Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Geriatr Gerontol Int ; 24(6): 554-562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644647

ABSTRACT

AIM: To investigate the effect of cholecalciferol supplementation on hand grip strength, walking speed, and expression of vitamin D receptor (VDR), interleukine-6 (IL-6) and insulin-like growth factor-1 (IGF-1) in monocyte in pre-frail older adults. METHODS: We conducted a randomized double-blinded placebo-controlled clinical trial for 12 weeks, involving 120 pre-frail older adults who were randomized to the cholecalciferol group (cholecalciferol 4000 IU/day) or the placebo group. All subjects were given calcium lactate 500 mg/day. Hand grip strength and walking speed, as primary outcomes, were analyzed using intention-to-treat analysis. The expression of VDR, IGF-1 and IL-6 in monocytes, as secondary outcomes, were analyzed using per-protocol analysis. RESULTS: After a 12-week intervention, there was a significant increase in serum 25(OH)D levels in both groups, with the increase being higher in the cholecalciferol group than in the placebo group (49.05 vs. 24.01 ng/mL; P < 0.001). No statistically significant differences were observed in hand grip strength (P = 0.228) and walking speed (P = 0.734) between the groups. There were no differences in the expression of VDR (P = 0.513), IL-6 (P = 0.509), and IGF-1 (P = 0.503) monocytes between the groups. CONCLUSIONS: Cholecalciferol supplementation for 12 weeks increased serum 25(OH)D levels among pre-frail older adults. However, it did not improve hand grip strength and walking speed, and nor did it change the expression of VDR, IL-6, and IGF-1 in monocytes. Geriatr Gerontol Int 2024; 24: 554-562.


Subject(s)
Cholecalciferol , Dietary Supplements , Hand Strength , Insulin-Like Growth Factor I , Interleukin-6 , Monocytes , Receptors, Calcitriol , Walking Speed , Humans , Hand Strength/physiology , Male , Double-Blind Method , Aged , Female , Interleukin-6/blood , Cholecalciferol/administration & dosage , Monocytes/metabolism , Monocytes/drug effects , Receptors, Calcitriol/metabolism , Insulin-Like Growth Factor I/metabolism , Aged, 80 and over , Frail Elderly , Vitamin D/blood , Vitamins/administration & dosage , Insulin-Like Peptides
2.
Circ Res ; 134(8): 970-986, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38456277

ABSTRACT

BACKGROUND: While platelets have well-studied hemostatic functions, platelets are immune cells that circulate at the interface between the vascular wall and white blood cells. The physiological implications of these constant transient interactions are poorly understood. Activated platelets induce and amplify immune responses, but platelets may also maintain immune homeostasis in healthy conditions, including maintaining vascular integrity and T helper cell differentiation, meaning that platelets are central to both immune responses and immune quiescence. Clinical data have shown an association between low platelet counts (thrombocytopenia) and immune dysfunction in patients with sepsis and extracorporeal membrane oxygenation, further implicating platelets as more holistic immune regulators, but studies of platelet immune functions in nondisease contexts have had limited study. METHODS: We used in vivo models of thrombocytopenia and in vitro models of platelet and monocyte interactions, as well as RNA-seq and ATAC-seq (assay for transposase-accessible chromatin with sequencing), to mechanistically determine how resting platelet and monocyte interactions immune program monocytes. RESULTS: Circulating platelets and monocytes interact in a CD47-dependent manner to regulate monocyte metabolism, histone methylation, and gene expression. Resting platelet-monocyte interactions limit TLR (toll-like receptor) signaling responses in healthy conditions in an innate immune training-like manner. In both human patients with sepsis and mouse sepsis models, thrombocytopenia exacerbated monocyte immune dysfunction, including increased cytokine production. CONCLUSIONS: Thrombocytopenia immune programs monocytes in a manner that may lead to immune dysfunction in the context of sepsis. This is the first demonstration that sterile, endogenous cell interactions between resting platelets and monocytes regulate monocyte metabolism and pathogen responses, demonstrating platelets to be immune rheostats in both health and disease.


Subject(s)
Sepsis , Thrombocytopenia , Mice , Animals , Humans , Monocytes/metabolism , Thrombocytopenia/metabolism , Blood Platelets/metabolism , Immunity , Sepsis/metabolism , Platelet Activation
3.
Biomolecules ; 14(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38397457

ABSTRACT

Childhood maltreatment has been repeatedly linked to a higher incidence of health conditions with an underlying proinflammatory component, such as asthma, chronic obstructive pulmonary disease, stroke, and cardiovascular disease. Childhood maltreatment has also been linked to elevated systemic inflammation prior to the onset of disease. However, childhood maltreatment is highly comorbid with other risk factors which have also been linked to inflammation, namely major depression. The present analysis addresses this issue by assessing the association of maltreatment with genome-wide transcriptional profiling of immune cells collected from four orthogonal groups of adolescents (aged 13-17): maltreated and not maltreated in childhood, with and without major depressive disorder. Maltreatment and psychiatric history were determined using semi-structured clinical interviews and cross-validated using self-report questionnaires. Dried whole blood spots were collected from each participant (n = 133) and assayed to determine the extent to which maltreatment in childhood was associated with a higher prevalence of transcriptional activity among differentially expressed genes, specific immune cell subtypes, and up- or down-regulation of genes involved in immune function after accounting for current major depression. Maltreatment was associated with increased interferon regulatory factor (IRF) transcriptional activity (p = 0.03), as well as nuclear factor erythroid-2 related factor 1 (NRF1; p = 0.002) and MAF (p = 0.01) among up-regulated genes, and increased activity of nuclear factor kappa beta (NF-κB) among down-regulated genes (p = 0.01). Non-classical CD16+ monocytes were implicated in both the up- and down-regulated genes among maltreated adolescents. These data provide convergent evidence supporting the role of maltreatment in altering intracellular and molecular markers of immune function, as well as implicate monocyte/macrophage functions as mechanisms through which childhood maltreatment may shape lifelong immune development and function.


Subject(s)
Child Abuse , Depressive Disorder, Major , Humans , Adolescent , Child , Depressive Disorder, Major/genetics , Monocytes , Inflammation , Gene Expression Profiling , Child Abuse/psychology
4.
Atherosclerosis ; 388: 117407, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091778

ABSTRACT

BACKGROUND: Recent data indicate considerable variability in response to very long chain omega-3 fatty acid supplementation on cardiovascular disease risk. This inconsistency may be due to differential effects of EPA vs DHA and/or sex-specific responses. METHODS: Sixteen subjects (eight men and eight women) 50-75 y and with low-grade chronic inflammation participated in a randomized controlled crossover trial comparing 3 g/d EPA, 3 g/d DHA, and placebo (3 g/d high oleic acid sunflower oil). Blood monocytes were isolated at the end of each phase for RNA-sequencing. RESULTS: Sex dimorphism in monocyte gene expression was observed, therefore, data for men and women were analyzed separately. 1088 genes were differentially expressed in men and 997 in women (p < 0.05). In both men and women, EPA and DHA repressed genes involved in protein turnover and mitochondrial energy metabolism, relative to placebo. In men only, EPA and DHA upregulated genes related to wound healing and PPARα activation. In women only, EPA and DHA activated genes related to ER stress response. Relative to DHA, EPA resulted in lower expression of genes involved in inflammatory processes in men, and lower expression of genes involved in ER stress response in women. CONCLUSIONS: EPA and DHA supplementation elicited both similar and differential effects on monocyte transcriptome, some of which were sex specific. The observed variability in response to EPA and DHA in men and women could in part explain the conflicting results from previous cardiovascular clinical trials using omega-3 fatty acids.


Subject(s)
Fatty Acids, Omega-3 , Monocytes , Male , Humans , Female , Eicosapentaenoic Acid/therapeutic use , Docosahexaenoic Acids , Transcriptome , Inflammation , Dietary Supplements , Gene Expression Profiling , Double-Blind Method
5.
Clin Nutr ; 42(11): 2138-2150, 2023 11.
Article in English | MEDLINE | ID: mdl-37774650

ABSTRACT

BACKGROUND & AIM: When considered separately, long-term immediate-release niacin and fatty meals enriched in monounsaturated fatty acids (MUFA) decrease postprandial triglycerides, but their effects on postprandial inflammation, which is common in individuals with metabolic syndrome, are less known. Moreover, successful combination is lacking and its impact on acute disorders of the innate immune cells in the metabolic syndrome remains unclear. Here, we aimed to establish the effects from combination with niacin of different fats [butter, enriched in saturated fatty acids (SFA), olive oil, enriched in MUFA, and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on plasma inflammatory markers and circulating monocyte subsets, activation and priming at the postprandial period in individuals with metabolic syndrome. METHODS: A random-order within-subject crossover experiment was performed, in which 16 individuals with metabolic syndrome and 16 age-matched healthy volunteers took 2 g immediate-release niacin together with the corresponding fatty meal or a meal with no fat as control. In total, 128 postprandial curves were analysed. We sampled hourly over 6 h for plasma concentrations of soluble inflammatory markers and triglycerides. Circulating monocyte subsets (CD14/CD16 balance), activation (CCL2/CCR2 axis) and priming (M1/M2-like phenotype) at the time of postprandial hypertriglyceridemic peak were also addressed. RESULTS: Dietary SFA (combined with niacin) promote postprandial excursions of circulating IL-6, IL-1ß, TNF-α and CD14/CCR2-rich monocytes with a pro-inflammatory M1-like phenotype, particularly in individuals with metabolic syndrome. In contrast, dietary MUFA (combined with niacin) postprandially increased circulating CD16-rich monocytes with an anti-inflammatory M2-like phenotype. Omega-3 PUFA did not add to the effects of MUFA. CONCLUSION: The co-administration of a single-dose of immediate-release niacin with a fatty meal rich in MUFA, in contrast to SFA, suppresses postprandial inflammation at the levels of both secretory profile and monocyte response in individuals with metabolic syndrome. These findings highlight a potential role of combining niacin and dietary MUFA for the homeostatic control of inflammation and the innate immune system, identifying a new search direction for the management of disorders associated with the metabolic syndrome.


Subject(s)
Metabolic Syndrome , Niacin , Male , Humans , Fatty Acids, Monounsaturated/pharmacology , Monocytes/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Dietary Fats/metabolism , Niacin/metabolism , Olive Oil , Postprandial Period , Fatty Acids/metabolism , Triglycerides , Inflammation/drug therapy , Inflammation/metabolism , Meals
6.
Biomedicines ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37761018

ABSTRACT

Vitamin B6 is shown to have anti-inflammatory properties, which makes it an interesting nutraceutical agent. Vitamin B6 deficiency is well established as a contributor to inflammatory-related conditions, whilst B6 supplementation can reverse these inflammatory effects. There is less information available regarding the effects of high-dose vitamin B6 supplementation as a therapeutic agent. This study set out to examine the effects of high-dose vitamin B6 on an LPS-stimulated monocyte/macrophage cell population via an analysis of protein and gene expression using an RT2 profiler PCR array for Human Innate and Adaptive Immune responses. It was identified that high-dose vitamin B6 has a global anti-inflammatory effect on lipopolysaccharide-induced inflammation in monocyte/macrophage cells by downregulating the key broad-spectrum inflammatory mediators CCL2, CCL5, CXCL2, CXCL8, CXCL10, CCR4, CCR5, CXCR3, IL-1ß, IL-5, IL-6, IL-10, IL-18, IL-23-a, TNF-α, CSF2, DDX58, NLRP3, NOD1, NOD2, TLR-1 -2 -4 -5 -7 -8 -9, MYD88, C3, FOXP3, STAT1, STAT3, STAT6, LYZ, CASP-1, CD4, HLA-E, MAPK1, MAPK8 MPO, MX-1, NF-κß, NF-κß1A, CD14, CD40, CD40LG, CD86, Ly96, ICAM1, IRF3, ITGAM, and IFCAM2. The outcomes of this study show promise regarding vitamin B6 within the context of a potent broad-spectrum anti-inflammatory mediator and could prove useful as an adjunct treatment for inflammatory-related diseases.

7.
Semin Immunol ; 68: 101778, 2023 07.
Article in English | MEDLINE | ID: mdl-37267758

ABSTRACT

Recent developments in sequencing technologies, the computer and data sciences, as well as increasingly high-throughput immunological measurements have made it possible to derive holistic views on pathophysiological processes of disease and treatment effects directly in humans. We and others have illustrated that incredibly predictive data for immune cell function can be generated by single cell multi-omics (SCMO) technologies and that these technologies are perfectly suited to dissect pathophysiological processes in a new disease such as COVID-19, triggered by SARS-CoV-2 infection. Systems level interrogation not only revealed the different disease endotypes, highlighted the differential dynamics in context of disease severity, and pointed towards global immune deviation across the different arms of the immune system, but was already instrumental to better define long COVID phenotypes, suggest promising biomarkers for disease and therapy outcome predictions and explains treatment responses for the widely used corticosteroids. As we identified SCMO to be the most informative technologies in the vest to better understand COVID-19, we propose to routinely include such single cell level analysis in all future clinical trials and cohorts addressing diseases with an immunological component.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Immunity, Innate , Systems Analysis
8.
Article in Russian | MEDLINE | ID: mdl-37141524

ABSTRACT

Laser therapy as a physiotherapeutic method has been successfully used for a long time in the treatment of various pathologies, but the action mechanisms of low level laser therapy (LLLT) remain understudied. OBJECTIVE: To perform the analysis of published results of LLLT investigations, to describe the physical principles of photobiomodulation, its action mechanisms on various cells and tissues, therapeutic intervention and efficiency of the technique. MATERIAL AND METHODS: The search of articles was done for the period from 2014 to 2022. The preference was given to the articles for the last 5 years in the PubMed database depending on keywords: low level laser therapy, photobiomodulation, exosomes, monocytes, macrophages. RESULTS AND DISCUSSION: This article represents the current conceptions about the action mechanisms and reproduced effects of low level laser therapy, the photobiomodulation influence on the inflammation and reparative processes in human body by intervention on cells and their signal pathways. The discussion of research results and probable causes of conflicting data are performed, as well as the efficacy assessment of laser irradiation in different conditions and diseases is made. CONCLUSION: Laser therapy has certain variety of advantages, among which: non-invasiveness and availability, long-term service of equipment, stable intensity of light radiation and the ability to use in various wavelength ranges. The technique efficacy was proven for a large number of diseases. However, for the successful application of photobiomodulation in clinical practice in current evidence-based medicine, additional investigations are necessary to determine the best dosimetric radiation parameters, as well as further study of action mechanisms on various human cells and tissues.


Subject(s)
Low-Level Light Therapy , Humans , Low-Level Light Therapy/methods , Evidence-Based Medicine , Anti-Inflammatory Agents
9.
Front Immunol ; 14: 1117828, 2023.
Article in English | MEDLINE | ID: mdl-37153611

ABSTRACT

In response to external stimuli during immune responses, monocytes can have multifaceted roles such as pathogen clearance and tissue repair. However, aberrant control of monocyte activation can result in chronic inflammation and subsequent tissue damage. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces monocyte differentiation into a heterogenous population of monocyte-derived dendritic cells (moDCs) and macrophages. However, the downstream molecular signals that dictate the differentiation of monocytes under pathological conditions is incompletely understood. We report here that the GM-CSF-induced STAT5 tetramerization is a critical determinate of monocyte fate and function. Monocytes require STAT5 tetramers to differentiate into moDCs. Conversely, the absence of STAT5 tetramers results in a switch to a functionally distinct monocyte-derived macrophage population. In the dextran sulfate sodium (DSS) model of colitis, STAT5 tetramer-deficient monocytes exacerbate disease severity. Mechanistically, GM-CSF signaling in STAT5 tetramer-deficient monocytes results in the overexpression of arginase I and a reduction in nitric oxide synthesis following stimulation with lipopolysaccharide. Correspondingly, the inhibition of arginase I activity and sustained supplementation of nitric oxide ameliorates the worsened colitis in STAT5 tetramer-deficient mice. This study suggests that STAT5 tetramers protect against severe intestinal inflammation through the regulation of arginine metabolism.


Subject(s)
Colitis , Monocytes , STAT5 Transcription Factor , Animals , Mice , Arginase/metabolism , Cell Differentiation , Dextran Sulfate/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Inflammation , Nitric Oxide/metabolism , STAT5 Transcription Factor/metabolism
10.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108367

ABSTRACT

Multivessel coronary artery disease (CAD) is characterized by underlying chronic vascular inflammation and occlusion in the coronary arteries, where these patients undergo coronary artery bypass grafting (CABG). Since post-cardiotomy inflammation is a well known phenomenon after CABG, attenuation of this inflammation is required to reduce perioperative morbidity and mortality. In this study, we aimed to phenotype circulating frequencies and intensities of monocyte subsets and monocyte migration markers, respectively, and to investigate the plasma level of inflammatory cytokines and chemokines between preoperative and postoperative CAD patients and later, to intervene the inflammation with sodium selenite. We found a higher amplitude of inflammation, postoperatively, in terms of CCR1high monocytes and significantly increased pro-inflammatory cytokines, IL-6, IL-8, and IL-1RA. Further, in vitro intervention with selenium displayed mitigating effects on the IL-6/STAT-3 axis of mononuclear cells derived from postoperative CAD patients. In addition, in vitro selenium intervention significantly reduced IL-1ß production as well as decreased cleaved caspase-1 (p20) activity by preoperative (when stimulated) as well as postoperative CAD mononuclear cells. Though TNF-α exhibited a positive correlation with blood troponin levels in postoperative CAD patients, there was no obvious effect of selenium on the TNF-α/NF-κB axis. In conclusion, anti-inflammatory selenium might be utilized to impede systemic inflammatory cytokine axes to circumvent aggravating atherosclerosis and further damage to the autologous bypass grafts during the post-surgical period.


Subject(s)
Coronary Artery Disease , Selenium , Humans , Coronary Artery Disease/drug therapy , Coronary Artery Disease/surgery , Cytokines/genetics , Immunophenotyping , Inflammation , Interleukin-6/pharmacology , Monocytes , Selenium/pharmacology , Selenium/therapeutic use , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-1beta/metabolism
11.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835169

ABSTRACT

Inflammation is the first physiological defence mechanism against external and internal stimuli. The prolonged or inappropriate response of the immune system may lead to the persistent inflammatory response that can potentially become a basis for chronic diseases e.g., asthma, type II diabetes or cancer. An important role in the alleviation of inflammatory processes, as an adjunct to traditional pharmacological therapy, is attributed to phytotherapy, especially to raw materials with a long tradition of use, e.g., ash leaves. Despite their long-term use in phytotherapy, the specific mechanisms of action have not been confirmed in a sufficient number of biological or clinical studies. The aim of the study is a detailed phytochemical analysis of infusion and its fractions, isolation of pure compounds from the leaves of Fraxinus excelsior and evaluation of their effect on the secretion of anti-inflammatory cytokines (TNF-α, IL-6) and IL-10 receptor expression in an in vitro model of monocyte/macrophage cells isolated from peripheral blood. Methods: Phytochemical analysis was carried out by the UHPLC-DAD-ESI-MS/MS method. Monocytes/macrophages were isolated from human peripheral blood using density gradient centrifugation on Pancoll. After 24 h incubation with tested fractions/subfractions and pure compounds, cells or their supernatants were studied, respectively, on IL-10 receptor expression by flow cytometry and IL-6, TNF-α, IL-1ß secretion by the ELISA test. Results were presented with respect to Lipopolysaccharide (LPS) control and positive control with dexamethasone. Results: The infusion, 20% and 50% methanolic fractions and their subfractions, as well as their dominating compounds, e.g., ligstroside, formoside and oleoacteoside isolated from the leaves, show the ability to increase the IL-10 receptor expression on the surface of monocyte/macrophage cells, stimulated by LPS, and to decrease the secretion of pro-inflammatory cytokines, e.g., TNF-α, IL-6.


Subject(s)
Anti-Inflammatory Agents , Fraxinus , Phytochemicals , Humans , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Diabetes Mellitus, Type 2/drug therapy , Fraxinus/chemistry , Fraxinus/metabolism , Interleukin-6 , Lipopolysaccharides , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Macrophages/drug effects , Macrophages/metabolism
12.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835448

ABSTRACT

Many chronic inflammatory conditions are mediated by an increase in the number of monocytes in peripheral circulation, differentiation of monocytes to macrophages, and different macrophage subpopulations during pro- and anti-inflammatory stages of tissue injury. When hepcidin secretion is stimulated during inflammation, the iron export protein ferroportin is targeted for degradation on a limited number of cell types, including monocytes and macrophages. Such changes in monocyte iron metabolism raise the possibility of non-invasively tracking the activity of these immune cells using magnetic resonance imaging (MRI). We hypothesized that hepcidin-mediated changes in monocyte iron regulation influence both cellular iron content and MRI relaxation rates. In response to varying conditions of extracellular iron supplementation, ferroportin protein levels in human THP-1 monocytes decreased two- to eightfold, consistent with paracrine/autocrine regulation of iron export. Following hepcidin treatment, ferroportin protein levels further decreased two- to fourfold. This was accompanied by an approximately twofold increase in total transverse relaxation rate, R2*, compared to non-supplemented cells. A positive correlation between total cellular iron content and R2* improved from moderate to strong in the presence of hepcidin. These findings suggest that hepcidin-mediated changes detected in monocytes using MRI could be valuable for in vivo cell tracking of inflammatory responses.


Subject(s)
Hepcidins , Inflammation , Iron , Monocytes , Humans , Hepcidins/metabolism , Iron/metabolism , Macrophages/metabolism , Magnetic Resonance Imaging , Monocytes/metabolism , Inflammation/metabolism
13.
Rheumatology (Oxford) ; 62(8): 2887-2897, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36625523

ABSTRACT

OBJECTIVES: How the local inflammatory environment regulates epigenetic changes in the context of inflammatory arthritis remains unclear. Here we assessed the transcriptional and active enhancer profile of monocytes derived from the inflamed joints of JIA patients, a model well-suited for studying inflammatory arthritis. METHODS: RNA sequencing and H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) were used to analyse the transcriptional and epigenetic profile, respectively, of JIA synovial fluid-derived monocytes. RESULTS: Synovial-derived monocytes display an activated phenotype, which is regulated on the epigenetic level. IFN signalling-associated genes are increased and epigenetically altered in synovial monocytes, indicating a driving role for IFN in establishing the local inflammatory phenotype. Treatment of synovial monocytes with the Janus-associated kinase (JAK) inhibitor ruxolitinib, which inhibits IFN signalling, transformed the activated enhancer landscape and reduced disease-associated gene expression, thereby inhibiting the inflammatory phenotype. CONCLUSION: This study provides novel insights into epigenetic regulation of inflammatory arthritis patient-derived monocytes and highlights the therapeutic potential of epigenetic modulation for the treatment of inflammatory rheumatic diseases.


Subject(s)
Arthritis , Monocytes , Humans , Monocytes/metabolism , Epigenesis, Genetic , Arthritis/metabolism , Synovial Fluid/metabolism , Phenotype
14.
Biomed Pharmacother ; 159: 114167, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36621145

ABSTRACT

BACKGROUND: Monocytes play a large role in chronic inflammatory conditions such as obesity, atherosclerosis and infection. Marine-derived omega-3 fatty acids such as docosahexaenoic acid (DHA) beneficially alter immune function and attenuate chronic inflammation in part by modifying gene expression. Comparisons with plant-derived omega-3 α-linolenic acid (ALA) on immune cell gene expression and function are limited. METHODS: Transcriptome analysis was performed on THP-1 human monocytes treated with ALA, DHA or vehicle for 48 hr using fold change analysis, principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), variable importance analysis (VIP), and ingenuity pathway analysis (IPA). Candidate genes were validated by qPCR. Functional assays evaluated the transcriptomic predictions. Expression of candidate transcripts identified in THP-1 cells were examined in PBMC from clinical trial (OXBIO; NCT03583281) participants consuming ALA- or DHA-rich oil supplements. FINDINGS: ALA and DHA-treated monocytes presented distinct transcriptomic profiles as per VIP and PLS-DA. Both fatty acids were predicted to reduce cellular cholesterol content, while ALA would uniquely increase response to infection and chemotactic signals. Functional assays revealed ALA and DHA decreased cholesterol content. DHA significantly decreased the response to infection and chemotaxis, but ALA had no effect. Candidate transcripts responded similarly in PBMC from n-3 PUFA supplemented women with obesity. CONCLUSION: ALA and DHA differentially alter the transcription profiles and functions associated with the response to infection, chemotaxis, and cholesterol metabolism in mononuclear immune cells. Thus, they may uniquely affect related disease processes contributing to obesity, atherosclerosis, and the response to infection.


Subject(s)
Atherosclerosis , Fatty Acids, Omega-3 , Female , Humans , alpha-Linolenic Acid/pharmacology , Cholesterol , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid , Fatty Acids, Omega-3/pharmacology , Leukocytes, Mononuclear/metabolism , Monocytes/metabolism , Obesity/drug therapy , Clinical Trials as Topic
15.
Mol Nutr Food Res ; 67(2): e2200429, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36433679

ABSTRACT

SCOPE: This study investigates the impacts of lard and related fatty acids intake on rheumatoid arthritis (RA) animal models. METHOD AND RESULTS: Collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) are induced in SD rats and C57 BL/6 mice respectively, which are fed by lard-rich diet (LRD) for 42 days with intake restriction or not. AIA SD rats are treated by representative fatty acids for 30 days. Body weight, arthritis score, and metabolic profile are periodically recorded. Monocyte distribution, cytokine/metabolites levels, gene expression, and tissue damages are investigated by flow cytometry, ELISA, colorimetry, PCR, and histological methods. After being treated by fatty acids in vitro, THP-1 monocytes and the corresponding medium are collected for ELISA, PCR, immunoblotting, and reporter gene assays. Irrespective of intake amounts, LRD decreases inflammatory cytokines and inhibits glycolysis in all rheumatic rodents. Furthermore, it alters monocyte distribution and promotes PPAR-γ expression in AIA mice. Overall evidences show that both saturated (SF) and unsaturated fatty acids (USF) from lard can attenuate inflammation by activating PPAR-γ. Silencing PPAR-γ abrogates their anti-inflammatory effects in vitro. Besides, SF can stimulate TLR4/NF-κB pathway. CONCLUSION: Lard consumption is beneficial for active inflammatory arthritis recovery. Even SF can activate PPAR-γ and consequently attenuate inflammation.


Subject(s)
Arthritis, Experimental , PPAR gamma , Rats , Mice , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Fatty Acids , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Rats, Sprague-Dawley , Cytokines/metabolism , NF-kappa B/metabolism , Inflammation
16.
Nutrients ; 14(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36432424

ABSTRACT

Vitamin D is a steroid hormone that has been widely studied as a potential therapy for multiple sclerosis and other inflammatory disorders. Pre-clinical studies have implicated vitamin D in the transcription of thousands of genes, but its influence may vary by cell type. A handful of clinical studies have failed to identify an in vivo gene expression signature when using bulk analysis of all peripheral immune cells. We hypothesized that vitamin D's gene signature would vary by immune cell type, requiring the analysis of distinct cell types. Multiple sclerosis patients (n = 18) were given high-dose vitamin D (10,400 IU/day) for six months as part of a prospective clinical trial (NCT01024777). We collected peripheral blood mononuclear cells from participants at baseline and again after six months of treatment. We used flow cytometry to isolate three immune cell types (CD4+ T-cells, CD19+ B-cells, CD14+ monocytes) for RNA microarray analysis and compared the expression profiles between baseline and six months. We identified distinct sets of differentially expressed genes and enriched pathways between baseline and six months for each cell type. Vitamin D's in vivo gene expression profile in the immune system likely differs by cell type. Future clinical studies should consider techniques that allow for a similar cell-type resolution.


Subject(s)
Multiple Sclerosis , Vitamin D , Humans , Leukocytes, Mononuclear , Monocytes , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Prospective Studies , T-Lymphocytes , Transcriptome , Vitamins/pharmacology , Vitamins/therapeutic use
17.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077185

ABSTRACT

Vitamin D intervenes in calcium and phosphate metabolism and bone homeostasis. Experimental studies have shown that 1,25-dihydroxyvitamin D (calcitriol) generates immunologic activities on the innate and adaptive immune system and endothelial membrane stability. Low levels of serum 25-hydroxyvitamin D (25(OH)D) are associated with an increased risk of developing immune-related diseases such as psoriasis, type 1 diabetes, multiple sclerosis, and autoimmune diseases. Various clinical trials describe the efficacy of supplementation of vitamin D and its metabolites for treating these diseases that result in variable outcomes. Different disease outcomes are observed in treatment with vitamin D as high inter-individual difference is present with complex gene expression in human peripheral blood mononuclear cells. However, it is still not fully known what level of serum 25(OH)D is needed. The current recommendation is to increase vitamin D intake and have enough sunlight exposure to have serum 25(OH)D at a level of 30 ng/mL (75 nmol/L) and better at 40-60 ng/mL (100-150 nmol/L) to obtain the optimal health benefits of vitamin D.


Subject(s)
Autoimmune Diseases , Vitamin D Deficiency , Autoimmune Diseases/complications , Autoimmune Diseases/drug therapy , Humans , Leukocytes, Mononuclear/metabolism , Vitamin D , Vitamin D Deficiency/complications , Vitamins
18.
Molecules ; 27(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744990

ABSTRACT

Potato protein-derived decapeptide DIKTNKPVIF exerted anti-inflammatory activity in animal models when delivered via intragastric gavage and intraperitoneal injection. However, DIKTNKPVIF is susceptible to hydrolysis in the digestive tract, which will decrease its bioaccessibility and possibly bioactivity. In this study, the anti-inflammatory activity of fragments generated from in silico gastrointestinal enzymatic hydrolysis of DIKTNKPVIF was investigated using the human monocytic (THP-1) cell line. The simulated digestion by pepsin and trypsin released four fragments, DIKTNKPVI, TNKPVIF, DIK and TNKPVI. The peptides lacked the cleavage sites of chymotrypsin. All five peptides were predicted to be non-toxic, which was validated using cytotoxicity assay at 0.25-1 mM peptide concentration. However, the peptides were predicted to possess poor pharmacokinetic profiles, including low passive gastrointestinal absorption and blood-brain barrier permeability. TNKPVIF, DIK and TNKPVI significantly reduced the amount of pro-inflammatory interleukin (IL)-6, IL-8 and tumor necrosis factor in lipopolysaccharide-activated THP-1 cells. Notably, the anti-inflammatory activity of fragment TNKPVI was comparable to that of the parent decapeptide while peptide fragment DIKTNKPVI had no apparent effect on the pro-inflammatory cytokines. This highlights the important role of the C-terminal phenylalanine residue of the parent peptide in the bioactivity. Furthermore, given its activity and the absence of cleavage sites of major digestive proteases, TNKPVI could be the biostable and bioaccessible pharmacophore of potato patatin-derived anti-inflammatory decapeptide DIKTNKPVIF.


Subject(s)
Solanum tuberosum , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines , Peptides/chemistry , Solanum tuberosum/chemistry , Tumor Necrosis Factor-alpha/metabolism
19.
Pharmacol Res ; 182: 106283, 2022 08.
Article in English | MEDLINE | ID: mdl-35662629

ABSTRACT

In the context of inflammation and immunity, there are fragmented and observational studies relating to the pharmacological activity of Mangifera indica L. and its main active component, mangiferin. Therefore, we aimed to analyze the potential beneficial effects of this plant extract (MIE, 90 % in mangiferin) in a mouse model of gouty arthritis, to allow the evaluation of cellular immune phenotypes and the biochemical mechanism/s beyond MIE activity. Gouty arthritis was induced by the intra-articular administration of MSU crystals (200 µg 20 µl-1), whereas MIE (0.1-10 mg kg-1) or corresponding vehicle (DMSO/saline 1:3) were orally administrated concomitantly with MSU (time 0), 6 and 12 h after the stimulus. Thereafter, knee joint score and oedema were evaluated in addition to western blot analysis for COX-2/mPGES-1 axis. Moreover, the analysis of pro/anti-inflammatory cyto-chemokines coupled with the phenotyping of the cellular infiltrate was performed. Treatment with MIE revealed a dose-dependent reduction in joint inflammatory scores with maximal inhibition observed at 10 mg kg-1. MIE significantly reduced leukocyte infiltration and activation and the expression of different pro-inflammatory cyto-chemokines in inflamed tissues. Furthermore, biochemical analysis revealed that MIE modulated COX-2/mPGES-1 and mPGDS-1/PPARγ pathways. Flow cytometry analysis also highlighted a prominent modulation of inflammatory monocytes (CD11b+/CD115+/LY6Chi), and Treg cells (CD4+/CD25+/FOXP3+) after MIE treatment. Collectively, the results of this study demonstrate a novel function of MIE to positively affect the local and systemic inflammatory/immunological perturbance in the onset and progression of gouty arthritis.


Subject(s)
Arthritis, Gouty , Mangifera , Plant Extracts , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Cyclooxygenase 2/metabolism , Mangifera/chemistry , Mice , Plant Extracts/pharmacology , T-Lymphocytes, Regulatory , Th17 Cells
20.
J Neuroinflammation ; 19(1): 136, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35681242

ABSTRACT

Brain macrophages and microglia are centrally involved in immune surveillance of the central nervous system. Upon inflammatory stimuli, they become reactive and release key molecules to prevent further damage to the neuronal network. In the hypothalamic area, perivascular macrophages (PVMs) are the first line of host defence against pathogenic organisms, particles and/or substances from the blood. They are distributed throughout the circumventricular organ median eminence, wrapping endothelial cells from fenestrated portal capillaries and in the hypothalamic vascular network, where they are localised in the perivascular space of the blood-brain barrier (BBB). Some studies have indicated that PVMs from the hypothalamus increase the expression of inducible nitric oxide synthase and vascular endothelial growth factor upon feeding for a long time on a high-fat diet. This adaptive response contributes to the impairment of glucose uptake, facilitates BBB leakage and leads to increased lipid and inflammatory cell influx towards the hypothalamic parenchyma. Despite these early findings, there is still a lack of studies exploring the mechanisms by which PVMs contribute to the development of obesity-related hypothalamic dysfunction, particularly at the early stages when there is chemotaxis of peripheral myeloid cells into the mediobasal hypothalamus. Here, we reviewed the studies involving the ontogeny, hallmarks and main features of brain PVMs in vascular homeostasis, inflammation and neuroendocrine control. This review provides a framework for understanding the potential involvement of PVMs in diet-induced hypothalamic inflammation.


Subject(s)
Diet, High-Fat , Endothelial Cells , Diet, High-Fat/adverse effects , Endothelial Cells/metabolism , Humans , Hypothalamus/metabolism , Inflammation/metabolism , Macrophages/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL