Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 345: 128748, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33340890

ABSTRACT

Flavor is a key attribute of fried oil that shows a critical correlation with temperature. Therefore, selecting the appropriate temperature is important in preparing fried shallot oil (FSO). Volatile compounds from five different FSOs were identified and comparatively studied using gas chromatography-mass spectrometry (GC-MS) coupled with multivariate data analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). GC-MS results identified a total of 93 volatiles, among which aldehydes, alcohols, pyrazines, and sulfur-containing compounds were the major compounds. Eighteen compounds had odor active values (OAV) >1. Among the compounds, hexanal, (E)-2-heptenal, (E)-2-octenal, dipropyl disulfide, 2-ethyl-3,5-dimethylpyrazine, and 1-octen-3-ol were important to the overall aroma profile of FSOs. In the PCA model, all the detected FSOs were divided into three clusters, which were assigned as cluster A (FSO5), B (FSO4), and C (the rest FSOs). Multivariate data analyses revealed that nonanal, 2-ethyl-5-methylpyrazine, (E,E)-2,4-decadienal, (E)-2-heptenal, and hexanal contributed positively to the classification of different FSOs. GC-MS coupled with multivariate data analysis could be used as a convenient and efficient analytical method to classify raw materials.


Subject(s)
Cooking , Food Analysis/methods , Gas Chromatography-Mass Spectrometry , Plant Oils/chemistry , Shallots/chemistry , Temperature , Volatile Organic Compounds/analysis , Multivariate Analysis , Odorants/analysis , Taste
2.
J Sci Food Agric ; 100(13): 4688-4695, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32418224

ABSTRACT

BACKGROUND: The aromatic potential of mango by-products was evaluated to seek natural and cheap sources of odor-active compounds. Volatile compounds in mango peel and seed were chemically characterized and compared with those in mango pulp using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS). RESULTS: More than 60 volatile compounds were detected in mango by-products, whose aromatic activity was estimated using odorant activity values (OAVs). The results indicated that mango peel was a valuable matrix of odor-active compounds, which were found in even larger quantities than in edible mango fractions. 3-Carene was the predominant compound, although other compounds such as decanal, 1-octen-3-one, nonanal, limonene, ß-damascenone, and 2-nonenal were the most odor-active compounds in mango peel. The greatest aromatic impact was obtained from mango peel, with sensorial features described as fresh / herbaceous, fruity, floral and resinous. CONCLUSION: The exceptional flavoring potential of mango peel by-product opens a door for its use and revalorization as a natural flavoring ingredient in the food and cosmetic industries. © 2020 Society of Chemical Industry.


Subject(s)
Flavoring Agents/chemistry , Mangifera/chemistry , Plant Extracts/chemistry , Waste Products/analysis , Flavoring Agents/analysis , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Plant Extracts/isolation & purification , Solid Phase Microextraction , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL