory and predictive coding, is widely replicated in schizophrenia. Time-frequency analyses of single-trial electroencephalography epochs suggest that theta oscillation abnormalities underlie MMN deficits in schizophrenia. However, this has received less attention in early schizophrenia (ESZ). METHODS: Patients with ESZ (n = 89), within 5 years of illness onset, and healthy control subjects (n = 105) completed an electroencephalography MMN paradigm (duration-deviant, pitch-deviant, duration + pitch double-deviant). Repeated measures analyses of variance assessed group differences in MMN, theta intertrial phase coherence (ITC), and theta total power from frontocentral electrodes, after normal age adjustment. Group differences were retested after covarying MMN and theta measures. RESULTS: Relative to healthy control subjects, patients with ESZ showed auditory deviance deficits. Patients with ESZ had MMN deficits for duration-deviants (p = .041), pitch-deviants (ps = .007), and double-deviants (ps < .047). Patients with ESZ had reduced theta ITC for standards (ps < .040) and duration-deviants (ps < .030). Furthermore, patients with ESZ had reduced theta power across deviants at central electrodes (p = .013). MMN group deficits were not fully accounted for by theta ITC and power, and neither were theta ITC group deficits fully accounted for by MMN. Group differences in theta total power were no longer significant after covarying for MMN. CONCLUSIONS: Patients with ESZ showed reduced MMN and theta total power for all deviant types. Theta ITC showed a relatively specific reduction for duration-deviants. Although MMN and theta ITC were correlated in ESZ, covarying for one did not fully account for deficits in the other, raising the possibility of their sensitivity to dissociable pathophysiological processes.


Subject(s)
Schizophrenia , Humans , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Evoked Potentials , Electroencephalography
18.
Clin Neurophysiol ; 149: 133-145, 2023 05.
Article in English | MEDLINE | ID: mdl-36965466

ABSTRACT

OBJECTIVE: Although children with cochlear implants (CI) achieve remarkable success with their device, considerable variability remains in individual outcomes. Here, we explored whether auditory evoked potentials recorded during an oddball paradigm could provide useful markers of auditory processing in this pediatric population. METHODS: High-density electroencephalography (EEG) was recorded in 75 children listening to standard and odd noise stimuli: 25 had normal hearing (NH) and 50 wore a CI, divided between high language (HL) and low language (LL) abilities. Three metrics were extracted: the first negative and second positive components of the standard waveform (N1-P2 complex) close to the vertex, the mismatch negativity (MMN) around Fz and the late positive component (P3) around Pz of the difference waveform. RESULTS: While children with CIs generally exhibited a well-formed N1-P2 complex, those with language delays typically lacked reliable MMN and P3 components. But many children with CIs with age-appropriate skills showed MMN and P3 responses similar to those of NH children. Moreover, larger and earlier P3 (but not MMN) was linked to better literacy skills. CONCLUSIONS: Auditory evoked responses differentiated children with CIs based on their good or poor skills with language and literacy. SIGNIFICANCE: This short paradigm could eventually serve as a clinical tool for tracking the developmental outcomes of implanted children.


Subject(s)
Cochlear Implantation , Cochlear Implants , Child , Humans , Acoustic Stimulation , Evoked Potentials, Auditory/physiology , Auditory Perception/physiology , Electroencephalography
19.
Brain Lang ; 237: 105221, 2023 02.
Article in English | MEDLINE | ID: mdl-36623340

ABSTRACT

The basic features of short sounds, such as frequency and intensity including their temporal dynamics, are integrated in a unitary representation. Knowledge on how our brain processes long lasting sounds is scarce. We review research utilizing the Mismatch Negativity event-related potential and neural oscillatory activity for studying representations for long lasting simple versus complex sounds such as sinusoidal tones versus speech. There is evidence for a temporal constraint in the formation of auditory representations: Auditory edges like sound onsets within long lasting sounds open a temporal window of about 350 ms in which the sounds' dynamics are integrated into a representation, while information beyond that window contributes less to that representation. This integration window segments the auditory input into short chunks. We argue that the representations established in adjacent integration windows can be concatenated into an auditory representation of a long sound, thus, overcoming the temporal constraint.


Subject(s)
Auditory Perception , Evoked Potentials, Auditory , Humans , Acoustic Stimulation , Electroencephalography , Evoked Potentials , Brain
20.
Clin EEG Neurosci ; 54(6): 620-627, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35410509

ABSTRACT

Speech-sound stimuli have a complex structure, and it is unclear how the brain processes them. An event-related potential (ERP), known as mismatch negativity (MMN), is elicited when an individual's brain detects a rare sound. In this study, MMNs were measured in response to an omitted segment of a complex sound consisting of a Japanese vowel. The results indicated that the latency from onset in the right hemisphere was significantly shorter than that in the frontal midline and left hemispheres during left ear stimulation. Additionally, the results of latency from omission showed that the latency of stimuli omitted in the latter part of the temporal window of integration (TWI) was longer than that of stimuli omitted in the first part of the TWI. The mean peak amplitude was found to be higher in the right hemisphere than in the frontal midline and left hemispheres in response to left ear stimulation. In conclusion, the results of this study suggest that would be incorrect to believe that the stimuli have strictly the characteristics of speech-sound. However. the results of the interaction effect in the latencies from omission were insignificant. These results suggest that the detection time for deviance may not be related to the stimulus ear. However, the type of deviant stimuli on latencies was found to be significant. This is because the detection of the deviants was delayed when a deviation occurred in the latter part of the TWI, regardless of the stimulation of the ear.


Subject(s)
Evoked Potentials, Auditory , Phonetics , Humans , Acoustic Stimulation/methods , Evoked Potentials, Auditory/physiology , Electroencephalography/methods , Sound
SELECTION OF CITATIONS
SEARCH DETAIL