Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.939
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 330: 118194, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641077

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, native to the Himalayan region, has a long history of use in traditional medicine for its heat-clearing, detoxification, anti-inflammatory, and analgesic properties. Oils extracted from P. utilis seeds are also used in cooking and cosmetics. With the increasing market demand, this extraction process generates substantial industrial biowastes. Recent studies have found many health benefits with using aqueous extracts of these biowastes, which are also rich in polysaccharides. However, there is limited research related to the reparative effects of the water extracts of P. utilis oil cakes (WEPUOC) on disruptions of the skin barrier function. AIM OF THE STUDY: This study aimed to evaluate the reparative efficacy of WEPUOC in both acute and chronic epidermal permeability barrier disruptions. Furthermore, the study sought to explore the underlying mechanisms involved in repairing the epidermal permeability barrier. MATERIALS AND METHODS: Mouse models with induced epidermal disruptions, employing tape-stripping (TS) and acetone wiping (AC) methods, were used. The subsequent application of WEPUOC (100 mg/mL) was evaluated through various assessments, with a focus on the upregulation of mRNA and protein expression of Corneocyte Envelope (CE) related proteins, lipid synthase-associated proteins, and tight junction proteins. RESULTS: The polysaccharide was the major phytochemicals of WEPUOC and its content was determined as 32.2% by the anthranone-sulfuric acid colorimetric method. WEPUOC significantly reduced transepidermal water loss (TEWL) and improved the damaged epidermal barrier in the model group. Mechanistically, these effects were associated with heightened expression levels of key proteins such as FLG (filaggrin), INV (involucrin), LOR (loricrin), SPT, FASN, HMGCR, Claudins-1, Claudins-5, and ZO-1. CONCLUSIONS: WEPUOC, obtained from the oil cakes of P. utilis, is rich in polysaccharides and exhibits pronounced efficacy in repairing disrupted epidermal barriers through increased expression of critical proteins involved in barrier integrity. Our findings underscore the potential of P. utilis wastes in developing natural cosmetic prototypes for the treatment of diseases characterized by damaged skin barriers, including atopic dermatitis and psoriasis.


Subject(s)
Epidermis , Fatty Acid Synthases , Plant Extracts , Tight Junction Proteins , Up-Regulation , Animals , Male , Mice , Epidermis/drug effects , Epidermis/metabolism , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/genetics , Permeability/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Tight Junction Proteins/metabolism , Up-Regulation/drug effects , Water/chemistry
2.
Front Pharmacol ; 15: 1370631, 2024.
Article in English | MEDLINE | ID: mdl-38606177

ABSTRACT

Introduction: Rana dybowskii Guenther (RDG), as a traditional Chinese medicine, has been shown to have antioxidant effects. However, studies on the anti-aging effect of RDG are still limited. Methods: In this study, we prepared polysaccharides from the skin of RDG (RDGP) by hot water extraction, alcohol precipitation, ion-exchange chromatography and gel chromatography. The proteins were removed using the Sevage method in combination with an enzymatic method. The structural features were analyzed using high-performance gel permeation chromatography, ß-elimination reaction and Fourier transform infrared spectra. The anti-aging effect of RDGP was investigated by using D-Gal to establish an aging model in mice, and pathological changes in the hippocampus were observed under a microscope. Results: We obtained the crude polysaccharide DGP from the skin of RDG, with a yield of 61.8%. The free protein was then removed by the Sevage method to obtain DGPI and deproteinated by enzymatic hydrolysis combined with the Sevage method to further remove the bound protein to obtain the high-purity polysaccharide DGPII. Then, DGPIa (1.03 × 105 Da) and DGPIIa (8.42 × 104 Da) were obtained by gel chromatography, monosaccharide composition analysis showed that they were composed of Man, GlcA, GalNAc, Glc, Gal, Fuc with molar ratios of 1: 4.22 : 1.55: 0.18 : 8.05: 0.83 and 0.74 : 1.78: 1: 0.28: 5.37 : 0.36, respectively. The results of the ß-elimination reaction indicated the presence of O-glycopeptide bonds in DGPIa. The Morris water maze test indicated that mice treated with DGPIIa exhibited a significantly shorter escape latency and increased time spent in the target quadrant as well as an increase in the number of times they traversed the platform. Pathologic damage to the hippocampus was alleviated in brain tissue stained with hematoxylin-eosin. In addition, DGPIIa enhanced the activities of SOD, CAT, and GSH-Px and inhibited the level of MDA in the serum and brain tissues of aging mice. Discussion: These results suggest that RDGP has potential as a natural antioxidant and provide useful scientific information for anti-aging research.

