Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Publication year range
1.
Plants (Basel) ; 13(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38498455

ABSTRACT

Chenopodium ambrosioides (L.) is a medicinal and aromatic plant widely used in the Moroccan traditional medicine for its important pharmacological properties. In order to contribute to the valorization of this plant, the current study aimed at evaluating, for the first time, the variation in the yield, chemical composition, and insecticidal and phytotoxic activities of C. ambrosioides essential oil (CAEO) isolated from leaves and inflorescences. The results obtained showed that the CAEO yields vary significantly according to the distilled plant part, with 0.75 ± 0.15% for the leaves and 1.2 ± 0.34% for the inflorescences. CAEO profiling showed quantitative more than qualitative differences. Leaf CAEO was rich in δ-3-carene (61.51%), followed by p-cymene (14.67%) and 1,2:3,4-diepoxy-p-menthane (6.19%). However, inflorescence CAEO was dominated by the same compounds but with variable levels (δ-3-Carene: 44.29%; 1,2:3,4-diepoxy-p-menthane: 19.46%; and p-cymene: 17.85%). The CAEOs from the leaves and inflorescences showed a very interesting inhibiting effect on the germination and growth of the three species used, namely Medicago sativa, Linum rusitatissimum, and Raphanus sativus. However, there was no significant difference between these CAEOs. Similarly, for the insecticidal activity, CAEOs exhibited an important and similar toxicity against Tribolium confusum adults with LD50 of 4.30 and 4.46 µL/L of air and LD90 of 6.51 and 9.62 µL/L air for toxicity by fumigation, while values for contact toxicity on filter paper were 0.04 and 0.05 µL/cm2 for LD50 and 0.08 and 0.09 µL/cm2 for LD90.

2.
Chem Biodivers ; 21(5): e202400274, 2024 May.
Article in English | MEDLINE | ID: mdl-38466647

ABSTRACT

The aim of the current study was to compare some biological activities of edible oils enriched with 10 % of cannabidiol (CBD samples) from the Slovak market. In addition, hemp, coconut, argan, and pumpkin pure oils were also examined. The study evaluated the fatty acids content, as well as antibacterial, antifungal, antioxidant, cytotoxic, and phytotoxic activities. The CBD samples presented antimicrobial activity against the tested bacterial strains at higher concentrations (10000 and 5000 mg/L) and antifungal activity against Alternaria alternata, Penicillium italicum and Aspergillus flavus. DPPH⋅ and FRAP assays showed greater activity in CBD-supplemented samples compared to pure oils and vitamin E. In cell lines (IPEC-J2 and Caco-2), a reduced cell proliferation and viability were observed after 24 hours of incubation with CBD samples. The oils showed pro-germinative effects. The tested activities were linked to the presence of CBD in the oils.


Subject(s)
Antioxidants , Cannabidiol , Cell Proliferation , Cannabidiol/pharmacology , Cannabidiol/chemistry , Humans , Cell Proliferation/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Microbial Sensitivity Tests , Caco-2 Cells , Cell Survival/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Penicillium/drug effects , Alternaria/drug effects , Aspergillus flavus/drug effects
3.
Phytochemistry ; 219: 113977, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215813

ABSTRACT

During the course of screening for anti-seed germination phytochemicals, the methanol fraction of the Cedrus deodara fresh needles showed potent activity. Bioactivity-guided fractionation led to the isolation of thirty-eight phenolic compounds. Four ones were identified as previously undescribed including (7S,8S)-3-methoxy-9'-acetoxy-3',7-epoxy-8,4'-oxyneoligna-4,9-diol (7), (7S,8R)-dihydro-3'-hydroxy-8-acetoxymethyl-7-(4-hydroxy-3-methoxy-phenyl)-1'-benzofuranpropanol (10), (8S)-4,9,9'-trihydroxy-3,3'-dimethoxy-8,4'-oxyneolignan (11) and (7S,8S)-4,7,9'-trihydroxy-3,3'-dimethoxy-9-acetoxy-8,4'-oxyneolignan (16), respectively. The potential phytotoxic effects of these compounds on the seed germination and root elongation of Arabidopsis thaliana were evaluated by the filter paper assay developed in our laboratory. Bioassay results indicated that caffeic acid (36) displayed most significant inhibitory activities against the seed germination and root elongation of A. thaliana, stronger than those of the commercial herbicides acetochlor and glyphosate at the same concentration of 200 µg/mL. Ditetrahydrofuran lignan (1), dihydrochalcone (25), and eight simple phenols (28, 29, 31, 33-35, 37 and 38) completely inhibited the seed germination of A. thaliana at the concentration of 400 µg/mL, which were as active as acetochlor. Dihydroflavone (21) and the simple phenols 32-34 displayed stronger inhibitory effects on the root elongation of A. thaliana than that of glyphosate. The inhibitory effects of these active compounds on the seed germination and root elongation of Amaranthus tricolor and Lactuca sativa were evaluated as well. The phytotoxic activity of 11, 16, 22, 25, 31, 34, 37 and 38 were detected for the first time. In addition, the structure-activity relationships of the same class of these phytochemicals were discussed.


Subject(s)
Alkaloids , Arabidopsis , Cedrus/chemistry , Phenols/pharmacology , Phenols/chemistry , Toluidines/pharmacology , Alkaloids/pharmacology , Plant Extracts/chemistry , Germination
4.
Front Plant Sci ; 14: 1260360, 2023.
Article in English | MEDLINE | ID: mdl-38098790

ABSTRACT

The chemical composition, insect antifeedant, in vtro/in vivo nematicidal activity, phytotoxicity, and in silico nematicidal activity of the essential oil (EO) of the African medicinal plant Drypetes gossweileri were studied. Chemical analysis using GC/MS indicated that benzyl isothiocyanate (96.23%) was the major compound, followed by benzyl cyanide (1.38%). The biocidal effects of this oil were tested against insect pests and root-knot nematodes. All the insect species tested were significantly affected by the oil according to their feeding adaptations (Spodoptera littoralis and Myzus persicae were less affected than Rhopalosiphum padi) with efficient doses (EC50) of 29.4 8.3 µg/cm2, 14.744 8.3 µg/cm2, and 8.3 µg/cm2, respectively. The oil was highly effective against juveniles J2 of the nematode Meloidogyne javanica, with LC50-LC90 values of 0.007 mg/mL-0.0113 mg/mL. D. gossweileri EO at minimum lethal concentrations (MLC) and below strongly inhibited egg hatching in vitro, whereas soil treatment caused a strong suppression of nematode population, infection frequency, and multiplication rate. The EO inhibited ryegrass (Lolium perenne) germination at 0.4 mg/mL, while at 0.1 mg/mL, its effects on germination, root and leaf growth were moderate (32.4%, 8.4%, and 18.3%, respectively). The tomato (Solanum lycopersicum) germination was not affected by the EO, but the root growth was reduced (56% at 0.1 mg/mL) at a dose 10 times higher than the LD50 calculated for M. javanica J2 mortality. Molecular docking of the nematicidal effects of the oil using PyRx revealed a strong interaction between potassium chloride transporting KCC3 (PDB ID: 7D90) and benzyl cyanide at a distance of 2.20 A° with GLN C:350, followed by benzyl isothiocyanate at a distance of 2.78 A° with ARG B:294. The in vivo nematicidal effects of D. gossweileri EO on M. javanica penetration and reproduction in tomato roots further support the potential of this EO as a nematicidal agent with insect antifeedant effects, which could be used by local farmers for crop protection.

5.
Ecotoxicology ; 32(10): 1221-1232, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38032393

ABSTRACT

The phytotoxicity of invasive plants (IPS) has been identified as one of the main factors influencing their invasion success. The invasion of IPS can occur to varying degrees in the habitats. Two IPS can invade one habitat. This study aimed to evaluate the mono- and co-phytotoxicity of two Asteraceae IPS Solidago canadensis L. and Bidens pilosa L. with different invasion degrees (including light invasion (relative abundance <50%) and heavy invasion (relative abundance ≥50%)) on the horticultural Asteraceae species Lactuca sativa L., through a hydroponic experiment conducted on 9 cm Petri dishes. Leaf extracts of the two IPS can cause significant mono- and co-phytotoxicity. The mono- and co-phytotoxicity of the two IPS were concentration-dependent. The mono-phytotoxicity of S. canadensis was significantly increased with increasing invasion degree, but the opposite was true for the mono-phytotoxicity of B. pilosa. Leaf extracts of B. pilosa with light invasion caused stronger phytotoxicity than those of S. canadensis with light invasion. There may be an antagonistic effect for the co-phytotoxicity caused by mixed leaf extracts of the two IPS compared with those of either S. canadensis or B. pilosa. The phytotoxicity of the two IPS on the growth performance of neighboring plants may play a more important role in their mono-invasion than in their co-invasion. The phytotoxicity appeared to affect the growth performance of S. canadensis individuals more significantly when the invasion was heavy, while the growth performance of B. pilosa individuals seemed to be more influenced by phytotoxicity when the invasion was light. Consequently, the concentration of leaf extracts of IPS, the invasion degree of IPS, the species identity of IPS, and the species number of IPS modulated the mono- and co-phytotoxicity of the two IPS.


Subject(s)
Asteraceae , Bidens , Solidago , Humans , Introduced Species
6.
Toxins (Basel) ; 15(10)2023 10 02.
Article in English | MEDLINE | ID: mdl-37888626

ABSTRACT

Calamus tenuis is a shrub species distributed across South Asia. It grows well in diversified habitats and tends to dominate plants in the surrounding environment. The phytotoxicity of C. tenuis and the action of its phytochemicals against other plant species could explain its dominant behavior. Compounds with phytotoxic activity are in high demand as prospective sources of ecofriendly bioherbicides. Therefore, we investigated the phytotoxicity of C. tenuis. Aqueous methanol extracts of this plant species significantly limited the growth of four test plant species, two monocots (barnyard grass and timothy), and two dicots (alfalfa and cress), in a dose- and species-dependent manner. Bio-directed chromatographic isolation of the C. tenuis extracts yielded two major active substances: a novel compound, calamulactone {(S)-methyl 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoate}, and 3-oxo-α-ionone. Both of the identified compounds exerted strong growth inhibitory effects on cress and timothy seedlings. The concentrations of 3-oxo-α-ionone and calamulactone required to limit the growth of the cress seedlings by 50% (I50) were 281.6-199.5 and 141.1-105.5 µM, respectively, indicating that the effect of calamulactone was stronger with lower I50 values. Similarly, the seedlings of timothy also showed a considerably higher sensitivity to calamulactone (I50: 40.5-84.4 µM) than to 3-oxo-α-ionone (I50: 107.8-144.7 µM). The findings indicated that the leaves of C. tenuis have marked growth-inhibitory potential, and could affect surrounding plants to exert dominance over the surrounding plant community. Moreover, the two identified phytotoxic substances might play a key role in the phytotoxicity of C. tenuis, and could be a template for bioherbicide development. This paper was the first to report calamulactone and its phytotoxicity.


Subject(s)
Alkaloids , Calamus , Plant Extracts/toxicity , Plant Extracts/chemistry , Prospective Studies , Seedlings , Plants
7.
Phytochemistry ; 211: 113686, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37105352

ABSTRACT

The entire plant Salvia cavaleriei H.Lév. (Lamiaceae) is used as a traditional Chinese herbal medicine. Its leaves are edible, and the flowers can be soaked in water to make a health-care tea. In an effort to find natural bioactive chemical components, twelve undescribed germacrane-type sesquiterpenoids, salcavalins A-L, were isolated from the whole plant of S. cavaleriei and were identified as analogs. This is the first study to isolate highly oxygenated germacrane-type sesquiterpenoids from this plant. The structures of these undescribed compounds were elucidated by various spectroscopic methods, and their absolute configurations were confirmed by single-crystal X-ray diffraction analysis with Cu Kα radiation and electronic circular dichroism calculations. The biological activity of these undescribed compounds on the production of tumor necrosis factor-alpha in lipopolysaccharide induced NR8383 cells was evaluated, and salcavalins I and K showed anti-inflammatory activity to some extent. Salcavalins A-C, F and L were found to be neuroprotective with antiparkinsonic potential in a nematode (Caenorhabditis elegans) model. In addition, salcavalins F and I displayed marked phytotoxic activity against radish seeds at a low concentration of 50 ppm. Our findings provide scientific justification to show that bioactive sesquiterpenoids from the edible herb have anti-inflammatory in vitro, neuroprotective and phytotoxic activities.


Subject(s)
Drugs, Chinese Herbal , Salvia , Sesquiterpenes , Molecular Structure , Sesquiterpenes, Germacrane/pharmacology , Sesquiterpenes, Germacrane/chemistry , Salvia/chemistry , Drugs, Chinese Herbal/chemistry , Anti-Inflammatory Agents , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry
8.
BMC Microbiol ; 23(1): 30, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36707757

ABSTRACT

BACKGROUND: Endophytic fungi of medicinal plants, as special microorganisms, are important sources of antibacterial compounds. However, the diversity and antibacterial activity of endophytic fungi from Pinellia Tenore have not been systematically studied. RESULTS: A total of 77 fungi were isolated from roots, stems, leaves, and tubers of Pinellia ternata and P. pedatisecta. All fungi were belonged to five classes and twenty-five different genera. Biological activities tests indicated that 21 extracts of endophytic fungi exhibited antibacterial activities against at least one of the tested bacteria, and 22 fermentation broth of endophytic fungi showed strong phytotoxic activity against Echinochloa crusgalli with the inhibition rate of 100%. Furthermore, four compounds, including alternariol monomethyl ether (1), alternariol (2), dehydroaltenusin (3) and altertoxin II (4), and three compounds, including terreic acid (5), terremutin (6), citrinin (7), were isolated from Alternaria angustiovoidea PT09 of P. ternata and Aspergillus floccosus PP39 of P. pedatisecta, respectively. Compound 5 exhibited strong antibacterial activities against Escherichia coli, Micrococcus tetragenus, Staphylococcus aureus, and Pseudomonas syringae pv. actinidiae with the inhibition zone diameter (IZD) of 36.0, 31.0, 33.7, 40.2 mm and minimum inhibitory concentration (MIC) values of 1.56, 3.13, 1.56, 1.56 µg/mL respectively, which were better than or equal to those of positive gentamicin sulfate. The metabolite 7 also exhibited strong antibacterial activity against P. syringae pv. actinidiae with the IZD of 26.0 mm and MIC value of 6.25 µg/mL. In addition, the compound 7 had potent phytotoxic activity against E. crusgalli with the inhibition rate of 73.4% at the concentration of 100 µg/mL. CONCLUSIONS: Hence, this study showed that endophytic fungi of P. ternata and P. pedatisecta held promise for the development of new antibiotic and herbicide resources.


Subject(s)
Alkaloids , Pinellia , Plants, Medicinal , Pinellia/microbiology , Fungi , Anti-Bacterial Agents/pharmacology
9.
Phytochemistry ; 206: 113522, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36471552

ABSTRACT

The fungus Pseudopestalotiopsis theae isolated from the fresh leaves of Illigera celebica, has been reported to be a pathogenic fungus that can cause gray blight on tea leaves, a disease characterized by the appearance of necrotic lesions on tea leaves. The pathogenic substances in this fungus have not been clearly identified. Considering the possible involvement of specialized metabolites in symptom appearance, a chemical investigation of specialized metabolites on P. theae was conducted, resulting in the isolation of eight meroterpenoids, including six undescribed biscognienynes G-L and two known ones (biscognienynes B and D). The structures of these new compounds were characterized by extensive NMR spectroscopic and HR-ESI-MS data, and their absolute configurations were elucidated by ECD calculations. Except for biscogniyne L, all the isolated biscognienynes showed different degrees of phytotoxicity to tea in vivo, thereby revealing for the first time the substances in P. theae that cause tea gray blight. Inspired by the fact that phytotoxins produced by pathogenic fungus are an effective resource for designing natural and safe bioherbicides, when assayed the herbicidal activity through Petri dish bioassays, biscognienynes G-J showed phytotoxic effects against seed germination and seedling growth of Setaria viridis, strongly inhibiting seed germination percentage and radicle and germ lengths of seedlings. The results of this study demonstrated the great potential of biscognienynes G-J to be proposed and developed as ecofriendly herbicides.


Subject(s)
Ascomycota , Herbicides , Herbicides/pharmacology , Herbicides/chemistry , Ascomycota/chemistry , Seedlings , Tea
10.
Heliyon ; 8(12): e12216, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36582687

ABSTRACT

Phytopathogenic Fusarium species are restricting factors causing diseases and yield loss in crop production. As part of exploration for pesticides from medicinal plants, this study aimed to isolate and characterize bioactive compounds from Lantana camara L. and evaluate their efficiency against Fusarium phytopathogens. Phytochemical investigation of ethyl acetate leaf extract led to separation of lantadene A (22-angeloyloxy-9-hydroxy-3-oxo-olean-12-en-28-oic acid) and boswellic acid (11-keto-ß-boswellic acid). The chemical structures of the aforementioned compounds were confirmed using physical properties, spectroscopic analysis, and published data. Lantadene A exhibited significant antifungal activity against F. subglutinans, F. proliferatum, F. solani, F. graminearum, and F. semitectum with minimum inhibitory concentration (MIC) less than or equal to 0.63 mg/mL. Boswellic acid exhibited strong activity (MIC = 0.63 mg/mL) against F. subglutinans and F. semitectum. In terms of their toxicity towards Raw 264.7 cells, lantadene A and boswellic acid recorded half-maximal inhibitory concentration values of 84.2 µg/mL and 186.6 µg/mL, respectively. Both lantadene A and boswellic acid had no phytotoxic effect against seed germination and seedling root length. Lantadene A and boswellic acid have strong potential to be further investigated as lead natural fungicides (biopesticides) to control Fusarium crop diseases.

11.
Food Res Int ; 162(Pt A): 112013, 2022 12.
Article in English | MEDLINE | ID: mdl-36461239

ABSTRACT

Here we showed that the water-soluble components of fresh green coffee beans inhibit the growth of lettuce in hydroponic systems, whereas those of roasted coffee waste facilitate it. The growth enhancement was hardly related to hydroponic parameters (i.e., pH and electric conductivity) or the nitrogen contents of the extracts. Rather, the presence of chromogenic polymeric melanoidins in the coffee waste was found to be crucial for the crop growth acceleration. The quantitative comparison of low-molecular-weight organics including phytotoxic phenolics between the extracts suggested that Maillard reactions occurring during coffee roasting transform the phenolics into polymeric melanoidin products. The identification of humic-like molecular compositions in the roasted coffee waste and the restoration of crop-stimulating activity by the addition of a phenol oxidase to the fresh coffee bean extract also supported that the low-molecular-weight phenols are oxidatively coupled during the roasting, which was consistent with the bottom-up synthesis of crop-stimulatory humic substances.


Subject(s)
Alkaloids , Toxins, Biological , Maillard Reaction , Phenols , Polymers , Plant Extracts
12.
Molecules ; 27(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144583

ABSTRACT

Due to its eco-friendliness, cost-effectiveness, ability to be handled safely, and a wide variety of biological activities, the green plant-mediated synthesis of nanoparticles has become increasingly popular. The present work deals with the green synthesis and characterization of silver nanoparticles (AgNPs) using Elaeagnus umbellata (fruit) and the evaluation of its antibacterial, antioxidant, and phytotoxic activities. For the synthesis of AgNPs, fruit extract was treated with a 4 mM AgNO3 solution at room temperature, and a color change was observed. In UV-Visible spectroscopy, an absorption peak formation at 456 nm was the sign that AgNPs were present in the reaction solution. Scanning electron microscopy and physicochemical X-ray diffraction were used to characterize AgNPs, which revealed that they were crystalline, spherical, and had an average size of 11.94 ± 7.325 nm. The synthesized AgNPs showed excellent antibacterial activity against Klebsiella pneumoniae (14 mm), Staphylococcus aureus (13.5 mm), Proteus mirabilis (13 mm), and Pseudomonas aeruginosa (12.5 mm), as well as considerable antioxidant activity against DPPH with 69% inhibition at an IC50 value of 43.38 µg/mL. AgNPs also exhibited a concentration-dependent effect on rice plants. Root and shoot length were found to be positively impacted at all concentrations, i.e., 12.5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL. Among these concentrations, the 50 µg/mL concentration of AgNPs was found to be most effective. The plant biomass decreased at higher AgNP exposure levels (i.e., 100 µg/mL), whereas 50 µg/mL caused a significant increase in plant biomass as compared to the control. This study provides an eco-friendly method for the synthesis of AgNPs which can be used for their antibacterial and antioxidant activities and also as growth promoters of crop plants.


Subject(s)
Elaeagnaceae , Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Fruit/chemistry , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Silver/chemistry
13.
J Tradit Chin Med ; 42(4): 595-603, 2022 08.
Article in English | MEDLINE | ID: mdl-35848976

ABSTRACT

OBJECTIVE: To evaluate Sterculia diversifolia stem bark and leaves for phytotoxic, genotoxic and enzymes inhibition potential. METHODS: Phytotoxic activity of both stem bark and leaves were screened using Lemna minor. The genotoxic activity of Sterculia diversifolia stem bark and leaves extracts were tested using comet assay protocol while enzyme inhibition activity of crude extract and various fractions of both stem bark and leaves were evaluated using acetyl cholinesterase, lipoxygenase, ß-glu-curonidase, urease, xanthine oxidase and carbonic anhydrase. RESULTS: Phytotoxic activity showed significant results in dose dependant manner in both stem bark (ethyl acetate and n-butanol) and leaves (ethyl acetate, n-butanol and n-hexane) fractions. In genotoxic activity, dichloromethane fraction showed significant activity followed by ethyl acetate fraction. Acetyl cholinesterease inhibitory activity showed significant results in both stem bark and leaves fractions, while significant lipoxygenase inhibition was shown by ethyl acetate, dichloromethane, crude extract and n-hexane fractions of both stem bark and leaves. ß-glucuronidase, urease and carbonic anhydrase inhibitory activity showed highly significant results in ethyl acetate fraction of both stem bark and leaves, while xanthine oxidase inhibition was shown by dichloromethane fraction of stem bark and leaves extracts. CONCLUSIONS: This study emphasizes the important phytotoxic, genotoxic and enzyme inhibition effects of Sterculia diversifolia stem bark and leaves. Hence, it is clear that Sterculia diversifolia stem bark and leaves possess phytotoxic, genotoxic and enzyme inhibitory agents.


Subject(s)
Alkaloids , Carbonic Anhydrases , 1-Butanol , DNA Damage , Humans , Lipoxygenases , Methylene Chloride , Plant Bark , Plant Extracts/toxicity , Plant Leaves , Urease , Xanthine Oxidase
14.
Chem Biodivers ; 19(4): e202100975, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35445571

ABSTRACT

Some Solanaceae plants are a rich source of sesquiterpenoid phytoalexins with allelopathic potential. Powder and aqueous extract obtained from the leaves of Solanum linnaeanum Hepper & P.M.L. Jaeger were used to treat the seeds of three target species (Lolium multiflorum Lam., Sinapis alba L. and Trifolium incarnatum L.). Both matrices were evaluated along with untreated controls to determine their toxicity on germination and seedling growth. The results revealed that the pre-emergence treatments were able to be very effective against all three species in the filter paper test by inhibiting the germination up to 100 %. The effectiveness was reduced by the interaction with soil. Despite this, significant data were obtained, albeit different according to the applied matrix. In general, L. multiflorum was the most sensitive to both the action of the leaf powder and aqueous extract while S. alba was found to be the most resistant to powder activity and T. incarnatum had the strongest response to the extract. For the first time, SPME-GC/MS technique was used to characterize the volatile chemical profile of S. linnaeanum leaves. The analyses highlighted the presence of different classes of compounds including terpenoids and sesquiterpenoids potentially useful in the fight against noxious plants both in natural and cultivated ecosystems.


Subject(s)
Germination , Solanum , Ecosystem , Plant Leaves , Powders/pharmacology , Seedlings , Seeds
15.
Nat Prod Res ; 36(9): 2434-2439, 2022 May.
Article in English | MEDLINE | ID: mdl-33183086

ABSTRACT

The chemical profile and phytotoxic activity of the essential oil extracted from Artemisia sieversiana was investigated. In total 17 compounds were identified by GC/MS, representing 99.17% of the entire oil, among which α-thujone (64.46%) and eucalyptol (10.15%) were the most abundant constituents. The major components, their mixture as well as the essential oil exhibited significant phytotoxic activity against Amaranthus retroflexus, Medicago sativa, Poa annua and Pennisetum alopecuroides, with their IC50 values ranged from 1.55 ∼ 6.21 mg/mL (α-thujone), 1.42 ∼ 17.81 mg/mL (eucalyptol), 0.23 ∼ 1.05 mg/mL (the mixture), and 1.89 ∼ 4.69 mg/mL (the essential oil) on the four tested species. The mixture of the major constituents exerted more potent effect compared with each individual compound, indicating the possible involvement of synergistic effect of these two compounds.


Subject(s)
Amaranthus , Artemisia , Oils, Volatile , Poa , Artemisia/chemistry , Eucalyptol/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
16.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361785

ABSTRACT

Even today, weeds continue to be a considerable problem for agriculture. The application of synthetic herbicides produces serious environmental consequences, and crops suffer loss of their activity due to the appearance of new resistant weed biotypes. Our aim is to develop new effective natural herbicides that improve the problem of resistance and do not harm the environment. This work is focused on a bioassay-guided isolation and the characterization of natural products present in Moquiniastrum pulchrum leaves with phytotoxic activity and its preliminary application in weeds. Moquiniastrum pulchrum was selected for two reasons: it is an abundant species in the Cerrado region (the second most important ecosystem in Brazil, after the Amazon)-the explanation behind its being a dominant species is a major focus of interest-and it has traditional employment in folk medicine. Six major compounds were isolated in this plant: one flavone and five diterpenes, two of which are described for the first time in the literature. Four of the six compounds exhibited phytotoxic activity in the bioassays performed. The results confirmed the phytotoxic potential of this plant, which had not been investigated until now.


Subject(s)
Asteraceae/chemistry , Biological Control Agents/toxicity , Diterpenes/toxicity , Flavones/toxicity , Herbicides/toxicity , Plant Weeds/drug effects , Weed Control/methods , Biological Assay , Biological Control Agents/chemistry , Biological Control Agents/isolation & purification , Crops, Agricultural/growth & development , Diterpenes/chemistry , Diterpenes/isolation & purification , Flavones/chemistry , Flavones/isolation & purification , Herbicides/chemistry , Herbicides/isolation & purification , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Weeds/growth & development
17.
Molecules ; 26(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065533

ABSTRACT

The Artemisia genus includes a large number of species with worldwide distribution and diverse chemical composition. The secondary metabolites of Artemisia species have numerous applications in the health, cosmetics, and food sectors. Moreover, many compounds of this genus are known for their antimicrobial, insecticidal, parasiticidal, and phytotoxic properties, which recommend them as possible biological control agents against plant pests. This paper aims to evaluate the latest available information related to the pesticidal properties of Artemisia compounds and extracts and their potential use in crop protection. Another aspect discussed in this review is the use of nanotechnology as a valuable trend for obtaining pesticides. Nanoparticles, nanoemulsions, and nanocapsules represent a more efficient method of biopesticide delivery with increased stability and potency, reduced toxicity, and extended duration of action. Given the negative impact of synthetic pesticides on human health and on the environment, Artemisia-derived biopesticides and their nanoformulations emerge as promising ecofriendly alternatives to pest management.


Subject(s)
Artemisia/metabolism , Nanotechnology , Pest Control, Biological/methods , Pesticides/metabolism , Crops, Agricultural/microbiology
18.
Phytochemistry ; 187: 112714, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33845406

ABSTRACT

The Apiaceae Lindl. (=Umbelliferae Juss.), which includes several economical important vegetables, herbs, and spices, is one of the most numerous plant family. Umbelliferous crops (namely anise, fennel, carrot, coriander, parsley, etc.) are also valuable sources of botanical flavoring agents and fragrances. In addition, Apiaceae species yield a wide variety of distinctive specialized metabolites (i.e, volatile phenylpropanoids, furanocoumarins, sesquiterpene coumarins, polyacetylenes, and phthalides), some of them been described as uncommon natural phytochemicals exclusive of the family, which offers a great potential for bioprospection. Numerous studies have pointed out the outstanding biological activity of extracts and several classes of phytochemicals from Apiaceae species. Emphasis has been given to essential oils (EOs) and their constituents activities, most likely because this type of plant added value product benefits from a larger acceptance and application potential in integrated pest management (IPM) and integrated vector management (IVM) programs. Several species of the family offer a variety of unique compounds with great potential as biopesticidal and/or synergizing agents. Investigations covering their activity toward agricultural pests and phytopathogens have increased in the last years, nevertheless the interest remains strongly focus on arthropod species, predominantly those acting as vectors of human diseases. From our survey, it is patent the gap of knowledge concerning the potential molluscicidal properties of Apiaceae extracts/phytochemicals, as well as their herbicidal activities against invasive plant species. In this review, we propose to highlight the potential of Apiaceae species as suitable sources of bioactive phytochemicals with great relevance within the frame of plant-based pesticides R&D, and will discuss their applicability in real-world scenarios considering the recent developments regarding the design of stable formulations incorporating Apiaceae bioactive products. We expect that this review will encourage researchers to consider undervalued Apiaceae species as alternative sources of bioactive compounds and will give a contribute to the field by suggesting new research topics.


Subject(s)
Apiaceae , Pesticides , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plants , Polyynes
19.
Molecules ; 26(5)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800071

ABSTRACT

Eucalyptus grandis × E. urophylla was a unique hybridization in China. However, the chemical and pharmacological properties were rarely reported. Therefore, in this work, we used a steam distillation method to obtain essential oils from leaves of E. grandis × E. urophylla, and further evaluated the antioxidant, antimicrobial, and phytotoxic potential of the essential oil. Gas chromatography mass spectrometry (GC-MS) was applied to investigate the chemical composition of E. grandis × E. urophylla essential oil (EEO) and the results showed that the main components of EEO were monoterpenes followed by sesquiterpenes. Among them, α-pinene accounted about 17.02%. EEO could also well scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals showing a good free radical clearance ability. In addition, EEO efficiently inhibited the growth of six kinds of bacteria as well as seven kinds of plant pathogens, especially Salmonella typhimurium and Colletotrichum gloeosporioides. Moreover, the seedling germination of Raphanus sativus, Lactuca sativa, Lolium perenne, and Bidens pilosa was significantly suppressed by EEO, thus, indicating essential oils from eucalyptus possessed an excellent phytotoxic activity. This study may give a better understanding on EEO and provide a pharmacological activities analysis contributing to the further research of EEO as a functional drug in agronomic and cosmetic industries.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Eucalyptus Oil/chemistry , Eucalyptus Oil/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antioxidants/chemistry , Eucalyptus/chemistry , Eucalyptus Oil/analysis , Eucalyptus Oil/toxicity , Gas Chromatography-Mass Spectrometry , Germination/drug effects , Lactuca/drug effects , Microbial Sensitivity Tests , Plant Leaves/chemistry , Seeds/drug effects
20.
Molecules ; 26(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801201

ABSTRACT

Interest in finding plant-based herbicides to supplement synthesized herbicides is increasing. Although the extract of Sapindus mukorossi Gaertn has been reported to have herbicidal activity, little is known about phytotoxic substances and their efficacy of weed control in the field. To identify phytotoxic substances, the bioassay-guided fractionation by column chromatography and high-speed counter-current chromatography (HSCCC) was carried out. The phytotoxic activity assay, performed by the agar medium method, showed that the 70% ethanol fraction exhibited strong root growth inhibition against Trifolium pratense with an 50% inhibitory concentration (IC50) value of 35.13 mg/L. An active compound was isolated from the 70% ethanol fraction and identified as hederagenin 3-o-ß-D-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (Compound A). Compound A had an IC50 value of 16.64 mg/L. Finally, a new formulation was prepared based on the 70% ethanol fraction, which exhibited good efficacy against broadleaf weeds in a carrot field. The fresh weight control efficacy was 78.7% by 45 days after treatment at the dose of 1500 g a. i./ha. Hence, the extract of S. mukorossi pulp could be a promising supplement to the synthesized herbicides. Furthermore, compound A from S. mukorossi may be responsible for its phytotoxic activity.


Subject(s)
Alkaloids/pharmacology , Plant Extracts/pharmacology , Sapindus/chemistry , Saponins/pharmacology , Toxins, Biological/pharmacology , Trifolium/growth & development , Weed Control , Trifolium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL