Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446554

ABSTRACT

Heteroatom doping is considered an effective method to substantially improve the electrochemical performance of Ti3C2Tx MXene for supercapacitors. Herein, a facile and controllable strategy, which combines heat treatment with phosphorous (P) doping by using sodium phosphinate (NaH2PO2) as a phosphorus source, is used to modify Ti3C2Tx. The intercalated ions from NaH2PO2 act as "pillars" to expand the interlayer space of MXene, which is conducive to electrolyte ion diffusion. On the other hand, P doping tailors the surface electronic state of MXene, optimizing electronic conductivity and reducing the free energy of H+ diffusion on the MXene surface. Meanwhile, P sites with lower electronegativity owning good electron donor characteristics are easy to share electrons with H+, which is beneficial to charge storage. Moreover, the adopted heat treatment replaces -F terminations with O-containing groups, which enhances the hydrophilicity and provides sufficient active sites. The change in surface functional groups increases the content of high valence-stated Ti with a high electrochemical activity that can accommodate more electrons during discharge. Synergistic modification of interlayer structure and chemical state improves the possibility of Ti3C2Tx for accommodating more H+ ions. Consequently, the modified electrode delivers a specific capacitance of 510 F g-1 at 2 mV s-1, and a capacitance retention of 90.2% at 20 A g-1 after 10,000 cycles. The work provides a coordinated strategy for the rational design of high-capacitance Ti3C2Tx MXene electrodes.


Subject(s)
Body Fluids , Titanium , Diffusion , Phosphorus
2.
Small ; 16(31): e1907261, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32578393

ABSTRACT

Designing and constructing bimetallic hierarchical structures is vital for the conversion-alloy reaction anode of sodium-ion batteries (SIBs). Particularly, the rationally designed hetero-interface engineering can offer fast diffusion kinetics in the interface, leading to the improved high-power surface pseudocapacitance and cycling stability for SIBs. Herein, the hierarchical zinc-tin sulfide nanocages (ZnS-NC/SnS2 ) are constructed through hydrothermal and sulfuration reactions. The unconventional hierarchical design with internal void space greatly optimizes the structure stability, and bimetallic sulfide brings a bimetallic composite interface and N heteroatom doping, which are devoted to high electrochemical activity and improved interfacial charge transfer rate for Na+ storage. Remarkably, the ZnS-NC/SnS2 composite anode exhibits a delightful reversible capacity of 595 mAh g-1 after 100 cycles at 0.2 A g-1 , and long cycling capability for 500 cycles with a low capacity loss of 0.08% per cycle at 1 A g-1 . This study opens up a new route for rationally constructing hierarchical heterogeneous interfaces and sheds new light on efficient anode material for SIBs.

SELECTION OF CITATIONS
SEARCH DETAIL