Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Cereb Cortex ; 28(1): 295-306, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29069292

ABSTRACT

In everyday sound environments, we recognize sound sources and events by attending to relevant aspects of an acoustic input. Evidence about the cortical mechanisms involved in extracting relevant category information from natural sounds is, however, limited to speech. Here, we used functional MRI to measure cortical response patterns while human listeners categorized real-world sounds created by objects of different solid materials (glass, metal, wood) manipulated by different sound-producing actions (striking, rattling, dropping). In different sessions, subjects had to identify either material or action categories in the same sound stimuli. The sound-producing action and the material of the sound source could be decoded from multivoxel activity patterns in auditory cortex, including Heschl's gyrus and planum temporale. Importantly, decoding success depended on task relevance and category discriminability. Action categories were more accurately decoded in auditory cortex when subjects identified action information. Conversely, the material of the same sound sources was decoded with higher accuracy in the inferior frontal cortex during material identification. Representational similarity analyses indicated that both early and higher-order auditory cortex selectively enhanced spectrotemporal features relevant to the target category. Together, the results indicate a cortical selection mechanism that favors task-relevant information in the processing of nonvocal sound categories.


Subject(s)
Auditory Perception/physiology , Cerebral Cortex/physiology , Acoustic Stimulation/methods , Adult , Attention/physiology , Brain Mapping , Cerebral Cortex/diagnostic imaging , Cerebrovascular Circulation/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Oxygen/blood , Young Adult
2.
Front Psychol ; 3: 329, 2012.
Article in English | MEDLINE | ID: mdl-23049515

ABSTRACT

Grounded cognition theory proposes that cognition, including meaning, is grounded in sensorimotor processing. The mechanism for grounding cognition is mental simulation, which is a type of mental imagery that re-enacts modal processing. To reveal top-down, cortical mechanisms for mental simulation of shape, event-related potentials were recorded to face and object pictures preceded by mental imagery. Mental imagery of the identical face or object picture (congruous condition) facilitated not only categorical perception (VPP/N170) but also later visual knowledge [N3(00) complex] and linguistic knowledge (N400) for faces more than objects, and strategic semantic analysis (late positive complex) between 200 and 700 ms. The later effects resembled semantic congruity effects with pictures. Mental imagery also facilitated category decisions, as a P3 peaked earlier for congruous than incongruous (other category) pictures, resembling the case when identical pictures repeat immediately. Thus mental imagery mimics semantic congruity and immediate repetition priming processes with pictures. Perception control results showed the opposite for faces and were in the same direction for objects: Perceptual repetition adapts (and so impairs) processing of perceived faces from categorical perception onward, but primes processing of objects during categorical perception, visual knowledge processes, and strategic semantic analysis. For both imagery and perception, differences between faces and objects support domain-specificity and indicate that cognition is grounded in modal processing. Altogether, this direct neural evidence reveals that top-down processes of mental imagery sustain an imagistic representation that mimics perception well enough to prime subsequent perception and cognition. Findings also suggest that automatic mental simulation of the visual shape of faces and objects operates between 200 and 400 ms, and strategic mental simulation operates between 400 and 700 ms.

SELECTION OF CITATIONS
SEARCH DETAIL