Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.033
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Physiol Mol Biol Plants ; 30(3): 383-399, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633273

ABSTRACT

Acanthopanax gracilistylus is a deciduous plant in the family Araliaceae, which is commonly used in Chinese herbal medicine, as the root bark has functions of nourishing the liver and kidneys, removing dampness and expelling wind, and strengthening the bones and tendons. Kaurenoic acid (KA) is the main effective substance in the root bark of A. gracilistylus with strong anti-inflammatory effects. To elucidate the KA biosynthesis pathway, second-generation (DNA nanoball) and third-generation (Pacific Biosciences) sequencing were performed to analyze the transcriptomes of the A. gracilistylus leaves, roots, and stems. Among the total 505,880 isoforms, 408,954 were annotated by seven major databases. Sixty isoforms with complete open reading frames encoding 11 key enzymes involved in the KA biosynthesis pathway were identified. Correlation analysis between isoform expression and KA content identified a total of eight key genes. Six key enzyme genes involved in KA biosynthesis were validated by real-time quantitative polymerase chain reaction. Based on the sequence analysis, the spatial structure of ent-kaurene oxidase was modeled, which plays roles in the three continuous oxidations steps of KA biosynthesis. This study greatly enriches the transcriptome data of A. gracilistylus and facilitates further analysis of the function and regulation mechanism of key enzymes in the KA biosynthesis pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01436-7.

2.
J Chromatogr A ; 1722: 464896, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38631224

ABSTRACT

In this study, a novel magnetic bead-based ligand fishing method was developed for rapid discovery of monoterpene indoles as monoamine oxidase A inhibitors from natural products. In order to improve the screening efficiency, two different magnetic beads, i.e. amine and carboxyl terminated magnetic beads, were comprehensively compared in terms of their ability to immobilize monoamine oxidase A (MAOA), biocatalytic activity and specific adsorption rates for affinity ligands. Carboxyl terminated magnetic beads performed better for MAOA immobilization and demonstrated superior performance in ligand fishing. The MAOA immobilized magnetic beads were applied to screen novel monoamine oxidase inhibitors in an alkaloid-rich plant, Hunteria zeylanica. Twelve MAOA affinity ligands were screened out, and ten of them were identified as monoterpene indole alkaloids by HPLC-Obitrap-MS/MS. Among them, six ligands, namely geissoschizol, vobasinol, yohimbol, dihydrocorynanthenol, eburnamine and (+)-isoeburnamine which exhibited inhibitory activity against MAOA with low IC50 values. To further explore their inhibitory mechanism, enzyme kinetic analysis and molecular docking studies were conducted.


Subject(s)
Molecular Docking Simulation , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/isolation & purification , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry , Ligands , Indoles/chemistry , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Kinetics , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/antagonists & inhibitors , Humans , Plant Extracts/chemistry
3.
Molecules ; 29(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542970

ABSTRACT

Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL-1·min-1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of -5.28 kcal/mol, -4.65 kcal/mol, -4.21 kcal/mol, and -5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea.


Subject(s)
Catechol Oxidase , Dietary Fiber , Catechol Oxidase/chemistry , Dietary Fiber/analysis , Hydrogen-Ion Concentration , Kinetics , Plant Proteins/metabolism , Catechols/analysis , Substrate Specificity , Tea
4.
Bioresour Technol ; 398: 130503, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442847

ABSTRACT

Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.


Subject(s)
Composting , Humic Substances , Animals , Humic Substances/analysis , Soil , Manure , Chickens , Coal , Monophenol Monooxygenase , Carbon
5.
Pathogens ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535596

ABSTRACT

Urinary tract infections occupy a special niche among diseases of infectious etiology. Many microorganisms associated with urinary tract infections, such as Klebsiella oxytoca, Enterococcus spp., Morganella morganii, Moraxella catarrhalis, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Staphylococcus spp., and Candida spp., can form biofilms. The aim of this research was to study the effect of the enzyme L-lysine-Alpha-oxidase (LO) produced by the fungus Trichoderma harzianum Rifai on the biofilm formation process of microorganisms associated with urinary tract infections. Homogeneous LO showed a more pronounced effect than the culture liquid concentrate (cCL). When adding samples at the beginning of incubation, the maximum inhibition was observed in relation to Enterococcus faecalis 5960-cCL 86%, LO 95%; Enterococcus avium 1669-cCL 85%, LO 94%; Enterococcus cloacae 6392-cCL 83%, LO-98%; and Pseudomonas aeruginosa 3057-cCL 70%, LO-82%. The minimum inhibition was found in Candida spp. Scanning electron microscopy was carried out, and numerous morphological and structural changes were observed in the cells after culturing the bacterial cultures in a medium supplemented with homogeneous LO. For example, abnormal division was detected, manifesting as the appearance of joints in places where the bacteria diverge. Based on the results of this work, we can draw conclusions about the possibility of inhibiting microbial biofilm formation with the use of LO; especially significant inhibition was achieved when the enzyme was added at the beginning of incubation. Thus, LO can be a promising drug candidate for the treatment or prevention of infections associated with biofilm formation.

6.
Saudi Pharm J ; 32(4): 101980, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38439949

ABSTRACT

Xanthine oxidase (XO) has been widely recognized as a pivotal enzyme in developing hyperuricemia, primarily contributing to the excessive production of uric acid during purine metabolism in the liver. One of the standard treatment approaches involves reducing uric acid levels by inhibiting XO activity. In this study, the leaf extract of Dolichandrone spathacea, traditionally used in folk medicine, was found to inhibit XO activity in the ethyl acetate and butanol fractions at a concentration of 100 µg/mL, their values were 78.57 ± 3.85 % (IC50 = 55.93 ± 5.73 µg/ml) and 69.43 ± 8.68 % (IC50 = 70.17 ± 7.98 µg/ml), respectively. The potential XO inhibitory components were isolated by bioactivity assays and the HR-ESI-MS and NMR spectra system. The main constituents of leaf extracts of Dolichandrone spathacea, six compounds, namely trans-4-methoxycinnamic acid (3), trans-3,4-dimethoxycinnamic acid (4), p-coumaric acid (5), martynoside (6), 6-O-(p-methoxy-E-cinnamoyl)-ajugol (7), and scolymoside (17), were identified as potent XO inhibitors with IC50 values ranging from 19.34 ± 1.63 µM to 64.50 ± 0.94 µM. The enzyme kinetics indicated that compounds 3-5, 7, and 17 displayed competitive inhibition like allopurinol, while compound 6 displayed a mixed-type inhibition. Computational studies corroborated these experimental results, highlighting the interactions between potential metabolites and XO enzyme. The hydrogen bonds played crucial roles in the binding interaction, especially, scolymoside (17) forms a hydrogen bond with Mos3004, exhibited the lowest binding energy (-18.3286 kcal/mol) corresponding to the lowest IC50 (19.34 ± 1.63 µM). Furthermore, nine compounds were isolated for the first time from this plant. In conclusion, Dolichandrone spathacea and its constituents possess the potential to modulate the xanthine oxidase enzyme involved in metabolism.

7.
Talanta ; 272: 125842, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38428131

ABSTRACT

A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.


Subject(s)
Camellia sinensis , Polyphenols , Polyphenols/analysis , Tea , Catechol Oxidase , Machine Learning
8.
Fitoterapia ; 175: 105926, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537887

ABSTRACT

Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Hyperuricemia , Uric Acid , Xanthine Oxidase , Animals , Mice , Hyperuricemia/drug therapy , Male , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Uric Acid/blood , Xanthine Oxidase/metabolism , Disease Models, Animal , Glucose Transport Proteins, Facilitative/metabolism , Kidney/drug effects , Blood Urea Nitrogen , Creatinine/blood , Plant Extracts/pharmacology , Plant Extracts/chemistry , Organic Anion Transporters/metabolism , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Organic Anion Transport Protein 1/metabolism , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology
9.
Neurochem Int ; 174: 105698, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364939

ABSTRACT

Parkinson's disease (PD) is one of the most prevalent age-related neurodegenerative disorders. Behavioral complexities worsen over time due to progressive dopaminergic (DArgic) neuronal loss at substantia nigra region of brain. Available treatments typically aim to increase dopamine (DA) levels at striatum. DA is degraded by Monoamine oxidase (MAO), thus dietary phytochemicals with MAO inhibitory properties can contribute to elevate DA levels and reduce the ailment. Characterization of naturally occurring dietary MAO inhibitors is inadequate. Based on available knowledge, we selected different classes of molecules and conducted a screening process to assess their potential as MAO inhibitors. The compounds mostly derived from food sources, broadly belonging to triterpenoids (ursane, oleanane and hopane), alkaloid, polyphenolics, monoterpenoids, alkylbenzene, phenylpropanoid and aromatic alcohol classes. Among all the molecules, highest level of MAO inhibition is offered by α-viniferin, a resveratrol trimer. Cell viability, mitochondrial morphology and reactive oxygen species (ROS) generation remained unaltered by 50 µM α-viniferin treatment in-vitro. Toxicity studies in Drosophila showed unchanged gross neuronal morphology, ROS level, motor activity or long-term survival. α-Viniferin inhibited MAO in mice brain and elevated striatal DA levels. PD-related akinesia and cataleptic behavior were attenuated by α-viniferin due to increase in striatal DA. Our study implies that α-viniferin can be used as an adjunct phytotherapeutic agent for mitigating PD-related behavioral deterioration.


Subject(s)
Benzofurans , Monoamine Oxidase , Parkinson Disease , Mice , Animals , Monoamine Oxidase/metabolism , Parkinson Disease/drug therapy , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Reactive Oxygen Species , Dopamine/metabolism
10.
J Am Acad Dermatol ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38309304

ABSTRACT

Photobiomodulation (PBM), previously known as low-level laser light therapy, represents a non-invasive form of phototherapy that utilizes wavelengths in the red light (RL, 620-700 nm) portion of the visible light (VL, 400-700 nm) spectrum and the near-infrared (NIR, 700-1440 nm) spectrum. PBM is a promising and increasingly used therapy for the treatment of various dermatologic and non-dermatologic conditions. Photons from RL and NIR are absorbed by endogenous photoreceptors including mitochondrial cytochrome C oxidase (COX). Activation of COX leads to the following changes: modulation of mitochondrial adenosine triphosphate (ATP), generation of reactive oxygen species (ROS), and alterations in intracellular calcium levels. The associated modulation of ATP, ROS and calcium levels promotes the activation of various signaling pathways (e.g., insulin-like growth factors, phosphoinositide 3-kinase pathways), which contribute to downstream effects on cellular proliferation, migration and differentiation. Effective PBM therapy is dependent on treatment parameters (e.g., fluence, treatment duration and output power). PBM is generally well-tolerated and safe with erythema being the most common and self-limiting adverse cutaneous effect.

11.
Brain Behav Immun ; 117: 356-375, 2024 03.
Article in English | MEDLINE | ID: mdl-38320681

ABSTRACT

Both exogenous gaseous and liquid forms of formaldehyde (FA) can induce depressive-like behaviors in both animals and humans. Stress and neuronal excitation can elicit brain FA generation. However, whether endogenous FA participates in depression occurrence remains largely unknown. In this study, we report that midbrain FA derived from lipopolysaccharide (LPS) is a direct trigger of depression. Using an acute depressive model in mice, we found that one-week intraperitoneal injection (i.p.) of LPS activated semicarbazide-sensitive amine oxidase (SSAO) leading to FA production from the midbrain vascular endothelium. In both in vitro and in vivo experiments, FA stimulated the production of cytokines such as IL-1ß, IL-6, and TNF-α. Strikingly, one-week microinfusion of FA as well as LPS into the midbrain dorsal raphe nucleus (DRN, a 5-HT-nergic nucleus) induced depressive-like behaviors and concurrent neuroinflammation. Conversely, NaHSO3 (a FA scavenger), improved depressive symptoms associated with a reduction in the levels of midbrain FA and cytokines. Moreover, the chronic depressive model of mice injected with four-week i.p. LPS exhibited a marked elevation in the levels of midbrain LPS accompanied by a substantial increase in the levels of FA and cytokines. Notably, four-week i.p. injection of FA as well as LPS elicited cytokine storm in the midbrain and disrupted the blood-brain barrier (BBB) by activating microglia and reducing the expression of claudin 5 (CLDN5, a protein with tight junctions in the BBB). However, the administration of 30 nm nano-packed coenzyme-Q10 (Q10, an endogenous FA scavenger), phototherapy (PT) utilizing 630-nm red light to degrade FA, and the combination of PT and Q10, reduced FA accumulation and neuroinflammation in the midbrain. Moreover, the combined therapy exhibited superior therapeutic efficacy in attenuating depressive symptoms compared to individual treatments. Thus, LPS-derived FA directly initiates depression onset, thereby suggesting that scavenging FA represents a promising strategy for depression treatment.


Subject(s)
Depression , Lipopolysaccharides , Humans , Mice , Animals , Lipopolysaccharides/pharmacology , Depression/drug therapy , Neuroinflammatory Diseases , Cytokines/metabolism , Mesencephalon/metabolism , Formaldehyde
12.
Nutrients ; 16(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38337727

ABSTRACT

Panax ginseng, a traditional Chinese medicine with a history spanning thousands of years, faces overexploitation and challenges related to extended growth periods. Tissue-cultured adventitious roots and stem cells are alternatives to wild and field-cultivated ginseng. In this study, we assessed the in vitro xanthine oxidase and α-glucosidase inhibitory activities of saponin extracts among cultured cambial meristematic cells (CMC), adventitious ginseng roots (AGR), and field-cultivated ginseng roots (CGR). The xanthine oxidase (XO) and α-glucosidase inhibitory activities were determined by uric acid estimation and the p-NPG method, respectively. Spectrophotometry and the Folin-Ciocalteu, aluminum nitrate, and Bradford methods were employed to ascertain the total saponins and phenolic, flavonoid, and protein contents. The calculated IC50 values for total saponin extracts against XO and α-glucosidase were 0.665, 0.844, and >1.6 mg/mL and 0.332, 0.745, and 0.042 mg/mL for AGR, CMC, CGR, respectively. Comparing the total saponin, crude protein, and total phenolic contents revealed that AGR > CMC > CGR. To the best of our knowledge, this study presents the first report on the in vitro comparison of xanthine oxidase and α-glucosidase inhibitory activities among AGR, CMC, and CGR. The findings offer valuable insights into the development of hypoglycemic and antihyperuricemic medicinal, nutraceutical, and functional products utilizing AGR and CMC.


Subject(s)
Panax , Saponins , Panax/metabolism , Xanthine Oxidase/metabolism , alpha-Glucosidases/metabolism , Plant Roots/metabolism
13.
Talanta ; 271: 125714, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38306812

ABSTRACT

Spinel oxide has great promise in constructing highly active nanozymes due to its tunable crystal structure. However, it still faces the problems of poor specificity and insufficient enzyme activity, which limits its application in the field of analysis. Herein, a series of transition metal spinel oxides were synthesized by cation regulation strategy, and their enzymatic activity and catalytic mechanism were analyzed. Interestingly, FeCo2O4, Co3O4 and NiCo2O4 had oxidase-like activity and peroxidase-like activity, while CuCo2O4 had specific and high oxidase-like activity. Their oxidase-like activities follow the order of FeCo2O4 < Co3O4 < NiCo2O4 < CuCo2O4, which is consistent with their cation radius. The smaller the cation radius of tetrahedral site, the more beneficial it is to increase the oxidase-like activity. The high oxidase-like activity of CuCo2O4 may be attributed to the production of 1O2, •O2- and •OH. EPR results showed the presence of abundant oxygen vacancies in CuCo2O4. Upon the introduction of EDTA, TMB color reaction fades because of oxygen vacancies elimination by EDTA, indicating that oxygen vacancies played an important role in the reaction. Based on the inhibition effect of caffeic acid on the high oxidase-like activity of CuCo2O4, a simple and sensitive caffeic acid colorimetric sensing platform was developed. The linear range for the detection of caffeic acid is 0.02-15 µM, with a detection limit as low as 13 nM. The constructed sensor enables the detection of caffeic acid in caffeic acid tablets and actual water samples, providing a new strategy for the detection of caffeic acid and drug quality control.


Subject(s)
Aluminum Oxide , Caffeic Acids , Cobalt , Colorimetry , Magnesium Oxide , Oxides , Oxygen , Edetic Acid , Cations , Oxidoreductases
14.
J Food Sci ; 89(4): 2232-2248, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380698

ABSTRACT

Sugarcane juice is a popular beverage and is also processed to produce sugar. The polyphenol oxidase (PPO) in sugarcane juice causes enzymatic browning and makes the process of sugar production complex and cumbersome. Storage of sugarcane juice is also hampered by the high sugar content and rapid microbial fermentation. The present research assessed the potential of lemon juice (LJ) and ginger extract (GE) as natural inhibitors of PPO. Enzyme kinetics and the mechanism of inhibition of LJ and GE were studied. Primary investigation was carried out using molecular docking approach to assess the inhibitory potential of LJ and GE and to determine the nature of interaction between the enzyme and inhibitors. Extracts were used as inhibitors and studies revealed that both reduced the PPO activity. Subsequently, pure bioactive inhibitors such as ascorbic acid, citric acid, and 6-shogaol present in these natural extracts were used to study the mode of inhibition of PPO. Citric acid decreased PPO activity by lowering pH, while ascorbic acid was found to be a competitive inhibitor of PPO with a Ki of 75.69 µM. The proportion of LJ and GE required in sugarcane juice was optimized on the basis of browning index and sensory acceptance. Further, the sugarcane cane juice after inhibition of PPO under optimized conditions was spray dried and evaluated for reconstitution properties. The product formulated in the present study is a new and effective approach to address quality-compromising issues associated with long-term storage of cane juice.


Subject(s)
Saccharum , Saccharum/chemistry , Catechol Oxidase/chemistry , Molecular Docking Simulation , Ascorbic Acid , Sugars , Citric Acid
15.
Food Chem ; 441: 138365, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38211476

ABSTRACT

In this work, shrimp shell-derived magnetic NiFe2O4/N, O co-doped porous carbon nanozyme with superior oxidase (OXD)-like activity was prepared and used for colorimetric/photothermal/smartphone dual-signal triple-mode detection of antioxidants in fruits and beverages. The magnetic NiFe2O4/N, O co-doped porous carbon (MNPC) material was triumphantly fabricated using a combined in-situ surface chelation and pyrolysis method. The resultant MNPC composite exhibits a superior OXD-like activity, which can effectively oxidize 3,3',5,5'-tetramethylbenzidine (TMB) for yielding colorimetric/temperature dual-signal (CTDS) in absence of H2O2. This CTDS output sensor was successfully used for the determination of ascorbic acid and tannic acid. The proposed CTDS sensor with good specificity and high sensitivity can satisfy different on-site analysis requirements. Interestingly, the MNPC as a sustainable filler was further used for improving packaging properties of polyvinyl alcohol film. In short, this work offers a large-scale and cheap method to fabricate magnetic carbon-based nanozyme for monitoring antioxidants and ameliorating packaging properties.


Subject(s)
Aluminum Oxide , Antioxidants , Hydrogen Peroxide , Magnesium Oxide , Polyphenols , Porosity , Carbon , Colorimetry
16.
Biosens Bioelectron ; 250: 116056, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271889

ABSTRACT

Green tea is popular among consumers because of its high nutritional value and unique flavor. There is often a strong correlation among the type of tea, its quality level and the price. Therefore, the rapid identification of tea types and the judgment of tea quality grades are particularly important. In this work, a novel sensor array based on nanozyme with polyphenol oxidase (PPO) activity is proposed for the identification of tea polyphenols (TPs) and Chinese green tea. The absorption spectra changes of the nanozyme and its substrate in the presence of different TPs were first investigated. The feature spectra were scientifically selected using genetic algorithm (GA), and then a sensor array with 15 sensing units (5 wavelengths × 3 time) was constructed. Combined with the support vector machine (SVM) discriminative model, the discriminative rate of this sensor array was 100% for different concentrations of typical TPs in Chinese green tea with a detection limit of 5 µM. In addition, the identification of different concentrations of the same tea polyphenols and mixed tea polyphenols have also been achieved. Based on the above study, we further developed a facile and efficient new method for the category differentiation and adulteration identification of green tea, and the accuracy of this array was 96.88% and 100% for eight types of green teas and different adulteration ratios of Biluochun, respectively. This work has significance for the rapid discrimination of green tea brands and adulteration.


Subject(s)
Biosensing Techniques , Camellia sinensis , Tea , Polyphenols , Catechol Oxidase , China
17.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256065

ABSTRACT

Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.


Subject(s)
Arabidopsis , Camellia sinensis , Drought Resistance , Arabidopsis/genetics , Camellia sinensis/genetics , Putrescine , Plants, Genetically Modified/genetics , gamma-Aminobutyric Acid , Tea
18.
Lasers Med Sci ; 39(1): 36, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236306

ABSTRACT

Diabetes mellitus (DM) is a chronic age-related disease that was recently found as a secondary aging pattern regulated by the senescence associated secretory phenotype (SASP). The purpose of this study is to detect the potential efficacy and the specific mechanisms of low-level laser therapy (LLLT) healing of age-related inflammation (known as inflammaging) in diabetic periodontitis. Diabetic periodontitis (DP) mice were established by intraperitoneal streptozotocin (STZ) injection and oral P. gingivalis inoculation. Low-level laser irradiation (810 nm, 0.1 W, 398 mW/cm2, 4 J/cm2, 10 s) was applied locally around the periodontal lesions every 3 days for 2 consecutive weeks. Micro-CT and hematoxylin-eosin (HE) stain was analyzed for periodontal soft tissue and alveolar bone. Western blots, immunohistochemistry, and immunofluorescence staining were used to evaluate the protein expression changes on SASP and GLUT1/mTOR pathway. The expression of aging-related factors and SASP including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 were reduced in periodontal tissue of diabetic mice. The inhibitory effect of LLLT on GLUT1/mTOR pathway was observed by detecting the related factors mTOR, p-mTOR, GLUT1, and PKM2. COX, an intracytoplasmic photoreceptor, is a key component of the anti-inflammatory effects of LLLT. After LLLT treatment a significant increase in COX was observed in macrophages in the periodontal lesion. Our findings suggest that LLLT may regulate chronic low-grade inflammation by modulating the GLUT1/mTOR senescence-related pathway, thereby offering a potential treatment for diabetic periodontal diseases.


Subject(s)
Diabetes Mellitus, Experimental , Low-Level Light Therapy , Periodontitis , Animals , Mice , Glucose Transporter Type 1 , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/radiotherapy , Inflammation/radiotherapy , Interleukin-1beta , Periodontitis/radiotherapy
19.
Phytomedicine ; 124: 155305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176275

ABSTRACT

BACKGROUND: Hyperuricemia (HUA) is a metabolic disease characterized by a high level of uric acid (UA). The extensive historical application of traditional Chinese medicine (TCM) offers a range of herbs and prescriptions used for the treatment of HUA-related disorders. However, the core herbs in the prescriptions and their mechanisms have not been sufficiently explained. PURPOSE: Our current investigation aimed to estimate the anti-HUA effect and mechanisms of Paeonia veitchii Lynch, an herb with high use frequency identified from data mining of TCM prescriptions. METHODS: Prescriptions for HUA/gout treatment were statistically analyzed through a data mining approach to determine the common nature and use frequency of their composition herbs. The chemical constituents of Paeonia veitchii extract (PVE) were analyzed by UPLC-QTOF-MS/MS, while its UA-lowering effect was further evaluated in adenosine-induced liver cells and potassium oxonate (PO) and hypoxanthine (HX)-induced HUA mice. RESULTS: A total of 225 prescriptions involving 246 herbs were sorted out. The properties, flavors and meridians of the appearing herbs were mainly cold, bitter and liver, respectively, while their efficacy was primarily concentrated on clearing heat and dispelling wind. Further usage frequency analysis yielded the top 20 most commonly used herbs, in which PVE presented significant inhibitory activity (IC50 = 131.33 µg/ml) against xanthine oxidase (XOD), and its constituents showed strong binding with XOD in a molecular docking study and further were experimentally validated through XOD enzymatic inhibition and surface plasmon resonance (SPR). PVE (50 to 200 µg/ml) dose-dependently decreased UA levels by inhibiting XOD expression and activity in BRL 3A liver cells. In HUA mice, oral administration of PVE exhibited a significant UA-lowering effect, which was attributed to the reduction of UA production by inhibiting XOD activity and expression, as well as the enhancement of UA excretion by regulating renal urate transporters (URAT1, GLUT9, OAT1 and ABCG2). Noticeably, all doses of PVE treatment did not cause any liver injury, and displayed a renal protective effect. CONCLUSIONS: Our results first comprehensively clarified the therapeutic effect and mechanisms of PVE against HUA through suppressing UA production and promoting UA excretion with hepatic and renal protection, suggesting that PVE could be a promising UA-lowering candidate with a desirable safety profile for the treatment of HUA and prevention of gout.


Subject(s)
Gout , Hyperuricemia , Paeonia , Mice , Animals , Hyperuricemia/chemically induced , Uric Acid/metabolism , Xanthine Oxidase/metabolism , Molecular Docking Simulation , Tandem Mass Spectrometry , Kidney
20.
Nutrients ; 16(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257077

ABSTRACT

Hyperuricemia (HUA) is a prevalent chronic disease, characterized by excessive blood uric acid levels, that poses a significant health risk. In this study, the preventive effects and potential mechanisms of ethanol extracts from Chinese sumac (Rhus chinensis Mill.) fruits on HUA and uric acid nephropathy were comprehensively investigated. The results demonstrated a significant reduction in uric acid levels in hyperuricemia mice after treatment with Chinese sumac fruit extract, especially in the high-dose group, where the blood uric acid level decreased by 39.56%. Visual diagrams of the kidneys and hematoxylin and eosin (H&E)-stained sections showed the extract's effectiveness in protecting against kidney damage caused by excessive uric acid. Further investigation into its mechanism revealed that the extract prevents and treats hyperuricemia by decreasing uric acid production, enhancing uric acid excretion, and mitigating the oxidative stress and inflammatory reactions induced by excessive uric acid in the kidneys. Specifically, the extract markedly decreased xanthine oxidase (XOD) levels and expression in the liver, elevated the expression of uric acid transporters ABCG2, and lowered the expression of uric acid reabsorption proteins URAT1 and SLC2A9. Simultaneously, it significantly elevated the levels of endogenous antioxidant enzymes (SOD and GSH) while reducing the level of malondialdehyde (MDA). Furthermore, the expression of uric-acid-related proteins NLRP3, ACS, and Caspase-3 and the levels of IL-1ß and IL-6 were significantly reduced. The experimental results confirm that Chinese sumac fruit extract can improve HUA and uric acid nephropathy in mice fed a high-purine yeast diet. This finding establishes a theoretical foundation for developing Chinese sumac fruit as a functional food or medicine for preventing and treating HUA.


Subject(s)
Ailanthus , Hyperuricemia , Kidney Diseases , Rhus , Animals , Mice , Saccharomyces cerevisiae , Fruit , Uric Acid , Hyperuricemia/chemically induced , Hyperuricemia/prevention & control , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Plant Extracts/pharmacology , Diet
SELECTION OF CITATIONS
SEARCH DETAIL