Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38592738

ABSTRACT

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Subject(s)
AMP-Activated Protein Kinases , Adenosine Diphosphate , Adenosine Monophosphate , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Humans , Allosteric Regulation , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/chemistry , Ligands , Phosphorylation , Adenosine Triphosphate/metabolism , Enzyme Activation , Protein Binding
2.
Open Vet J ; 14(1): 324-334, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633159

ABSTRACT

Background: Butyric acid and its derivatives support the immune system, lessen inflammation, and lessen oxidative stress in broilers in addition to preserving gut homeostasis and epithelial integrity. Broiler performance has also been demonstrated to rise with the addition of nucleotides to the diet. Aim: The purpose of the study was to ascertain the effects of butyric acid and nucleotides added to feed on the overall performance, immunity, oxidant/antioxidant enzyme levels, intestinal histology, and hepatic functions of broilers. Methods: Four experimental groups of thirty chickens, each were used in the present study. The groups were assigned as a control group that received normal diet without additives, butyrate (B) group received the diet supplemented with butyric acid (250 g/ton feed), nucleotides (N) group received the diet supplemented with nucleotides (200 g/ton feed), and the fourth group received the diet supplemented with a combination of butyrate and nucleotide (BN) (250 g/ton B feed, and 200 g/ton N feed, respectively). Necrotic enteritis was produced in ten birds from each group to assess the immune-modulatory effect of these supplements, antioxidant status, intestinal histology, and liver functions were measured in all experimental groups. Results: The addition of butyric acid and nucleotides to feed enhanced body weight, growth performance, hepatic functions, and antioxidant capabilities. Histological sections of the gut from challenged or unchallenged (with necrotic enteritis) groups in the BN group showed considerable improvement, as shown by strong proliferation in intestinal crypts and villus enterocytes. Conclusion: Nucleotides and butyric acid can be added to broiler feeding regimens to enhance growth and health.


Subject(s)
Chickens , Enteritis , Animals , Butyric Acid/pharmacology , Antioxidants , Nucleotides , Dietary Supplements , Enteritis/veterinary
3.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474135

ABSTRACT

Nucleotides, glycosaminoglycans, and omega-3 essential fatty acids (O3s) could be used for improving skin health, although their modes of action, alone or in combination, are not yet fully understood. To gain some insight into these mechanisms, we performed two in vitro tests and one in vivo pilot trial. The effects on human dermal fibroblast proliferation and migration were evaluated with the following compounds and combinations: 0.156 mg/mL O3s, 0.0017 mg/mL hyaluronic acid (HA), 0.0004 mg/mL dermatan sulfate (DS), 0.0818 mg/mL nucleotides, and [O3s + HA + DS] and [O3s + HA + DS + nucleotides] at the same concentrations. In both in vitro assays, adding nucleotides to [O3s + HA + DS] provided significant improvements. The resulting combination [O3s + HA + DS + nucleotides] was then tested in vivo in dogs with atopic dermatitis by oral administration of a supplement providing a daily amount of 40 mg/kg nucleotides, 0.9 mg/kg HA, 0.18 mg/kg DS, 53.4 mg/kg EPA, and 7.6 mg/kg DHA. After 30 days, the pruritus visual analog scale (pVAS) score was significantly reduced, and no adverse effects were observed. In conclusion, the combination of nucleotides plus glycosaminoglycans and O3s could serve as a useful therapeutic alternative in skin health applications.


Subject(s)
Dermatitis, Atopic , Dog Diseases , Fatty Acids, Omega-3 , Humans , Animals , Dogs , Dermatitis, Atopic/drug therapy , Saccharomyces cerevisiae , Dog Diseases/drug therapy , Pruritus/drug therapy , Fatty Acids, Omega-3/therapeutic use , Glycosaminoglycans/therapeutic use , Hyaluronic Acid/therapeutic use , Cell Proliferation , Fibroblasts
4.
Med Chem ; 20(5): 467-486, 2024.
Article in English | MEDLINE | ID: mdl-38265379

ABSTRACT

Intracellular glucose concentration plays a crucial role in initiating the molecular secretory process of pancreatic ß-cells through multiple messengers and signaling pathways. Cyclic nucleotides are key physiological regulators that modulate pathway interactions in ß -cells. An increase of cyclic nucleotides is controled by hydrolysed phosphodiesterases (PDEs), which degrades cyclic nucleotides into inactive metabolites. Despite the undeniable therapeutic potential of PDE inhibitors, they are associated with several side effects. The treatment strategy for diabetes based on PDE inhibitors has been proposed for a long time. Hence, the world of natural antidiabetic medicinal plants represents an ideal source of phosphodiesterase inhibitors as a new strategy for developing novel agents to treat diabetes mellitus. This review highlights medicinal plants traditionally used in the treatment of diabetes mellitus that have been proven to have inhibitory effects on PDE activity. The contents of this review were sourced from electronic databases, including Science Direct, PubMed, Springer Link, Web of Science, Scopus, Wiley Online, Scifinder and Google Scholar. These databases were consulted to collect information without any limitation date. After comprehensive literature screening, this paper identified 27 medicinal plants that have been reported to exhibit anti-phosphodiesterase activities. The selection of these plants was based on their traditional uses in the treatment of diabetes mellitus. The review emphasizes the antiphosphodiesterase properties of 31 bioactive components derived from these plant extracts. Many phenolic compounds have been identified as PDE inhibitors: Brazilin, mesozygin, artonin I, chalcomaracin, norartocarpetin, moracin L, moracin M, moracin C, curcumin, gallic acid, caffeic acid, rutin, quercitrin, quercetin, catechin, kaempferol, chlorogenic acid, and ellagic acid. Moreover, smome lignans have reported as PDE inhibitors: (+)-Medioresinol di-O-ß-d-glucopyranoside, (+)- Pinoresinol di-O-ß-d-glucopyranoside, (+)-Pinoresinol-4-O-ß-d-glucopyranosyl (1→6)-ß-dglucopyranoside, Liriodendrin, (+)-Pinoresinol 4'-O-ß-d-glucopyranoside, and forsythin. This review provides a promising starting point of medicinal plants, which could be further studied for the development of natural phosphodiesterase inhibitors to treat diabetes mellitus. Therefore, it is important to consider clinical studies for the identification of new targets for the treatment of diabetes.


Subject(s)
Diabetes Mellitus , Hypoglycemic Agents , Phosphodiesterase Inhibitors , Plants, Medicinal , Plants, Medicinal/chemistry , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus/drug therapy , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/therapeutic use , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
5.
Chin J Integr Med ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236522

ABSTRACT

OBJECTIVE: To study hesperetin-induced vasorelaxation after depolarizing contraction in human umbilical veins (HUVs) to elucidate the role of L-type Ca2+ channel (LTCC) and related signaling pathway. METHODS: Isometric tension recording was performed in HUV rings pre-contracted with K+. Hesperetin relaxing mechanism was investigated using a LTCC opener (BayK8644) and blockers of cyclic nucleotides and phosphodiesterases (PDEs). Whole-cell patch-clamping in A7r5 cells, a rat vascular smooth muscle cell line, was performed to study the effect of hesperetin on LTCC current. RESULTS: After depolarizing precontraction, hesperetin induced HUV relaxation concentration-dependently and endothelium-independently; 1 mmol/L hesperetin reduced denuded HUV ring tension by 68.7% ± 4.3% compared to matching vehicle, osmolality, and time controls (P<0.0001). Importantly, hesperetin competitively inhibited BayK8644-induced contraction, shifting the half maximal effective concentration of BayK8644 response from 1.08 nmol/L [95% confidence interval (CI) 0.49-2.40] in vehicle control to 11.30 nmol/L (95% CI 5.45-23.41) in hesperetin (P=0.0001). Moreover, hesperetin elicited further vasorelaxation in denuded HUV rings pretreated with inhibitors of soluble guanylyl cyclase, adenylyl cyclase, PDE3, PDE4, and PDE5 (P<0.01), while rings pretreated with PDE1 inhibitors could not be relaxed by hesperetin (P>0.05). However, simultaneously applying inhibitors of soluble guanylyl cyclase and adenylyl cyclase could not inhibit hesperetin's effect (P>0.05). In whole-cell patch-clamping, hesperetin rapidly decreased LTCC current in A7r5 cells to 66.7% ± 5.8% (P=0.0104). CONCLUSIONS: Hesperetin diminishes depolarizing contraction of human vascular smooth muscle through inhibition of LTCC, and not cyclic nucleotides nor PDEs. Our evidence supports direct LTCC interaction and provides additional basis for the use of hesperetin and its precursor hesperidin as vasodilators and may lead to future vasodilator drug development as a treatment alternative for cardiovascular diseases.

6.
Mol Med ; 30(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172668

ABSTRACT

BACKGROUND: Lesch-Nyhan disease (LND) is a severe neurological disorder caused by the genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme involved in the salvage synthesis of purines. To compensate this deficiency, there is an acceleration of the de novo purine biosynthetic pathway. Most studies have failed to find any consistent abnormalities of purine nucleotides in cultured cells obtained from the patients. Recently, it has been shown that 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediate of the de novo pathway, accumulates in LND fibroblasts maintained with RPMI containing physiological levels (25 nM) of folic acid (FA), which strongly differs from FA levels of regular cell culture media (2200 nM). However, RPMI and other standard media contain non-physiological levels of many nutrients, having a great impact in cell metabolism that does not precisely recapitulate the in vivo behavior of cells. METHODS: We prepared a new culture medium containing physiological levels of all nutrients, including vitamins (Plasmax-PV), to study the potential alterations of LND fibroblasts that may have been masked by the usage of non-physiological media. We quantified ZMP accumulation under different culture conditions and evaluated the activity of two known ZMP-target proteins (AMPK and ADSL), the mRNA expression of the folate carrier SLC19A1, possible mitochondrial alterations and functional consequences in LND fibroblasts. RESULTS: LND fibroblasts maintained with Plasmax-PV show metabolic adaptations such a higher glycolytic capacity, increased expression of the folate carrier SCL19A1, and functional alterations such a decreased mitochondrial potential and reduced cell migration compared to controls. These alterations can be reverted with high levels of folic acid, suggesting that folic acid supplements might be a potential treatment for LND. CONCLUSIONS: A complete physiological cell culture medium reveals new alterations in Lesch-Nyhan disease. This work emphasizes the importance of using physiological cell culture conditions when studying a metabolic disorder.


Subject(s)
Lesch-Nyhan Syndrome , Humans , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Cells, Cultured , Fibroblasts/metabolism , Folic Acid
7.
Int J Food Sci Nutr ; 75(1): 31-44, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37867390

ABSTRACT

The aim of this study was to evaluate and compare the concentration of water-soluble bioactive compounds in tomato products (polyphenols profile, water-soluble vitamins and nucleophilic substances) with the concentration of the same bioactive molecules existing in a water-soluble patented tomato extract, water-soluble tomato extract (WSTC), commercially available as FruitFlow®. This patented tomato extract has been recognised by EFSA (European Food Safety Authority) in a specific Health Claim declaration as having an "Antiplatelet health effect". More than 100 commercial tomato samples, coming from 18 different processing tomato companies worldwide, were analysed and compared with the FruitFlow® supplement. According to the multivariate statistical analyses applied to the data matrix, it is possible to conclude that the commercial tomato products measured (pastes, purees, others) show a significantly higher concentration of water-soluble bioactive molecules (nucleosides/nucleotides and polyphenols) responsible for an anti-platelet aggregation effect than the FruitFlow® dietary supplement.


Subject(s)
Solanum lycopersicum , Water , Platelet Aggregation , Dietary Supplements , Polyphenols , Plant Extracts/pharmacology
8.
Animals (Basel) ; 13(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38067085

ABSTRACT

Nucleotides, short-chain fructooligosaccharides (scFOS), xylooligosaccharides (XOS), ß-carotene and vitamin E are reported to enhance immune function; however, the evidence of this in cats is limited. The aim of this study was to determine the immunomodulatory effects of these ingredients in kittens. Forty domestic short hair kittens were designated in litters to control or test diet for 28 weeks. Test diet was fortified with 0.33 g nucleotides, 0.45 g scFOS, 0.3 g XOS, 0.7 mg ß-carotene and 66.5 mg vitamin E per 100 g diet. Kittens were vaccinated against feline parvovirus (FPV) and herpesvirus (FHV) at 10, 14 and 18 weeks. Kittens remained healthy, with no measured evidence of adverse health. Serum FPV and FHV antibody titres were significantly (p < 0.05) higher in the test diet group at week 23 and 27, respectively. A significantly (p < 0.05) higher proportion of test diet group kittens demonstrated an adequate response (four-fold titre increase) to FHV vaccination and a significantly (p < 0.05) higher proportion reached a protective antibody titre for FHV. Serum IgM was significantly (p < 0.05) higher in the test diet group. The test diet group demonstrated a stronger humoral immune response to vaccination, suggesting the diet supports immune defence, enabling a greater response to immune challenges.

9.
Plant Foods Hum Nutr ; 78(2): 342-350, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37120677

ABSTRACT

Hibiscus sabdariffa L. is a worldwide component for tea and beverages, being a natural source of anthocyanins, which are associated with cardiovascular activities. To investigate this relationship, we explored different methods of aqueous extraction on the anthocyanin content and antioxidant activity of H. sabdariffa L. calyx extract (HSCE). Pharmacological effects via platelet aggregation, calcium mobilization, cyclic nucleotide levels, vasodilator-stimulated phosphoprotein Ser157 and Ser239, and on the vasomotor response of aortic rings isolated from mice are studied herewith. We found that the application of ultrasonic turbolization, 20 min, combined with acidified water was significantly more effective in the extraction process, providing extracts with the highest levels of anthocyanins (8.73 and 9.63 mg/100 g) and higher antioxidant activity (6.66 and 6.78 µM trolox/g of sample). HSCE significantly inhibited (100-1000 µg/mL) arachidonic acid-induced platelet aggregation, reduced calcium mobilization, and increased cAMP and cGMP levels with VASPSer157 and VASPSer239 phosphorylation. Vasorelaxation reduction was confirmed by the aortic rings and endothelium assays treated with nitric oxide synthase inhibitors, soluble guanylyl cyclase (sGC) oxidizing agent, or Ca2+-activated K+ channel inhibitor. The increasing of cGMP levels could be understood considering the sGC stimulation by HSCE compounds in the specific stimulus domain, which allows an understanding of the observed antiplatelet and vasorelaxant properties of H. sabdariffa L. calyx extract.


Subject(s)
Hibiscus , Vasodilator Agents , Animals , Mice , Vasodilator Agents/pharmacology , Anthocyanins/pharmacology , Antioxidants/pharmacology , Calcium , Plant Extracts/pharmacology , Cyclic GMP/metabolism
10.
Int Immunopharmacol ; 117: 109888, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36827918

ABSTRACT

Nucleotides (NTs) play a pivotal role in the growth and development of the intestine. This study aimed to evaluate the effects of nucleotides supplementation on the intestinal barrier function, immune responses and microbiota in 3-day-old weaned piglets. Ninety-six piglets weaned at 3-days after birth were randomly assigned to 2 treatments (6 replicates/treatment, 8 piglets/replicate) according to the average body weight. The dietary treatments consisted of the control (CON; fed a basal artificial milk) and nucleotides groups (NT; fed a basal artificial milk with 0.035 % nucleotides, the contents of CMP, UMP, AMP, GMP, and IMP were 1:1:1:1:1, respectively). Diarrhea rates were recorded, and blood and intestinal samples were collected on day 35 of the piglets. The current study showed that NTs supplementation tended to decrease the diarrhea rate of weaned piglets (P < 0.10). NTs increased villus height and the villus height-to-crypt depth (V/C) ratio in the ileum (P < 0.05). Dietary NTs up-regulated protein expression of ZO-1 in ileal mucosa (P < 0.05), and the protein expression of Occludin tended to increase. Furthermore, NTs up-regulated the mRNA expression of Mucin (MUC)2, while the mRNA expression of MUC4 was down-regulated in the ileal mucosa (P < 0.05). Besides, supplementation with NTs increased the ileal mucosa genes expression of IL-21, INF-γ, IL-10, IL-4, IL-6 and TNF-α (P < 0.05). Furthermore, dietary NTs increased the protein expression of NF-κB, IL-6 and TNF-α (P < 0.05), and the proteins expression of Occludin and p-NF-κB tended to be up-regulated in the ileal mucosa (P < 0.10). Furthermore, NTs supplementation increased short chain fatty acid in the colonic (P < 0.05). And NTs supplementation reduced the Firmicutes/Bacteroidota ratio in the colon, at the genus level, NTs enriched the relative abundance of Prevotella, Faecalibacterium and Olsenella (P < 0.05). These data indicate that NTs could increase the villus height, increase the V/C, regulate the expression of tight junction protein and mucin, improve the intestinal barrier of piglets, regulate the secretion of cytokines, improve the biological immunity, increase the abundance of beneficial bacteria, and thus reduce the diarrhea of piglets.


Subject(s)
Dietary Supplements , Microbiota , Animals , Diarrhea/metabolism , Dietary Supplements/analysis , Immunity , Interleukin-6/metabolism , Intestinal Mucosa , Mucins/metabolism , NF-kappa B/metabolism , Nucleotides/metabolism , Occludin/genetics , Occludin/metabolism , RNA, Messenger/metabolism , Swine , Tumor Necrosis Factor-alpha/metabolism , Weaning
11.
J Sci Food Agric ; 103(2): 750-763, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36054758

ABSTRACT

BACKGROUND: N-Carbamoyl-aspartic acid (NCA) is a critical precursor for de novo biosynthesis of pyrimidine nucleotides. To investigate the cumulative effects of maternal supplementation with NCA on the productive performance, serum metabolites and intestinal microbiota of sows, 40 pregnant sows (∼day 80) were assigned into two groups: (1) the control (CON) and (2) treatment (NCA, 50 g t-1 NCA). RESULTS: Results showed that piglets from the NCA group had heavier birth weight than those in the CON group (P < 0.05). In addition, maternal supplementation with NCA decreased the backfat loss of sows during lactation (P < 0.05). Furthermore,16S-rRNA sequencing results revealed that maternal NCA supplementation decreased the abundance of Cellulosilyticum, Fournierella, Anaerovibrio, and Oribacterium genera of sows during late pregnancy (P < 0.05). Similarly, on the 14th day of lactation, maternal supplementation with NCA reduced the diversity of fecal microbes of sows as evidenced by significantly lower observed species, Chao1, and Ace indexes, and decreased the abundance of Lachnospire, Faecalibacterium, and Anaerovorax genera, while enriched the abundance of Catenisphaera (P < 0.05). Untargeted metabolomics showed that a total of 48 differentially abundant biomarkers were identified, which were mainly involved in metabolic pathways of arginine/proline metabolism, phenylalanine/tyrosine metabolism, and fatty acid biosynthesis, etc. CONCLUSION: Overall, the results indicated that NCA supplementation regulated intestinal microbial composition of sows and serum differential metabolites related to arginine, proline, phenylalanine, tyrosine, and fatty acids metabolism that may contribute to regulating the backfat loss of sows, and the birth weight and diarrhea rate of piglets. © 2022 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Swine , Animals , Pregnancy , Female , Animal Feed/analysis , Colostrum/chemistry , Aspartic Acid/analysis , Aspartic Acid/metabolism , Aspartic Acid/pharmacology , Dietary Supplements/analysis , Birth Weight , Diet/veterinary , Lactation , Arginine/analysis , Phenylalanine/analysis , Tyrosine/analysis , Proline/analysis
12.
Nutrients ; 14(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35889753

ABSTRACT

Brown adipose tissue (BAT) is of great importance in rodents for maintaining their core temperature via non-shivering thermogenesis in the mitochondria. BAT's thermogenic function has been shown to decline with age. The activation of adenosine 5'-monophosphate (AMP)-activated protein kinase/sirtuin-1 (AMPK/Sirt-1) is effective in regulating mitochondrial function. Exogenous nucleotides (NTs) are regulatory factors in many biological processes. Nicotinamide mononucleotide (NMN), which is a derivative of NTs, is widely known as a Sirt-1 activator in liver and muscle, but the effect of NMN and NTs on aging BAT has not been studied before. The purpose of this study was to investigate the effect of NTs on aging senescence-accelerated mouse prone-8 (SAMP8) mice. Senescence-accelerated mouse resistant 1 (SAMR1) mice were set as the model control group and NMN was used as the positive control. Male, 3 month old SAMP8 mice were divided into the SAMP8-normal chow (SAMP8-NC), SAMP8-young-normal chow (SAMP8-young-NC), NMN, NTs-free, NTs-low, NTs-medium, and NTs-high groups for long-term feeding. After 9 months of intervention, interscapular BAT was collected for experiments. Compared to the SAMP8-NC, the body weight and BAT mass were significantly improved in the NT-treated aging SAMP8 mice. NT supplementation had effects on oxidative stress in BAT. The concentration of malondialdehyde (MDA) was reduced and that of superoxide dismutase (SOD) increased significantly. Meanwhile, the expression of the brown adipocyte markers uncoupling protein-1 (UCP-1), peroxisome proliferator-activated receptor-γ coactlvator-1α (PGC-1α), and PR domain zinc finger protein 16 (PRDM16) were upregulated. The upregulated proteins may be activated via the Sirt-1 pathway. Thus, NT supplementation may be helpful to improve the thermogenesis of BAT by reducing oxidative stress and activating the Sirt-1 pathway.


Subject(s)
Adipose Tissue, Brown , Sirtuins , Adipose Tissue, Brown/metabolism , Aging/metabolism , Animals , Male , Mice , Nucleotides/pharmacology , Oxidative Stress , Sirtuins/metabolism , Thermogenesis , Transcription Factors/metabolism
13.
EMBO Rep ; 23(8): e54361, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35735260

ABSTRACT

The striatum is a subcortical brain region responsible for the initiation and termination of voluntary movements. Striatal spiny projection neurons receive major excitatory synaptic input from neocortex and thalamus, and cyclic nucleotides have long been known to play important roles in striatal function. Yet, the precise mechanism of action is unclear. Here, we combine optogenetic stimulation, 2-photon imaging, and genetically encoded scavengers to dissect the regulation of striatal synapses in mice. Our data show that excitatory striatal inputs are tonically depressed by phosphodiesterases (PDEs), in particular PDE1. Blocking PDE activity boosts presynaptic calcium entry and glutamate release, leading to strongly increased synaptic transmission. Although PDE1 degrades both cAMP and cGMP, we uncover that the concentration of cGMP, not cAMP, controls the gain of striatal inputs. Disturbing this gain control mechanism in vivo impairs motor skill learning in mice. The tight dependence of striatal excitatory synapses on PDE1 and cGMP offers a new perspective on the molecular mechanisms regulating striatal activity.


Subject(s)
Corpus Striatum , Synapses , Animals , Corpus Striatum/metabolism , Glutamic Acid/metabolism , Mice , Neurons/metabolism , Synapses/physiology , Synaptic Transmission , Thalamus/metabolism
14.
J Fish Biol ; 101(1): 204-212, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35567749

ABSTRACT

An 8 week feeding trial was carried out to investigate the effects of dietary nucleotides on growth performance, intestinal morphology, immune response and disease resistance of juvenile largemouth bass, Micropterus salmoides. Five grades of dietary nucleotide levels were designed as 0, 0.2, 0.4, 0.8 and 1.2 g kg-1 , respectively. Each group had 3 replicates, with 40 fish in each replicate. After the feeding experiment, 15 fish from each tank were infected with Aeromonas hydrophila for 14 days. The results indicated that fish fed the diets containing 0.4, 0.8 and 1.2 g kg-1 nucleotides had higher growth performance and feed utilization than those fed the control diet. Nonetheless, there were no significant differences in survival between all the groups, although fish fed the diets with all-level nucleotides obtained higher survival than those fed the control diet. Dietary nucleotides significantly affected the superoxide dismutase, acid phosphatase and catalase activities in serum but not the malondialdehyde content. Fish fed the 0.4 g kg-1 nucleotide diets had the highest fold height, enterocyte height and muscular layer thickness significantly. The average mortality of largemouth bass infected with A. hydrophila was significantly influenced by dietary nucleotides. The mortality was significantly higher in the control group (91.11%) and 0.02% nucleotide group (73.11%) followed by the other groups and lowest in the 0.8 g kg-1 nucleotide group. In summary, dietary 0.4-0.8 g kg-1 nucleotides promoted growth performance, enhanced immunity and improved intestinal morphology and disease resistance of largemouth bass.


Subject(s)
Bass , Fish Diseases , Animal Feed/analysis , Animals , Bass/physiology , Diet/veterinary , Dietary Supplements , Disease Resistance , Fish Diseases/prevention & control , Intestines , Nucleotides/pharmacology
15.
J Dairy Sci ; 105(5): 4393-4409, 2022 May.
Article in English | MEDLINE | ID: mdl-35248380

ABSTRACT

The present work aimed to investigate the effects of nucleotide oral administration on oxidative stress biomarkers, immune responses, gut morphology, serum biochemical parameters, and growth performance in calves from birth to 25 d of life. A total of 40 male Holstein Friesian calves were randomly divided in 2 groups. All the calves were born and reared on the same commercial dairy farm. They were fed the same colostrum, milk replacer, and calf starter. Five grams/head of an additive were orally administered with a syringe directly in the mouth to calves of the nucleotide group (NG). The additive contained 74.12 g/100 g of nucleic acids from hydrolyzed yeast, and 75.38% was free nucleotide sodium salt. The other group represented the negative control (CG). At 25 d of life all of the calves were slaughtered. Calves supplemented with nucleotides had a higher final live weight and improved average daily gain, which was associated with better efficiency of nutrient use. Oral nucleotide administration did not affect IgG absorption efficiency; however, NG calves showed greater duodenum villi length and higher crypt depth compared with CG. Oral nucleotide administration increased the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and the antioxidant capacity [ferric reducing antioxidant power and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) scavenging activity] both in plasma and in liver. An enhanced ability of cells to counter reactive oxygen species- and reactive nitrogen species-mediated damage was also observed in peripheral blood mononuclear cells from NG. The findings highlight the effectiveness of oral nucleotide administration, and potentially dietary supplementation of nucleotides, in boosting oxidative and immune status in newborn calves.


Subject(s)
Animal Feed , Nucleotides , Administration, Oral , Animal Feed/analysis , Animals , Animals, Newborn , Antioxidants , Cattle , Diet/veterinary , Dietary Supplements , Immunity , Intestinal Mucosa , Leukocytes, Mononuclear , Male , Oxidative Stress , Weaning
16.
Nutr Res ; 99: 13-24, 2022 03.
Article in English | MEDLINE | ID: mdl-35081503

ABSTRACT

Our knowledge about the complexity of human milk, in particular fatty acid, protein, and oligosaccharide profiles, has increased considerably in recent years. However, little attention has been paid to nucleotides, which account for ∼2% to 5% of the nonprotein nitrogen fraction of breast milk and provide important cellular and metabolism functions for the infant. We examined literature published in the past 25 years to provide an updated review of concentrations of nucleotides in breast milk across lactational stages in mothers around the world. The free mononucleotides found in highest concentrations in breast milk are, from highest to lowest in the order of cytidine 5'-monophosphate, uridine 5'-monophosphate, and adenosine 5'-monophosphate, guanosine 5'-monophosphate, and inosine 5'-monophosphate. Levels of nucleotides varied considerably amongst individual mothers and with stage of lactation. They could be further influenced by time of day and season and the mother's diet. Levels of free nucleotides varied between studies undertaken in different regions; however, in studies that measured total potentially available nucleotides levels, regional differences were not apparent. Some studies report higher amounts in colostrum and transition milk compared with mature milk, whereas other studies report the converse. Recently, clinical studies showed that there are benefits to supplement nucleotides in infant formula. Although comparing data in the literature remains a challenge because of different milk collection methodologies and measurement protocols used by different studies, the information may provide insights for designing of formula products for infant at different stages of development.


Subject(s)
Milk, Human , Nucleotides , Attention , Colostrum , Female , Humans , Infant , Lactation/metabolism , Pregnancy
17.
Chembiochem ; 23(2): e202100361, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34637168

ABSTRACT

High costs and low availability of UDP-galactose hampers the enzymatic synthesis of valuable oligosaccharides such as human milk oligosaccharides. Here, we report the development of a platform for the scalable, biocatalytic synthesis and purification of UDP-galactose. UDP-galactose was produced with a titer of 48 mM (27.2 g/L) in a small-scale batch process (200 µL) within 24 h using 0.02 genzyme /gproduct . Through in-situ ATP regeneration, the amount of ATP (0.6 mM) supplemented was around 240-fold lower than the stoichiometric equivalent required to achieve the final product yield. Chromatographic purification using porous graphic carbon adsorbent yielded UDP-galactose with a purity of 92 %. The synthesis was transferred to 1 L preparative scale production in a stirred tank bioreactor. To further reduce the synthesis costs here, the supernatant of cell lysates was used bypassing expensive purification of enzymes. Here, 23.4 g/L UDP-galactose were produced within 23 h with a synthesis yield of 71 % and a biocatalyst load of 0.05 gtotal_protein /gproduct . The costs for substrates per gram of UDP-galactose synthesized were around 0.26 €/g.


Subject(s)
Enzymes/metabolism , Uridine Diphosphate Galactose/biosynthesis , Adenosine Triphosphate/metabolism , Bioreactors , Cell-Free System , Hydrogen-Ion Concentration , Oligosaccharides/biosynthesis , Proof of Concept Study , Uridine Diphosphate Galactose/isolation & purification
18.
Journal of Clinical Hepatology ; (12): 1886-1891, 2022.
Article in Chinese | WPRIM | ID: wpr-941557

ABSTRACT

Nucleos(t)ide analogues (NUC) can inhibit the replication of hepatitis B virus (HBV) and effectively treat chronic hepatitis B (CHB), but they cannot completely eradicate HBV and cannot prevent the progression to hepatitis B cirrhosis and liver cancer in the context of a low viral load. In recent years, traditional Chinese medicine has been widely used in the treatment of CHB. This article elaborates on the application and mechanism of traditional Chinese medicine in inhibiting HBV replication, reducing the content of HBeAg, and delaying the progression to hepatitis B cirrhosis, and it is proposed that traditional Chinese medicine can improve the therapeutic effect of NUC in the treatment of CHB.

19.
mBio ; 12(5): e0203421, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34607467

ABSTRACT

The marine bacterium Vibrio fischeri efficiently colonizes its symbiotic squid host, Euprymna scolopes, by producing a transient biofilm dependent on the symbiosis polysaccharide (SYP). In vitro, however, wild-type strain ES114 fails to form SYP-dependent biofilms. Instead, genetically engineered strains, such as those lacking the negative regulator BinK, have been developed to study this phenomenon. Historically, V. fischeri has been grown using LBS, a complex medium containing tryptone and yeast extract; supplementation with calcium is required to induce biofilm formation by a binK mutant. Here, through our discovery that yeast extract inhibits biofilm formation, we uncover signals and underlying mechanisms that control V. fischeri biofilm formation. In contrast to its inability to form a biofilm on unsupplemented LBS, a binK mutant formed cohesive, SYP-dependent colony biofilms on tTBS, modified LBS that lacks yeast extract. Moreover, wild-type strain ES114 became proficient to form cohesive, SYP-dependent biofilms when grown in tTBS supplemented with both calcium and the vitamin para-aminobenzoic acid (pABA); neither molecule alone was sufficient, indicating that this phenotype relies on coordinating two cues. pABA/calcium supplementation also inhibited bacterial motility. Consistent with these phenotypes, cells grown in tTBS with pABA/calcium were enriched in transcripts for biofilm-related genes and predicted diguanylate cyclases, which produce the second messenger cyclic-di-GMP (c-di-GMP). They also exhibited elevated levels of c-di-GMP, which was required for the observed phenotypes, as phosphodiesterase overproduction abrogated biofilm formation and partially rescued motility. This work thus provides insight into conditions, signals, and processes that promote biofilm formation by V. fischeri. IMPORTANCE Bacteria integrate environmental signals to regulate gene expression and protein production to adapt to their surroundings. One such behavioral adaptation is the formation of a biofilm, which can promote adherence and colonization and provide protection against antimicrobials. Identifying signals that trigger biofilm formation and the underlying mechanism(s) of action remain important and challenging areas of investigation. Here, we determined that yeast extract, commonly used for growth of bacteria in laboratory culture, inhibits biofilm formation by Vibrio fischeri, a model bacterium used for investigating host-relevant biofilm formation. Omitting yeast extract from the growth medium led to the identification of an unusual signal, the vitamin para-aminobenzoic acid (pABA), that when added together with calcium could induce biofilm formation. pABA increased the concentrations of the second messenger, c-di-GMP, which was necessary but not sufficient to induce biofilm formation. This work thus advances our understanding of signals and signal integration controlling bacterial biofilm formation.


Subject(s)
4-Aminobenzoic Acid/metabolism , Aliivibrio fischeri/metabolism , Biofilms , Calcium/metabolism , Cyclic GMP/analogs & derivatives , Polysaccharides, Bacterial/metabolism , Aliivibrio fischeri/genetics , Aliivibrio fischeri/growth & development , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Decapodiformes/microbiology , Decapodiformes/physiology , Gene Expression Regulation, Bacterial , Symbiosis
20.
Fish Shellfish Immunol ; 119: 575-577, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34715328

ABSTRACT

Juvenile common carp Cyprinus carpio L. (5.52 ± 1.66 cm, TL) were fed on four diets containing either beta-glucan (MacroGard, 1 g kg -1), nucleotides (Optimûn, 0.2 g kg - 1), chitosan (deacetylated chitin ≥75% shrimp shells, 10 g kg -1) or a basal control diet for 35 days to test whether these so-called "immunostimulants" could affect eye fluke Diplostomum spp. infection success. The immunostimulants diets reduced the number of eye fluke infecting the eyes of C. carpio, with significantly higher infections in the control diet (4.78 ± 1.27) compared with the chitosan (2.08 ± 0.87), nucleotide (2.98 ± 1.01), and beta-glucan (1.41 ± 0.79) diets. To our knowledge, this is the first study to provide evidence that beta-glucan, nucleotides, and chitosan diets can aid against a Diplostomum infection and provides valuable preliminary knowledge on the use of immunostimulants to ameliorate parasitic infections.


Subject(s)
Carps , Chitosan , Trematoda , beta-Glucans , Adjuvants, Immunologic/pharmacology , Animals , Diet/veterinary , Dietary Supplements , Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL