Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Sci Rep ; 14(1): 5502, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448471

ABSTRACT

Phytoremediation is a cost-effective and environmentally friendly method, offering a suitable alternative to chemical and physical approaches for the removal of pollutants from soil. This research explored the phytoremediation potential of Alhagi camelorum, a plant species, for total petroleum hydrocarbons (TPHs) and heavy metals (HMs), specifically lead (Pb), chromium (Cr), nickel (Ni), and cadmium (Cd), in oil-contaminated soil. A field-scale study spanning six months was conducted, involving the cultivation of A. camelorum seeds in a nursery and subsequent transplantation of seedlings onto prepared soil plots. Control plots, devoid of any plants, were also incorporated for comparison. Soil samples were analyzed throughout the study period using inductively coupled plasma-optical emission spectroscopy (ICP‒OES) for HMs and gas chromatography‒mass spectrometry (GC‒MS) for TPHs. The results showed that after six months, the average removal percentage was 53.6 ± 2.8% for TPHs and varying percentages observed for the HMs (Pb: 50 ± 2.1%, Cr: 47.6 ± 2.5%, Ni: 48.1 ± 1.6%, and Cd: 45.4 ± 3.5%). The upward trajectory in the population of heterotrophic bacteria and the level of microbial respiration, in contrast to the control plots, suggests that the presence of the plant plays a significant role in promoting soil microbial growth (P < 0.05). Moreover, kinetic rate models were examined to assess the rate of pollutant removal. The coefficient of determination consistently aligned with the first-order kinetic rate model for all the mentioned pollutants (R2 > 0.8). These results collectively suggest that phytoremediation employing A. camelorum can effectively reduce pollutants in oil-contaminated soils.


Subject(s)
Environmental Pollutants , Fabaceae , Petroleum , Cadmium , Biodegradation, Environmental , Lead , Chromium , Nickel , Soil
2.
J Hazard Mater ; 468: 133813, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38402679

ABSTRACT

This systematic review addresses soil contamination by crude oil, a pressing global environmental issue, by exploring effective treatment strategies for sites co-contaminated with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Our study aims to answer pivotal research questions: (1) What are the interaction mechanisms between heavy metals and PAHs in contaminated soils, and how do these affect the efficacy of different remediation methods? (2) What are the challenges and limitations of combined remediation techniques for co-contaminated soils compared to single-treatment methods in terms of efficiency, stability, and specificity? (3) How do various factors influence the effectiveness of biological, chemical, and physical remediation methods, both individually and combined, in co-contaminated soils, and what role do specific agents play in the degradation, immobilization, or removal of heavy metals and PAHs under diverse environmental conditions? (4) Do AI-powered search tools offer a superior alternative to conventional search methodologies for executing an exhaustive systematic review? Utilizing big-data analytics and AI tools such as Litmaps.co, ResearchRabbit, and MAXQDA, this study conducts a thorough analysis of remediation techniques for soils co-contaminated with heavy metals and PAHs. It emphasizes the significance of cation-π interactions and soil composition in dictating the solubility and behavior of these pollutants. The study pays particular attention to the interplay between heavy metals and PAH solubility, as well as the impact of soil properties like clay type and organic matter on heavy metal adsorption, which results in nonlinear sorption patterns. The research identifies a growing trend towards employing combined remediation techniques, especially biological strategies like biostimulation-bioaugmentation, noting their effectiveness in laboratory settings, albeit with potentially higher costs in field applications. Plants such as Medicago sativa L. and Solanum nigrum L. are highlighted for their effectiveness in phytoremediation, working synergistically with beneficial microbes to decompose contaminants. Furthermore, the study illustrates that the incorporation of biochar and surfactants, along with chelating agents like EDTA, can significantly enhance treatment efficiency. However, the research acknowledges that varying environmental conditions necessitate site-specific adaptations in remediation strategies. Life Cycle Assessment (LCA) findings indicate that while high-energy methods like Steam Enhanced Extraction and Thermal Resistivity - ERH are effective, they also entail substantial environmental and financial costs. Conversely, Natural Attenuation, despite being a low-impact and cost-effective option, may require prolonged monitoring. The study advocates for an integrative approach to soil remediation, one that harmoniously balances environmental sustainability, cost-effectiveness, and the specific requirements of contaminated sites. It underscores the necessity of a holistic strategy that combines various remediation methods, tailored to meet both regulatory compliance and the long-term sustainability of decontamination efforts.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/metabolism , Metals, Heavy/analysis , Biodegradation, Environmental , Soil/chemistry , Artificial Intelligence
3.
Sci Total Environ ; 918: 170544, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38309367

ABSTRACT

Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene). While both compounds are cardiotoxic, P0 impacts embryonic cardiac function and development through direct blockade of K+ and Ca2+ currents that regulate cardiomyocyte contractions. In contrast, 1-M,7-IP dysregulates aryl hydrocarbon receptor (AHR) activation in developing ventricular cardiomyocytes. Although no other compounds have been assessed in detail across the larger family of alkylated phenanthrenes, increasing alkylation might be expected to shift phenanthrene family member activity from K+/Ca2+ ion current blockade to AHR activation. Using embryos of two distantly related fish species, zebrafish and Atlantic haddock, we tested 14 alkyl-phenanthrenes in both acute and latent developmental cardiotoxicity assays. All compounds were cardiotoxic, and effects were resolved into impacts on multiple, highly specific aspects of heart development or function. Craniofacial defects were clearly linked to developmental cardiotoxicity. Based on these findings, we suggest a novel framework to delineate the developmental toxicity of petrogenic PAC mixtures in fish, which incorporates multi-mechanistic pathways that produce interactive synergism at the organ level. In addition, relationships among measured embryo tissue concentrations, cytochrome P4501A mRNA induction, and cardiotoxic responses suggest a two-compartment toxicokinetic model that independently predicts high potency of PAC mixtures through classical metabolic synergism. These two modes of synergism, specific to the sub-fraction of phenanthrenes, are sufficient to explain the high embryotoxic potency of crude oils, independent of as-yet unmeasured compounds in these complex environmental mixtures.


Subject(s)
Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Animals , Zebrafish , Cardiotoxicity , Phenanthrenes/toxicity , Structure-Activity Relationship , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity
4.
Environ Sci Pollut Res Int ; 31(15): 22759-22773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409383

ABSTRACT

Petroleum hydrocarbon (PHC) contamination is a widespread and severe environmental issue affecting many countries' resource sectors. PHCs are mixtures of hydrocarbon compounds with varying molar masses that naturally attenuate at different rates. Lighter fractions attenuate first, followed by medium-molar-mass constituents, while larger molecules remain for longer periods. This results in significant regulatory challenges concerning residual hydrocarbons in long-term contaminated soils. This study examined the potential risks associated with residual PHC and its implications for risk-based management of heavily contaminated soils (23,000-26,000 mg PHC/kg). Ecotoxicological properties, such as seedling emergence and growth of two native plant species-small Flinders grass (Iseilema membranaceum) and ruby saltbush (Enchylaena tomentosa)-and earthworm survival tests in PHC-contaminated soils, were assessed. Additionally, the effects of aging on the attenuation of PHC in contaminated soils were evaluated. Toxicity responses of plant growth parameters were determined as no-observed-effect concentrations: 75%-100% for seedling emergence, < 25%-75% for plant shoot height, and 75%-100% for earthworm survival. After 42 weeks of aging, the total PHC levels in weathered soils decreased by 14% to 30% and by 67% in diesel-spiked soil due to natural attenuation. Dehydrogenase enzyme activity in soils increased during the initial aging period. Furthermore, a clear shift of bacterial communities was observed in the soils following aging, including enrichment of PHC-resistant and -utilizing bacteria-for example, Nocardia sp. This study underscores the potential of natural attenuation for eco-friendly and cost-effective soil management, underlining that its success depends on site-specific factors like water content and nutrient availability. Therefore, we recommend detailed soil assessments to evaluate these conditions prior to adopting a risk-based management approach.


Subject(s)
Petroleum , Soil Pollutants , Soil Pollutants/analysis , Hydrocarbons/analysis , Environmental Pollution , Soil , Environmental Monitoring/methods , Petroleum/analysis , Bacteria , Biodegradation, Environmental , Soil Microbiology
5.
Environ Pollut ; 342: 122893, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37952924

ABSTRACT

Petroleum-impacted soils pose several hazards and require fast, effective, and versatile remediation techniques. Electron beam irradiation provides a novel means of heating soil and inducing non-equilibrium chemical reactions and has previously been applied to environmental remediation. In this work a scalable process for remediation of petroleum-impacted soils using a 100 kW, 3 MeV industrial electron beam is investigated. The process involves conveying impacted soil through a beam at a controllable rate to achieve a desired dose of approximately 1000 kGy. Reductions to less than 1% Total Petroleum Hydrocarbon (TPH) content from an initial TPH of 3.3% were demonstrated for doses of 710-1370 kGy. These reductions were achieved in in conditions equivalent to 4 m3 per hour, demonstrating the applicability of this technique to remediation sites. TPH reduction appeared to be temperature-dependent but not heavily dependent on dose rate, with reductions of 96% achieved for a dose of 1370 kGy and peak temperature of 540 °C. The performance of the process at high dose rates suggests that it can be incorporated into remediation of sites for which a high rate of material processing is required with a relatively small device footprint.


Subject(s)
Environmental Restoration and Remediation , Petroleum , Soil Pollutants , Soil/chemistry , Electrons , Soil Pollutants/analysis , Hydrocarbons/chemistry , Soil Microbiology , Biodegradation, Environmental
6.
Environ Sci Pollut Res Int ; 30(48): 104933-104957, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37718363

ABSTRACT

The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Petroleum/analysis , Soil Pollutants/analysis , Hydrocarbons/metabolism , Petroleum Pollution/analysis , Soil , Polycyclic Aromatic Hydrocarbons/analysis , Soil Microbiology , Fungi/metabolism , Mixed Function Oxygenases/metabolism
7.
Environ Monit Assess ; 195(10): 1203, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37702824

ABSTRACT

The spatial distribution of total petroleum hydrocarbons (TPH) were analysed in the seawater and sediment samples collected from 27 locations along the Southeast coast of India. A first-time assessment was carried out on the distribution of TPH in both water and sediments for the entire coastline of Tamil Nadu. The concentration of TPH in seawater showed large spatial variation ranging from below detection level (BDL) to 47.5 µg/L and 0.01 to 53.12 µg/L in the surface and bottom waters, respectively. TPH levels exceeded the regulatory limits specified by FAO, China's Marine Monitoring Standards and the European Community in the seawater samples of Thoothukudi harbour (S2 station). The results showed that seawaters of southern stations were comparatively more polluted with TPH. TPH values in sediment were between 2.33 and 30.07 µg/g, and their levels remained below the Marine Sediment Quality Standard (500 µg/g). The spatial profile of TPH in sediments were contrasting to that observed for seawater. Higher TPH values were observed in sediments of the northern region than southern. TPH contents are strongly correlated with clay (R2 = 0.776; P < 0.001) and silt (R2 = 0.648; P < 0.001); conversely, there is a significant negative correlation between TPH and sand (R2 = 0.753; P < 0.001). ANOVA analysis demonstrated a significant difference (F = 11.75; p < 0.01) between the TPH concentrations of water and sediments. Non-metric multidimensional scaling (nMDS) was performed to determine the similarity among sampling stations that formed five crusted groups. Sediment along the southeast coast can be categorised as slightly polluted with respect to TPH as per the ATSDR standards.


Subject(s)
Environmental Monitoring , Petroleum , India , Seawater , Water , Hydrocarbons
8.
J Environ Manage ; 347: 119058, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37757689

ABSTRACT

Soil and groundwater contamination caused by petroleum hydrocarbons is a severe environmental problem. In this study, a novel electrolyzed catalytic system (ECS) was developed to produce nanobubble-contained electrolyzed catalytic (NEC) water for the remediation of petroleum-hydrocarbon-contaminated soils and groundwater. The developed ECS applied high voltage (220 V) with direct current, and titanium electrodes coated with iridium dioxide were used in the system. The developed ECS prototype contained 21 electrode pairs (with a current density of 20 mA/cm2), which were connected in series to significantly enhance the hydroxyl radical production rate. Iron-copper hybrid oxide catalysts were laid between each electrode pair to improve the radical generation efficiency. The electron paramagnetic resonance (EPR) and Rhodamine B (RhB) methods were applied for the generated radical species and concentration determination. During the operation of the ECS, high concentrations of nanobubbles (nanobubble density = 3.7 × 109 particles/mL) were produced due to the occurrence of the cavitation mechanism. Because of the negative zeta potential and nano-scale characteristics of nanobubbles (mean diameter = 28 nm), the repelling force would prevent the occurrence of bubble aggregations and extend their lifetime in NEC water. The radicals produced after the bursting of the nanobubbles would be beneficial for the increase of the radical concentration and subsequent petroleum hydrocarbon oxidation. The highly oxidized NEC water (oxidation-reduction potential = 887 mV) could be produced with a radical concentration of 9.5 × 10-9 M. In the pilot-scale study, the prototype system was applied to clean up petroleum-hydrocarbon polluted soils at a diesel-oil spill site via an on-site slurry-phase soil washing process. The total petroleum hydrocarbon (TPH)-contaminated soils were excavated and treated with the NEC water in a slurry-phase reactor. Results show that up to 74.4% of TPH (initial concentration = 2846 mg/kg) could be removed from soils after four rounds of NEC water treatment (soil and NEC water ratio for each batch = 10 kg: 40 L and reaction time = 10 min). Within the petroleum-hydrocarbon plume, one remediation well (RW) and two monitor wells (located 1 m and 3 m downgradient of the RW) were installed along the groundwater flow direction. The produced NEC water was injected into the RW and the TPH concentrations in groundwater (initial concentrations = 12.3-15.2 mg/L) were assessed in these three wells. Compared to the control well, TPH concentrations in RW and MW1 dropped to below 0.4 and 2.1 mg/L after 6 m3 of NEC water injection in RW, respectively. Results from the pilot-scale study indicate that the NEC water could effectively remediate TPH-contaminated soils and groundwater without secondary pollution production. The main treatment mechanisms included (1) in situ chemical oxidation via produced radicals, (2) desorption of petroleum hydrocarbons from soil particles due to the dispersion of nanobubbles into soil pores, and (3) enhanced TPH oxidation due to produced radicals and energy after nanobubble bursting.


Subject(s)
Groundwater , Petroleum , Soil Pollutants , Environmental Pollution , Hydrocarbons , Soil , Soil Pollutants/analysis , Biodegradation, Environmental , Soil Microbiology
9.
Environ Res ; 238(Pt 1): 117136, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37717802

ABSTRACT

Canada has extensive petroleum hydrocarbon (PHC) contamination in northern areas and the boreal forest region from historical oil and gas activities. Since the 2013 standardization of boreal forest species for plant toxicity testing in Canada, there has been a need to build the primary literature of the toxicity of weathered PHCs to these species. A series of toxicity experiments were carried out using fine-grained (<0.005-0.425 mm) background (100 total mg/kg total PHCs) and weathered contaminated soil (11,900 mg/kg total PHCs) collected from a contaminated site in northern Ontario, Canada. The PHC mixture in the contaminated site soil was characterized through Canadian Council of Ministers of the Environment Fractions, as indicated by the number equivalent normal straight-chain hydrocarbons (nC). The soil was highly contaminated with Fraction 2 (>nC10 to nC16) at 4790 mg/kg and Fraction 3 (>nC16 to nC34) at 4960 mg/kg. Five plant species (Elymus trachycaulus, Achillea millefolium, Picea mariana, Salix bebbiana, and Alnus viridis) were grown from seed in 0%, 25%, 50%, 75%, and 100% relative contamination mixtures of the PHC-contaminated and background soil from the site over 2-6 weeks. All five species showed significant inhibition in shoot length, shoot weight, root length, and/or root weight (Kruskal-Wallis Tests: p < 0.05, df = 4.0). Measurements of 25% inhibitory concentrations (IC25) following PHC toxicity experiments revealed that S. bebbiana was most significantly impaired by the PHC-contaminated soil (410-990 mg/kg total PHCs), where it showed <35% germination. This study indicates that natural weathering of Fraction 2- and Fraction 3-concentrated soil did not eliminate phytotoxicity to boreal plant species. Furthermore, it builds on the limited existing literature for toxicity of PHCs on boreal plants and supports site remediation to existing Canadian provincial PHC guidelines.


Subject(s)
Petroleum , Soil Pollutants , Soil , Petroleum/toxicity , Hydrocarbons/toxicity , Plants , Ontario , Soil Pollutants/analysis , Biodegradation, Environmental
10.
Environ Pollut ; 337: 122566, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37717897

ABSTRACT

Surfactant-enhanced multiphase extraction is recognized as an effective method to remove petroleum related contaminants from soil. Owing to the high biodegradability and low biotoxicity, plant-derived surfactants are considered as promising alternatives to synthetic surfactants. In this study, two plant surfactants were respectively extracted from Sapindus mukorossi (PS-1) and Fructus Gleditsiae sinensis (PS-2). Component analysis and chemical structure characterization indicated that triterpenoid saponins were the main components of both plant surfactants. The removal efficiency of tetradecane by PS-1 and PS-2 was 75.6% and 62.2%, respectively, which was comparable with that by Tween-80. The results were validated by column leaching experiments. The abundant hydroxyl, aldehyde and epoxy groups in the plant surfactants made them readily self-assemble to form micelles via hydrogen bonding and van der Waals interactions, which promoted the solubilization of tetradecane in the liquid phase, particularly at appropriate ionic strength and temperature. Due to the reduced electrostatic attraction by the acidic and ionizable functional groups in the plant surfactants, their sorption capacities (0.15 and 0.24 g1-n Ln·kg-1 for PS-1 and PS-2, respectively) onto the soil were much lower than that of Tween-80, making them much easier to be extracted from contaminated soil. This study would deepen our understanding to improve the performances of plant surfactants in petroleum hydrocarbons-contaminated soil remediation.


Subject(s)
Petroleum , Soil Pollutants , Surface-Active Agents/chemistry , Polysorbates , Petroleum/analysis , Soil , Hydrocarbons , Soil Pollutants/analysis , Biodegradation, Environmental
11.
Environ Sci Pollut Res Int ; 30(41): 94649-94668, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37535290

ABSTRACT

Hydrocarbonoclastic bacterial strains were isolated from rhizosphere of plants growing in crude oil-contaminated sites of Assam, India. These bacteria showed plant growth-promoting attributes, even when exposed to crude oil. Two independent pot trials were conducted to test the rhizodegradation ability of the bacterial consortium in combination of plants Azadirchta indica or Delonix regia in crude oil-contaminated soil. Field experiments were conducted at two crude oil-contaminated agricultural field at Assam (India), where plants (A. indica or D. regia) were grown with the selected bacterial consortium consisting of five hydrocarbonoclastic bacterial isolates (Gordonia amicalis BB-DAC, Pseudomonas aeruginosa BB-BE3, P. citronellolis BB-NA1, Rhodococcus ruber BB-VND, and Ochrobactrum anthropi BB-NM2), and NPK was added to the soil for biostimulation. The bacterial consortium-NPK biostimulation led to change in rhizosphere microbiome with enhanced degradation of petroleum hydrocarbons (PHs) in soils contaminated with crude oil. After 120 days of planting A. indica + consortium + NPK treatment, degradation of PHs was found to be up to 67%, which was 55% with D. regia with the same treatment. Significant changes in the activities of plant and soil enzymes were also noted. The shift is bacterial community was also apparent as with A. indica, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria increased by 35.35%, 26.59%, and 20.98%, respectively. In the case of D. regia, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria were increased by 39.28%, 35.79%, and 9.60%, respectively. The predicted gene functions shifted in favor of the breakdown of xenobiotic compounds. This study suggests that a combination of plant-bacterial consortium and NPK biostimulation could be a productive approach to bioengineering the rhizosphere microbiome for the purpose of commercial bioremediation of crude oil-contaminated sites, which is a major environmental issue faced globally.


Subject(s)
Microbiota , Petroleum , Soil Pollutants , Soil , Soil Pollutants/analysis , Petroleum/metabolism , Hydrocarbons/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Soil Microbiology
12.
J Hazard Mater ; 458: 131961, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37393827

ABSTRACT

The environmental release of noxious petroleum hydrocarbons (PHCs) from the petroleum refining industries is an intractable global challenge. Indigenous PHCs degrading microbes produce insufficient yield of amphiphilic biomolecules with trivial efficiency makes the bioremediation process ineffective. In this concern, the present study is focused on the production of high yield multi-functional amphiphilic biomolecule through the genetic modification of Enterobacter xiangfangensis STP-3 strain using Ethyl methane sulphonate (EMS) induced mutagenesis. Mutant M9E.xiangfangensis showed 2.32-fold increased yield of bioamphiphile than wild-type strain. Novel bioamphiphile produced by M9E.xiangfangensis exhibited improved surface and emulsification activities which ensure the maximum degradation of petroleum oil sludge (POS) by 86% than wild-type (72%). SARA, FT-IR, and GC-MS analyses confirmed the expedited degradation of POS and ICP-MS analysis indicated the enhanced removal of heavy metals in connection with the ample production of functionally improved bioamphiphile. FT-IR NMR, MALDI-TOF, GC-MS and LC-MS/MS analyses portrayed the lipoprotein nature of bioamphiphile comprising pentameric fatty acid moiety conjugated with the catalytic esterase moiety. Further, homology modelling and molecular docking revealed the stronger interaction of hydrophobic amino acids, leucine and isoleucine with the PHCs in the case of wild-type esterase moiety, whereas in the mutant, aromatic amino acids were majorly interacted with the long chain and branched chain alkanes, thereby exhibited better efficiency. This is the first report on the adoption of EMS induced mutagenesis strategy to ameliorate the amphiphilic biomolecules for their sustainable applications in diverse biotechnological, environmental and industrial arenas.


Subject(s)
Petroleum , Sewage , Biodegradation, Environmental , Spectroscopy, Fourier Transform Infrared , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry , Hydrocarbons/metabolism , Alkanes , Petroleum/metabolism , Methane
13.
J Hazard Mater ; 457: 131795, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37301070

ABSTRACT

Biofilm-forming marine bacterium Pseudomonas furukawaii PPS-19 showed strong hydrophobicity under different physicochemical stressors, such as pH and salinity. Strong aggregation of P. furukawaii PPS-19 was observed at hydrophobic interfaces of n-dodecane and crude oil, while uptake of pyrene resulted in blue fluorescence of the bacterium. Changes in biofilm microcolonies were observed under different physicochemical stressors with maximum biofilm thickness of 15.15 µm and 15.77 µm at pH 7% and 1% salinity, respectively. Relative expression analysis of alkB2 gene revealed the maximum expression in n-dodecane (10.5 fold) at pH 7 (1 fold) and 1% salinity (8.3 fold). During the degradation process, a significant drop in surface tension resulted in increased emulsification activity. P. furukawaii PPS-19 showed the respective n-dodecane and pyrene degradation of 94.3% and 81.5% at pH 7% and 94.5% and 83% at 1% salinity. A significant positive correlation was obtained between cell surface hydrophobicity (CSH), biofilm formation, and PHs degradation (P < 0.05) under all the physicochemical stressors, with the highest value at pH 7% and 1% salinity. Analysis of metabolites indicated that mono-terminal oxidation and multiple pathways were followed for n-dodecane and pyrene biodegradation, respectively. Thus, P. furukawaii PPS-19 is an efficient hydrocarbonoclastic bacterium that may be exploited for large-scale oil pollution abatement.


Subject(s)
Petroleum Pollution , Petroleum , Petroleum/metabolism , Hydrocarbons/metabolism , Biodegradation, Environmental , Biofilms , Bacteria/metabolism , Pyrenes , Hydrophobic and Hydrophilic Interactions
14.
Environ Pollut ; 332: 121963, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37286027

ABSTRACT

The risks posed by petroleum spills to coral reefs are poorly understood and quantifying acute toxicity thresholds for aromatic hydrocarbons to reef-building corals is required to assess their sensitivity relative to other taxa. In this study, we exposed Acropora millepora to toluene, naphthalene and 1-methylnaphthalene (1-MN) in a flow-through system and assessed survivorship and sublethal responses including growth, colour and the photosynthetic performance of symbionts. Median 50% lethal concentrations (LC50s) decreased over the 7-d exposure period, reaching asymptotic values of 22,921, 5,268, 1167 µg L-1 for toluene, naphthalene and 1-MN, respectively. Corresponding toxicokinetic parameters (εLC50) defining the time progression of toxicity were 0.830, 0.692, and 0.256 d-1, respectively. Latent effects after an additional 7-d recovery in uncontaminated seawater were not observed. Effect concentrations (EC50s) for 50% growth inhibition were 1.9- to 3.6-fold lower than the LC50s for each aromatic hydrocarbon. There were no observed effects of aromatic hydrocarbon exposure on colour score (a proxy for bleaching) or photosynthetic efficiency. Acute and chronic critical target lipid body burdens (CTLBBs) of 70.3 ± 16.3 and 13.6 ± 18.4 µmol g-1 octanol (± standard error) were calculated for survival and growth inhibition based on 7-d LC50 and EC10 values, respectively. These species-specific constants indicate adult A. millepora is more sensitive than other corals reported so far but is of average sensitivity in comparison with other aquatic taxa in the target lipid model database. These results advance our understanding of acute hazards of petroleum contaminants to key habitat-building tropical coral reef species.


Subject(s)
Anthozoa , Petroleum , Animals , Anthozoa/physiology , Naphthalenes/toxicity , Toluene , Petroleum/toxicity , Lipids
15.
Chemosphere ; 337: 139332, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37364638

ABSTRACT

The long-term remediation performance under the natural conditions is required to establish the appropriate remediation strategy for contaminated soil. The objective of this study was to compare the long-term remediation efficiency of biostimulation and phytoextraction in contaminated soil containing petroleum hydrocarbons (PHs) and heavy metals. Two types of contaminated soil (soil contaminated with diesel only and co-contaminated with diesel and heavy metals) were prepared. For the biostimulation treatments, the soil was amended with compost, whereas maize, a representative phytoremediation plant, was cultivated for the phytoextraction treatments. There was no significant difference in remediation performance of biostimulation and phytoextraction in the diesel-contaminated soil, in which the maximum total petroleum hydrocarbon (TPH) removability was 94-96% (p < 0.05). However, phytoextraction exhibited the higher removability for TPH and heavy metals than biostimulation in the co-contaminated soil. There was no considerable change in the TPH removal in biostimulation (16-25%), while phytoextraction showed a 75% of TPH removal rate in the co-contaminated soil. Additionally, no significant changes were observed in heavy metals concentration of biostimulation, whereas the removability of heavy metals was 33-63% in phytoextraction. Meanwhile, maize, which is a suitable plant for phytoextraction, showed a translocation factor (translocating efficiency from roots to shoots) value of >1. Correlation analysis revealed that soil properties (pH, water content, and organic content) negatively correlated with pollutants removal. Additionally, the soil bacterial communities were changed over the investigated period, and the types of pollutants exerted a significant influence on the bacterial community dynamics. This study performed a pilot-scale comparison of two types of biological remediation technologies under natural environmental conditions and provided information on changes in the bacterial community structures. This study can be useful for establishing appropriate biological remediation methods to restore soil contaminated with PHs and heavy metals.


Subject(s)
Environmental Pollutants , Metals, Heavy , Petroleum , Soil Pollutants , Soil/chemistry , Biodegradation, Environmental , Metals, Heavy/analysis , Petroleum/analysis , Environmental Pollutants/analysis , Soil Pollutants/analysis , Soil Microbiology , Hydrocarbons/analysis
16.
Environ Sci Technol ; 57(25): 9266-9276, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37267462

ABSTRACT

Due to the sudden nature of oil spills, few controlled studies have documented how oil weathers immediately following accidental release into a natural lake environment. Here, we evaluated the weathering patterns of Cold Lake Winter Blend, a diluted bitumen (dilbit) product, by performing a series of controlled spills into limnocorrals installed in a freshwater lake in Northern Ontario, Canada. Using a regression-based design, we added seven different dilbit volumes, ranging from 1.5 to 180 L, resulting in oil-to-water ratios between 1:71,000 (v/v) and 1:500 (v/v). We monitored changes in the composition of various petroleum hydrocarbons (PHCs), including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and oil biomarkers in dilbit over time, as it naturally weathered for 70 days. Depletion rate constants (kD) of n-alkanes and PAHs ranged from 0.0009 to 0.41 d-1 and 0.0008 to 0.38 d-1, respectively. There was no significant relationship between kD and spill volume, suggesting that spill size did not influence the depletion of petroleum hydrocarbons from the slick. Diagnostic ratios calculated from concentrations of n-alkanes, isoprenoids, and PAHs indicated that evaporation and photooxidation were major processes contributing to dilbit weathering, whereas dissolution and biodegradation were less important. These results demonstrate the usefulness of large scale field studies carried out under realistic environmental conditions to elucidate the role of different weathering processes following a dilbit spill.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Hydrocarbons/chemistry , Lakes/chemistry , Alkanes , Ontario , Water Pollutants, Chemical/analysis
17.
Int J Phytoremediation ; 25(14): 1881-1889, 2023.
Article in English | MEDLINE | ID: mdl-37125609

ABSTRACT

The petroleum industry is often faced with accidental spills and discharges that pollute valuable natural resources such as soil. The purpose of this study was to assess bioremediation potential of an on-site landfarming unit (LU), a highly economical solution that complies with the zero-waste policy, for bioremediation of the contaminated soil after an actual diesel fuel leakage in a fuel depot. The first aim was to evaluate the effects of different climates on hydrocarbon bioremediation. For this reason, a part of the contaminated soil was moved from the initial location with a sub-Mediterranean climate to an LU at another location with a temperate continental climate. Our results demonstrated that remediation in sub-Mediterranean climate is less effective than the remediation in a temperate continental climate. The second aim of this study was to evaluate the effect of different plant species on the microbial population during bioremediation. For that purpose, 365-day monitoring of phospholipid fatty acids (PLFA) was performed. Our results support the hypothesis that plant-assisted bioremediation can diminish toxic effects of diesel-polluted soil and that the changes in plant species during bioremediation cause changes in the microbial population.


The main objective of this study was to implement a landfarming bioremediation technique after an actual diesel fuel pollution in the sub-Mediterranean climate and diminish toxic effects of pollutants in soil. Since soil bioremediation is performed by soil microorganisms, their communities are primarily affected by the growing vegetation and climatic conditions. For future bioremediation strategies or ex situ approaches, it is crucial to assess the influence of a specific climate on the degradation rate of hydrocarbons in soil and select the most efficient plant species for this purpose.


Subject(s)
Petroleum , Soil Pollutants , Gasoline , Biodegradation, Environmental , Soil Pollutants/analysis , Soil Microbiology , Hydrocarbons , Soil
18.
Chemosphere ; 331: 138732, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37127201

ABSTRACT

Plant-growth-promoting rhizobacteria (PGPR) have received increasing attention for assisting phytoremediation. However, the effect of PGPR on total petroleum hydrocarbon (TPH) degradation and plant growth promotion and its underlying mechanism is not well understood. In this study, phenotypic analysis and whole genome sequencing were conducted to comprehensively characterize a newly isolated rhizobacterium strain S4, which was identified as Acinetobacter oleivorans, from a TPH-contaminated soil. The strain degraded 62.5% of initially spiked diesel (1%) in minimal media within six days and utilized n-alkanes with a wide range of chain length (i.e., C12 to C40). In addition, the strain showed phenotypic traits beneficial to plant growth, including siderophore production, indole-3-acetic acid synthesis and phosphate solubilization. Potential metabolic pathways and genes encoding proteins responsible for the phenotypic traits were identified. In a real TPH-contaminated soil, inoculation of Acinetobacter oleivorans S4 significantly enhanced the growth of tall fescue relative to the soil without inoculation. In contrast, inoculation of Bacillus sp. Z7, a hydrocarbon-degrading strain, showed a negligible effect on the growth of tall fescue. The removal efficiency of TPH with inoculation of Acinetobacter oleivorans S4 was significantly higher than those without inoculation or inoculation of Bacillus sp. Z7. These results suggested that traits of PGPR beneficial to plant growth are critical to assist phytoremediation. Furthermore, heavy metal resistance genes and benzoate and phenol degradation genes were found in the genome of Acinetobacter oleivorans S4, suggesting its application potential in broad scenarios.


Subject(s)
Acinetobacter , Bacillus , Festuca , Petroleum , Soil Pollutants , Hydrocarbons/metabolism , Acinetobacter/genetics , Acinetobacter/metabolism , Petroleum/metabolism , Soil/chemistry , Festuca/metabolism , Bacillus/metabolism , Biodegradation, Environmental , Soil Pollutants/metabolism , Soil Microbiology
19.
Environ Res ; 229: 115976, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37094651

ABSTRACT

Petroleum hydrocarbons (PHCs) are recognized as one of the major soil contaminants causing negative environmental impact. Thereby, PHCs remediation from the soil is essential. Hence, this experimental study aimed to assess the potential of thermal water vapor and air plasmas to remediate soil contaminated with habitually used PHCs - diesel. The impact of contaminant content in the soil on the remediation process also was estimated. The results of this research demonstrated that 99.9% contaminant removal efficiency was received proceeding diesel contaminated soil remediation in the environment of the thermal plasma in defiance of whether water vapor or air was employed as a plasma-forming gas. Moreover, the soil's contaminant content (80-160 g/kg) did not influence its' removal efficiency. The soil de-pollution process also caused the decomposition of the soils' natural carbon reserves since carbon content decreased from an initial 9.8 wt% in the clean soil to 3-6 wt% in the remediated soil. Furthermore, PHCs - diesel was decomposed into producer gas mainly consisting of H2, CO (also known as synthesis gas) and CO2. Thus, the thermal plasma offers a way not only to de-pollute the soil but also to reuse the PHCs present in the soil by breaking it down into gaseous products that can further be used to meet human needs.


Subject(s)
Petroleum , Plasma Gases , Soil Pollutants , Humans , Soil , Steam , Hydrocarbons , Carbon , Soil Pollutants/analysis , Biodegradation, Environmental
20.
Bioengineering (Basel) ; 10(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37106628

ABSTRACT

Anaerobic bioremediation is a relevant process in the management of sites contaminated by petroleum hydrocarbons. Recently, interspecies electron transfer processes mediated by conductive minerals or particles have been proposed as mechanisms through which microbial species within a community share reducing equivalents to drive the syntrophic degradation of organic substrates, including hydrocarbons. Here, a microcosm study was set up to investigate the effect of different electrically conductive materials (ECMs) in enhancing the anaerobic biodegradation of hydrocarbons in historically contaminated soil. The results of a comprehensive suite of chemical and microbiological analyses evidenced that supplementing the soil with (5% w/w) magnetite nanoparticles or biochar particles is an effective strategy to accelerate the removal of selected hydrocarbons. In particular, in microcosms supplemented with ECMs, the removal of total petroleum hydrocarbons was enhanced by up to 50% relative to unamended controls. However, chemical analyses suggested that only a partial bioconversion of contaminants occurred and that longer treatment times would have probably been required to drive the biodegradation process to completion. On the other hand, biomolecular analyses confirmed the presence of several microorganisms and functional genes likely involved in hydrocarbon degradation. Furthermore, the selective enrichment of known electroactive bacteria (i.e., Geobacter and Geothrix) in microcosms amended with ECMs, clearly pointed to a possible role of DIET (Diet Interspecies Electron Transfer) processes in the observed removal of contaminants.

SELECTION OF CITATIONS
SEARCH DETAIL