3.
Food Res Int ; 184: 114245, 2024 May.
Article in English | MEDLINE | ID: mdl-38609224

ABSTRACT

The effects of ultrasound pretreatment (20 kHz, 30 W/L) on mulberries' texture, microstructure, characteristics of cell-wall polysaccharides, moisture migration, and drying quality were investigated over exposure times ranging from 15 to 45 min. Ultrasound induced softening of mulberry tissue, accompanied by an increase in water-soluble pectin and a decrease in chelate-soluble pectin and Na2CO3-soluble pectin concentrations. Noticeable depolymerization of the pectin nanostructure was observed in the pretreated mulberries, along with a decrease in molecular weight, attributed to side-chain structure cleavage. Ultrasound loosened the cell wall structure, increased free water content and freedom, thereby reducing water diffusion resistance. Ultrasound pretreatment reduced drying time by 11.2 % to 23.3 % at various processing times compared to controls. Due to significantly enhanced drying efficiency, the optimal pretreatment time (30 min) yielded dried mulberries with higher levels of total phenolics and total anthocyanins, along with an increased antioxidant capacity. The results of this study provide insights into the mechanisms by which ultrasound pretreatment can effectively enhance the mulberry drying process.


Subject(s)
Morus , Nanostructures , Anthocyanins , Polysaccharides , Pectins , Water
4.
Foods ; 13(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611438

ABSTRACT

Mesona chinensis, in Thai called Chao Kuay and in Chinese Hsian-tsao, belongs to the Lamiaceae family. This herbal plant grows widely in Southern China, Taiwan (China), Malaysia, the Philippines, Indonesia, Vietnam, and Thailand. The Mesona plant is used to make functional products such as drinks and soft textured sweet treats, and also traditional medicine, to treat heat stroke, high blood pressure, heart attack, high blood sugar, hepatic diseases, colon diseases, inflammatory conditions, and to alleviate myalgia. The proximate composition of M. chinensis is a mixture of protein, fat, fiber, ash, and minerals. The main biological compounds in M. chinensis extracts are polysaccharides, terpenoids, flavonoids, and polyphenols, with wide-ranging pharmacological properties including antioxidant, antidiabetic, antilipidemic, carcinoma-inhibitory, renal-protective, antihypertensive, DNA damage-protective, and anti-inflammatory effects. This review investigated the proximate composition, polysaccharide type, and pharmacological properties of M. chinensis extracts. Phytochemical properties enhance the actions of the gut microbiota and improve health benefits. This review assessed the functional and medicinal activities of M. chinensis extracts. Future studies should further elucidate the in vitro/in vivo mechanisms of this plant extract and its impact on gut health.

5.
Molecules ; 29(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611698

ABSTRACT

Acanthopanax senticosus polysaccharide-nano-selenium (ASPS-SENPS) and A. selenopanax selenized polysaccharides (Se-ASPS) were synthesized, and their characterization and biological properties were compared. The acid extraction method was used to extract the polysaccharides of A. selenopanax, followed by decolorization using the hydrogen peroxide method and deproteinization based on the Sevage method, and the purification of A. senticosus polysaccharides (ASPS) was carried out using the cellulose DEAE-52 ion column layer analysis method. An A. senticosus polysaccharide-nano-selenium complex was synthesized by a chemical reduction method using ASPS as dispersants. The selenization of polysaccharides from A. selenopanax was carried out using the HNO3-Na2SeO3 method. The chemical compositions, scanning electron microscopy images, infrared spectra, and antioxidant properties of ASPS-SENPS and Se-ASPS were studied, and they were also subjected to thermogravimetric analysis. The results indicated that the optimal conditions for the synthesis of ASPS-SENPS include the following: when ASPS accounts for 10%, the ratio of ascorbic acid and sodium selenium should be 4:1, the response time should be 4 h, and the reaction temperature should be 50 °C. The most favorable conditions for the synthesis of Se-ASPS were as follows: m (Na2SeO3):m (ASPS) = 4:5, response temperature = 50 °C, and response time = 11.0 h. In the in vitro antioxidant assay, when the mass concentration of Se-ASPS and ASPS-SENPS was 5 mg/mL, the removal rates for DPPH free radicals were 88.44 ± 2.83% and 98.89 ± 3.57%, respectively, and the removal rates for ABTS free radicals were 90.11 ± 3.43% and 98.99 ± 1.73%, respectively, stronger than those for ASPS. The current study compares the physiological and bioactivity effects of ASPS-SENPS and Se-ASPS, providing a basis for future studies on polysaccharides.


Subject(s)
Eleutherococcus , Selenium , Antioxidants/pharmacology , Polysaccharides/pharmacology , Hydrogen Peroxide
6.
Int J Biol Macromol ; 268(Pt 1): 131701, 2024 May.
Article in English | MEDLINE | ID: mdl-38643920

ABSTRACT

Mulberry (Latin name "Morus alba L.") is a perennial deciduous tree in the family of Moraceae, widely distributed around the world. In China, mulberry is mainly distributed in the south and the Yangtze River basin. Its leaves can be harvested 3-6 times a year, which has a great resource advantage. Mulberry leaves are regarded as the homology of medicine and food traditional Chinese medicine (TCM). Polysaccharides, as its main active ingredients, have various effects, such as antioxidant, hypoglycemic, hepatoprotective, and immunomodulatory. This review summarizes the research progress in the extraction, purification, structural characterization, and structure-function relationship of polysaccharides from mulberry leaves in the last decade, hoping to provide a reference for the subsequent development and market application of polysaccharides from mulberry leaves.


Subject(s)
Morus , Plant Leaves , Polysaccharides , Morus/chemistry , Plant Leaves/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Structure-Activity Relationship , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
7.
Phytomedicine ; 128: 155485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640854

ABSTRACT

BACKGROUND: Oxidative stress can lead to uncontrolled glucose metabolism and, thus, diabetes. Auricularia auricula-judae (Bull.) Quél. polysaccharides possess biological activities, such as antioxidant and hypoglycemic effects, but their mechanism of their acid hydrolysates on oxidative stress-injured glucose metabolism disorders is unclear. PURPOSE: Using diabetic mice, we investigated the effect of the acid hydrolysate of polysaccharides from Auricularia auricula-judae (Bull.) Quél. on improving diabetes. STUDY DESIGN AND METHODS: The structural information of sample polysaccharides was measured by high performance gel permeation chromatography, nuclear magnetic resolution, and high performance liquid chromatography. The diabetic model was established by intraperitoneal injection of streptozotocin. For eight consecutive weeks, the mice were orally administered sample polysaccharides (100, 200, and 300 mg/kg b.w. per day) for intervention. The improvement effect of the samples on diabetes was explored by detecting the changes in biochemical indicators in mice, and the underlying mechanism was studied by transcriptomic and metabolomic analysis. RESULTS: The results showed that acid hydrolysate of Auricularia auricula-judae (Bull.) Quél. polysaccharides consisted mainly of mannose, xylose, glucuronic acid, and glucose; its weight-averaged molecular weight was 6.3842 × 104 Dalton, its number average molecular weight was 2.9594 × 104 Dalton; and the molecule contained α-Glc(1→4)-, ß-Glc(1→3)-, and ß-Man(1→4)-linked glycosidic bonds. A total of 100 mg/kg b.w. per day sample was the best intervention concentration. After eight weeks of intervention, the sample polysaccharides significantly reduced dynamic blood glucose and serum lipids, enhanced antioxidant enzyme activities, promoted glucagon like peptide-1 and insulin secretion, improved insulin sensitivity and alleviated insulin resistance in diabetic mice. Transcriptomic and metabolomic analyses showed that sample polysaccharides was able to ameliorate disorders of glucose metabolism by modulating gene expression such as glucokinase; and modulate the state of oxidative stress in mice in vivo by regulating the glutathione metabolism pathway. CONCLUSION: Acid hydrolysate of Auricularia auricula-judae (Bull.) Quél. polysaccharides improved glucose metabolism disorders by slowing down the oxidative stress injury in mice, thereby alleviating diabetes. This study provided a basis for determining the underlying mechanism of the antidiabetic effect of Auricularia auricula-judae (Bull.) Quél. polysaccharides, which would significantly improve the deep development and application of these materials in diabetes control.


Subject(s)
Antioxidants , Auricularia , Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Oxidative Stress , Polysaccharides , Animals , Diabetes Mellitus, Experimental/drug therapy , Oxidative Stress/drug effects , Auricularia/chemistry , Male , Mice , Hypoglycemic Agents/pharmacology , Antioxidants/pharmacology , Blood Glucose/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Hydrolysis , Streptozocin
8.
Bioorg Chem ; 147: 107369, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640721

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a complex pathogenic metabolic syndrome characterized by increased inflammation and endoplasmic reticulum stress. In recent years, natural polysaccharides derived from traditional Chinese medicine have shown significant anti-inflammatory effects, making them an attractive therapeutic option. However, little research has been conducted on the therapeutic potential of dried tangerine peel polysaccharide (DTPP) - one of the most important medicinal resources in China. The results of the present study showed that DTPP substantially reduced macrophage infiltration in vivo and suppressed the expression of pro-inflammatory factors and endoplasmic reticulum stress-related genes. Additionally, surface plasmon resonance analysis revealed that DTPP had a specific affinity to myeloid differentiation factor 2, which consequently suppressed lipopolysaccharide-induced inflammation via interaction with the toll-like receptor 4 signaling pathway. This study provides a potential molecular mechanism underlying the anti-inflammatory effects of DTPP on NAFLD and suggests DTPP as a promising therapeutic strategy for NAFLD treatment.


Subject(s)
Endoplasmic Reticulum Stress , Inflammation , Polysaccharides , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/antagonists & inhibitors , Polysaccharides/pharmacology , Polysaccharides/chemistry , Animals , Endoplasmic Reticulum Stress/drug effects , Mice , Inflammation/drug therapy , Inflammation/metabolism , Lymphocyte Antigen 96/antagonists & inhibitors , Lymphocyte Antigen 96/metabolism , Carthamus tinctorius/chemistry , Mice, Inbred C57BL , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Male , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
9.
Int J Biol Macromol ; 266(Pt 2): 131254, 2024 May.
Article in English | MEDLINE | ID: mdl-38565362

ABSTRACT

Acorus tatarinowii, a famous traditional Chinese medicine, is used for the clinical treatment of memory impairment and dementia. In this research, AT50, the crude polysaccharide extracted from A. tatarinowii rhizome, significantly improved the memory and learning ability of mice with Alzheimer's disease (AD) and exerted excellent anti-neuroinflammatory effects. More importantly, AT50 returned the levels of NO, TNF-α, IL-1ß, PGE-2, and IL-6 in AD mouse brains to normal levels. To identify the active ingredients in AT50, a heteropolysaccharide ATP50-3 was obtained from AT50. Structural analysis indicated ATP50-3 consisted of α-L-Araf-(1→, →2)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, α-D-Xylp-(1→, →3,4)-ß-D-Xylp-(1→, →3)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-4-OAc-α-D-Galp-(1→, →3,4,6)-α-D-Galp-(1→, →4)-α-D-Glcp-(1→, →2,3,6)-ß-D-Glcp-(1→, →4,6)-α-D-Manp-(1→, →3,4)-α-L-Rhap-(1→, →4)-α-D-GalpA-(1→, and →4)-α-D-GlcpA-(1 â†’ residues and terminated with Xyl and Ara. Additionally, ATP50-3 significantly inhibited the release of proinflammatory factors in lipopolysaccharide-stimulated BV2 cells. ATP50-3 may be an active constituent of AT50, responsible for its anti-neuroinflammatory effects, with great potential to treat AD.


Subject(s)
Acorus , Anti-Inflammatory Agents , Polysaccharides , Rhizome , Acorus/chemistry , Animals , Rhizome/chemistry , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Male , Neuroinflammatory Diseases/drug therapy , Disease Models, Animal
10.
Phytomedicine ; 129: 155567, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579644

ABSTRACT

BACKGROUND: Sarcopenia, an age-related disease, is characterized by a gradual loss of muscle mass, strength, and function. It has been linked to abnormal organelle function in myotubes, including the mitochondria and endoplasmic reticulum (ER). Recent studies revealed that mitochondria-associated membranes (MAM), the sites connecting mitochondria and the ER, may be implicated in skeletal muscle aging. In this arena, the potential of Polygonatum sibiricum polysaccharide (PSP) emerges as a beacon of hope. PSP, with its remarkable antioxidant and anti-senescence properties, is on the cusp of a therapeutic revolution, offering a promising strategy to mitigate the impacts of sarcopenia. PURPOSE: The objective of this research is to explore the effects of PSP on age-related muscle dysfunction and the underlying mechanisms involved both in vivo and in vitro. METHODS: In this investigation, we used in vitro experiments using D-galactose (D-gal)-induced aging in C2C12 myotubes and in vivo experiments on aged mice. Key indices were assessed, including reactive oxygen species (ROS) levels, mitochondrial function, the expression of aging-related markers, and the key proteins of mitochondria and MAM fraction. Differentially expressed genes (DEGs) related to mitochondria and ER were identified, and bioinformatic analyses were performed to explore underlying mechanisms. Muscle mass and function were determined to evaluate the quantity and quality of skeletal muscle in vivo. RESULTS: PSP treatment effectively mitigated oxidative stress and mitochondrial malfunction caused by D-gal in C2C12 myotubes, preserving mitochondrial fitness and reducing MAM formation. Besides, PSP attenuated D-gal-induced increases in Ca2+ concentrations intracellularly by modulating the calcium-related proteins, which were also confirmed by gene ontology (GO) analysis of DEGs. In aged mice, PSP increased muscle mass and improved grip strength, hanging time, and other parameters while reducing ROS levels and increasing antioxidant enzyme activities in skeletal muscle tissue. CONCLUSION: PSP offers protection against age-associated muscle impairments. The proposed mechanism suggests that modulation of calcium homeostasis via regulation of the MAM results in a favorable functional outcome during skeletal muscle aging. The results of this study highlight the prospect of PSP as a curative intervention for sarcopenia and affiliated pathological conditions, warranting further investigation.


Subject(s)
Aging , Calcium , Homeostasis , Muscle, Skeletal , Polygonatum , Polysaccharides , Reactive Oxygen Species , Animals , Polysaccharides/pharmacology , Polygonatum/chemistry , Mice , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Calcium/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Aging/drug effects , Male , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Sarcopenia/drug therapy , Mitochondrial Membranes/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line , Mice, Inbred C57BL , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Antioxidants/pharmacology , Mitochondria Associated Membranes
11.
Phytomedicine ; 129: 155652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663118

ABSTRACT

BACKGROUND: Autoimmune hepatitis (AIH) is a prevalent liver disease that can potentially lead to hepatic fibrosis and cirrhosis. The prolonged administration of immunosuppressive medications carries significant risks for patients. Purple sweet potato polysaccharide (PSPP), a macromolecule stored in root tubers, exhibits anti-inflammatory, antioxidant, immune-enhancing, and intestinal flora-regulating properties. Nevertheless, investigation into the role and potential mechanisms of PSPP in AIH remains notably scarce. PURPOSE: Our aim was to explore the possible protective impacts of PSPP against concanavalin A (Con A)-induced liver injury in mice. METHODS: Polysaccharide was isolated from purple sweet potato tubers using water extraction and alcohol precipitation, followed by purification through DEAE-52 cellulose column chromatography and Sephadex G-100 column chromatography. A highly purified component was obtained, and its monosaccharide composition was characterized by high performance liquid chromatography (HPLC). Mouse and cellular models induced by Con A were set up to investigate the impacts of PSPP on hepatic histopathology, apoptosis, as well as inflammation- and oxidative stress-related proteins in response to PSPP treatment. RESULTS: The administration of PSPP significantly reduced hepatic pathological damage, suppressed elevation of ALT and AST levels, and attenuated hepatic apoptosis in Con A-exposed mice. PSPP was found to mitigate Con A-induced inflammation by suppressing the TLR4-P2X7R/NLRP3 signaling pathway in mice. Furthermore, PSPP alleviated Con A-induced oxidative stress by activating the PI3K/AKT/mTOR signaling pathway in mice. Additionally, PSPP demonstrated the ability to reduce inflammation and oxidative stress in RAW264.7 cells induced by Con A in vitro. CONCLUSION: PSPP has the potential to ameliorate hepatic inflammation via the TLR4-P2X7R/NLRP3 pathway and inhibit hepatic oxidative stress through the PI3K/AKT/mTOR pathway during the progression of Con A-induced hepatic injury. The results of this study have unveiled the potential hepatoprotective properties of purple sweet potato and its medicinal value for humans. Moreover, this study serves as a valuable reference, highlighting the potential of PSPP-1 as a drug candidate for the treatment of immune liver injury.


Subject(s)
Concanavalin A , Ipomoea batatas , Oxidative Stress , Polysaccharides , Animals , Oxidative Stress/drug effects , Ipomoea batatas/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Male , Chemical and Drug Induced Liver Injury/drug therapy , Liver/drug effects , RAW 264.7 Cells , Hepatitis, Autoimmune/drug therapy , Toll-Like Receptor 4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Inflammation/drug therapy , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , TOR Serine-Threonine Kinases/metabolism , Antioxidants/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Tubers/chemistry , Proto-Oncogene Proteins c-akt/metabolism
12.
Food Sci Nutr ; 12(4): 2833-2845, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628208

ABSTRACT

Hyperlipidemia is a multifaceted metabolic disease, which is the major risk factor for atherosclerosis and cardiovascular diseases. Traditional Chinese medicine provides valuable therapeutic strategies in the treatment of hyperlipidemia. Inonotus obliquus has been used in traditional medicine to treat numerous diseases for a long time. To screen and isolate the fractions of I. obliquus polysaccharides (IOP) that can reduce blood lipid in the hyperlipemia animals and cell models, and investigate its mechanisms. The active component IOP-A2 was isolated, purified, and identified. In vivo, rats were randomly divided into blank control group (NG), the high-fat treatment group (MG), lovastatin group (PG), and IOP-A group. Compared with MG, the hyperlipidemic rats treated with IOP-A2 had decreased body weight and organ indexes, with the level of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) significantly decreased (p < .05), and level of serum high-density lipoprotein cholesterol (HDL-C) significantly increased (p < .05). Hepatocyte steatosis in hepatic lobules was significantly reduced. In vitro, the accumulation of lipid droplets in the model of fatty degeneration of HepG2 cells was significantly alleviated, and cellular TC and TG content was significantly decreased (p < .01). Moreover, the expression of recombinant cytochrome P450 7A1 (CYP7A1) and Liver X Receptor α (LXRα) were up-regulated (p < .05) both in vivo and in vitro. The results showed that IOP-A2 may exert its hypolipidemic activity by promoting cholesterol metabolism and regulating the expression of the cholesterol metabolism-related proteins CYP7A1, LXRα, SR-B1, and ABCA1.

13.
Carbohydr Res ; 539: 109117, 2024 May.
Article in English | MEDLINE | ID: mdl-38626569

ABSTRACT

Polygala tenuifolia is a traditional Chinese medicine with a long history of application, with the efficacy of suppressing cough, calming asthma, tranquilizing the mind, and benefiting the intellect. It is classified as a top-quality medicine in Shennong's Classic of Materia Medica. Polysaccharide is an important active ingredient in Polygala tenuifolia, which consists of several monosaccharides, including Ara, Gal, Glc, and so on. In this review, the preparation methods, structural characteristics, and biological activities of polysaccharides from Polygala tenuifolia are summarized, and the problems in the current studies are discussed to support further research, development, and utilization.


Subject(s)
Polygala , Polysaccharides , Polygala/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Humans , Animals
14.
Front Vet Sci ; 11: 1357491, 2024.
Article in English | MEDLINE | ID: mdl-38435364

ABSTRACT

With growing restrictions on the use of antibiotics in animal feed, plant extracts are increasingly favored as natural feed additive sources. Glycyrrhiza polysaccharide (GP), known for its multifaceted biological benefits including growth promotion, immune enhancement, and antioxidative properties, has been the focus of recent studies. Yet, the effects and mechanisms of GP on broiler growth and meat quality remain to be fully elucidated. This study aimed to investigate the effects of GP on growth, serum biochemistry, meat quality, and gene expression in broilers. The broilers were divided into five groups, each consisting of five replicates with six birds. These groups were supplemented with 0, 500, 1,000, 1,500, and 2,000 mg/kg of GP in their basal diets, respectively, for a period of 42 days. The results indicated that from day 22 to day 42, and throughout the entire experimental period from day 1 to day 42, the groups receiving 1,000 and 1,500 mg/kg of GP showed a significant reduction in the feed-to-gain ratio (F:G) compared to the control group. On day 42, an increase in serum growth hormone (GH) levels was shown in groups supplemented with 1,000 mg/kg GP or higher, along with a significant linear increase in insulin-like growth factor-1 (IGF-1) concentration. Additionally, significant upregulation of GH and IGF-1 mRNA expression levels was noted in the 1,000 and 1,500 mg/kg GP groups. Furthermore, GP significantly elevated serum concentrations of alkaline phosphatase (AKP) and globulin (GLB) while reducing blood urea nitrogen (BUN) levels. In terms of meat quality, the 1,500 and 2,000 mg/kg GP groups significantly increased fiber density in pectoral muscles and reduced thiobarbituric acid (TBA) content. GP also significantly decreased cooking loss rate in both pectoral and leg muscles and the drip loss rate in leg muscles. It increased levels of linoleic acid and oleic acid, while decreasing concentrations of stearic acid, myristic acid, and docosahexaenoic acid. Finally, the study demonstrated that the 1,500 mg/kg GP group significantly enhanced the expression of myogenin (MyoG) and myogenic differentiation (MyoD) mRNA in leg muscles. Overall, the study determined that the optimal dosage of GP in broiler feed is 1,500 mg/kg.

15.
Int J Biol Macromol ; 264(Pt 2): 130705, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458300

ABSTRACT

The mitochondria are known to exert significant influence on various aspects of cancer cell physiology. The suppression of mitochondrial function represents a novel avenue for the advancement of anti-cancer pharmaceuticals. The heat shock protein HSP90 functions as a versatile regulator of mitochondrial metabolism in cancer cells, rendering as a promising target for anticancer interventions. In this work, a novel acid polysaccharide named as XQZ3 was extracted from Chlorella pyrenoidosa and purified by DEAE-cellulose and gel-filtration chromatography. The structural characteristic of XQZ3 was evaluated by monosaccharides composition, methylation analysis, TEM, FT-IR, and 2D-NMR. It was found that XQZ3 with a molecular weight of 29.13 kDa was a complex branched polysaccharide with a backbone mainly composed of galactose and mannose. It exhibited good antitumor activity in vitro and in vivo by patient-derived 3D organoid models and patient-derived xenografts models. The mechanistic investigations revealed that XQZ3 specifically interacted with HSP90, impeding the activation of the HSP90/AKT/mTOR signaling cascade. This, in turn, led to the induction of mitochondrial dysfunction, autophagy, and apoptosis, ultimately resulting in the demise of cancer cells due to nutrient deprivation. This study offers a comprehensive theoretical foundation for the advancement of XQZ3, a novel polysaccharide inhibitor targeting HSP90, with potential as an effective therapeutic agent against cancer.


Subject(s)
Chlorella , Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Chlorella/metabolism , Spectroscopy, Fourier Transform Infrared , Signal Transduction , HSP90 Heat-Shock Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Apoptosis , Energy Metabolism , Mitochondria/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism
16.
Int J Biol Macromol ; 264(Pt 1): 130510, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447847

ABSTRACT

Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 â†’ and →4)-α-D-GalpA-(1 â†’ 2,4)-α-L-Rhap-(1 â†’ as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.


Subject(s)
Colitis , Cucurbita , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/adverse effects , Pectins/pharmacology , Pectins/metabolism , Anti-Inflammatory Agents/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Cytokines/metabolism , Nitric Oxide Synthase Type II/metabolism , Cyclooxygenase 2/metabolism
17.
J Ethnopharmacol ; 328: 118064, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38521425

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume is a traditional Chinese medicine with the effects of improving the deficiency of the body and maintaining health, and polysaccharide (GEP) is one of the effective ingredients to play these activities of G. elata. Traditionally, G. elata is orally administered, so the activities of GEP are associated with digestive and intestinal metabolism. However, the digestive behavior of GEP and its effects on the human gut microbiota are unclear and need to be fully studied. AIM OF THE STUDY: This study aimed to investigate the changes in structural characteristics of GEP during digestion and the related impacts of its digestive product on gut microbiota in human fecal fermentation, and to explain the beneficial mechanism of GEP on human health from the perspective of digestive characteristics and "gut" axis. MATERIALS AND METHODS: The changes of reducing sugars, free monosaccharides and physicochemical properties of GEP during digestion were investigated by GPC, HPLC, FT-IR, CD, NMR, SEM, and TGA. Moreover, polysaccharide consumption, pH value changes, SCFAs production, and changes in gut microbiota during fermentation were also discussed. RESULTS: During digestion of GEP, glucose was partially released causing a decrease in molecular weight, and a change in monosaccharide composition. In addition, the characteristics of GEP before and after digestion, including configuration, morphology, and stability, were different. The digestive product of GEP was polysaccharide (GEP-I), which actively participated in the fecal fermentation process. As the fermentation time increased, the utilization of GEP-I by the microbiota gradually increased. The abundance of probiotics such as Bifidobacterium, Collinsella, Prevotella, and Faecalibacterium was significantly increased, and the abundance of pathogenic Shigella, Dorea, Desulfovibrio, and Blautia was significantly inhibited, thereby suggesting that GEP has the potential to maintain human health through the "gut" axis. In addition, the beneficial health effects of GEP-I have also been observed in the influence of microbial metabolites. During the fermentation of GEP-I, the pH value gradually decreased, and the contents of beneficial metabolites such as acetic acid, propionic acid, and caproic acid significantly increased. CONCLUSION: The structure of GEP changed significantly during digestion, and its digestive product had the potential to maintain human health by regulating gut microbiota, which may be one of the active mechanisms of GEP.


Subject(s)
Gastrodia , Gastrointestinal Microbiome , Humans , Gastrodia/chemistry , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry , Fermentation , Digestion
18.
Front Vet Sci ; 11: 1356819, 2024.
Article in English | MEDLINE | ID: mdl-38500605

ABSTRACT

Pseudorabies virus (PRV) can cause fatal encephalitis in newborn pigs and escape the immune system. While there is currently no effective treatment for PRV, Scutellaria baicalensis Georgi polysaccharides (SGP) and Rodgersia sambucifolia Hemsl flavonoids (RHF) are traditional Chinese herbal medicines with potential preventive and therapeutic effects against PRV infection. In order to explore which one is more effective in the prevention and treatment of PRV infection in piglets. We investigate the therapeutic effects of RHF and SGP in PRV-infected piglets using clinical symptom and pathological injury scoring systems. The immune regulatory effects of RHF and SGP on T lymphocyte transformation rate, cytokines, T cells, and Toll-like receptors were also measured to examine the molecular mechanisms of these effects. The results showed that SGP significantly reduced clinical symptoms and pathological damage in the lungs, liver, spleen, and kidneys in PRV-infected piglets and the T lymphocyte conversion rate in the SGP group was significantly higher than that in the other treatment groups, this potential dose-dependent effect of SGP on T lymphocyte conversation. Serum immunoglobulin and cytokine levels in the SGP group fluctuated during the treatment period, with SGP treatment showing better therapeutic and immunomodulatory effects in PRV-infected piglets than RHF or the combined SGP + RHF treatment. In conclusion, RHF and SGP treatments alleviate the clinical symptoms of PRV infection in piglets, and the immunomodulatory effect of SGP treatment was better than that of the RHF and a combination of both treatments. This study provides evidence for SGP in controlling PRV infection in piglets.

19.
J Texture Stud ; 55(2): e12828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38486415

ABSTRACT

Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%-1.5%, 2%-3%, and 3.5%-4%. These regimes, alongside Cox-Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%-2% and 3%-3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for p = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating-cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.


Subject(s)
Citrus , Pectins , Cold Temperature , Rheology
20.
J Ethnopharmacol ; 327: 118009, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38447617

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to traditional Chinese medicine (TCM) theory, cholestasis belongs to category of jaundice. Artemisia capillaris Thunb. has been widely used for the treatment of jaundice in TCM. The polysaccharides are the one of main active components of the herb, but its effects on cholestasis remain unclear. AIM OF THE STUDY: To investigate the protective effect and mechanism of Artemisia capillaris Thunb. polysaccharide (APS) on cholestasis and liver injury. MATERIALS AND METHODS: The amelioration of APS on cholestasis was evaluated in an alpha-naphthyl isothiocyanate (ANIT)-induced mice model. Then nuclear Nrf2 knockout mice, mass spectrometry, 16s rDNA sequencing, metabolomics, and molecular biotechnology methods were used to elucidate the associated mechanisms of APS against cholestatic liver injury. RESULTS: Treatment with low and high doses of APS markedly decreased cholestatic liver injury of mice. Mechanistically, APS promoted nuclear translocation of hepatic nuclear factor erythroid 2-related factor (Nrf2), upregulated downstream bile acid (BA) efflux transporters and detoxifying enzymes expression, improved BA homeostasis, and attenuated oxidative liver injury; however, these effects were annulled in Nrf2 knock-out mice. Furthermore, APS ameliorated the microbiota dysbiosis of cholestatic mice and selectively increased short-chain fatty acid (SCFA)-producing bacteria growth. Fecal microbiota transplantation of APS also promoted hepatic Nrf2 activation, increased BA efflux transporters and detoxifying enzymes expression, ameliorated intrahepatic BA accumulation and cholestatic liver injury. Non-targeted metabolomics and in vitro microbiota culture confirmed that APS significantly increased the production of a microbiota-derived SCFA (butyric acid), which is also able to upregulate Nrf2 expression. CONCLUSIONS: These findings indicate that APS can ameliorate cholestasis by modulating gut microbiota and activating the Nrf2 pathway, representing a novel therapeutic approach for cholestatic liver disease.


Subject(s)
Artemisia , Cholestasis , Gastrointestinal Microbiome , Jaundice , Mice , Animals , NF-E2-Related Factor 2/metabolism , Liver , Cholestasis/chemically induced , Signal Transduction , Jaundice/metabolism , Bile Acids and Salts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL