Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 556
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Curr Med Chem ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38644711

ABSTRACT

The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.

2.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542093

ABSTRACT

Previous theoretical investigations of the reactions between an OH radical and a nucleobase have stated the most important pathways to be the C5-C6 addition for pyrimidines and the C8 addition for purines. Furthermore, the abstraction of a methyl hydrogen from thymine has also been proven an important pathway. The conclusions were based solely on gas-phase calculations and harmonic vibrational frequencies. In this paper, we supplement the calculations by applying solvent corrections through the polarizable continuum model (PCM) solvent model and applying anharmonicity in order to determine the importance of anharmonicity and solvent effects. Density functional theory (DFT) at the ωB97-D/6-311++G(2df,2pd) level with the Eckart tunneling correction is used. The total reaction rate constants are found to be 1.48 ×10-13 cm3 molecules-1s-1 for adenine, 1.02 ×10-11 cm3 molecules-1s-1 for guanine, 5.52 ×10-13 cm3 molecules-1s-1 for thymine, 1.47 ×10-13 cm3 molecules-1s-1 for cytosine and 7.59 ×10-14 cm3 molecules-1s-1 for uracil. These rates are found to be approximately two orders of magnitude larger than experimental values. We find that the tendencies observed for preferred pathways for reactions calculated in a solvent are comparable to the preferred pathways for reactions calculated in gas phase. We conclude that applying a solvent has a larger impact on more parameters compared to the inclusion of anharmonicity. For some reactions the inclusion of anharmonicity has no effect, whereas for others it does impact the energetics.


Subject(s)
Thymine , Uracil , Solvents , Adenine , Hydrogen
3.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542238

ABSTRACT

Oxidative stress, characterized by an imbalance favouring oxidants over antioxidants, is a key contributor to the development of various common diseases. Counteracting these oxidants is considered an effective strategy to mitigate the levels of oxidative stress in organisms. Numerous studies have indicated an inverse correlation between the consumption of vegetables and fruits and the risk of chronic diseases, attributing these health benefits to the presence of antioxidant phytochemicals in these foods. Phytochemicals, present in a wide range of foods and medicinal plants, play a pivotal role in preventing and treating chronic diseases induced by oxidative stress by working as antioxidants. These compounds exhibit potent antioxidant, anti-inflammatory, anti-aging, anticancer, and protective properties against cardiovascular diseases, diabetes mellitus, obesity, and neurodegenerative conditions. This comprehensive review delves into the significance of these compounds in averting and managing chronic diseases, elucidating the key sources of these invaluable elements. Additionally, it provides a summary of recent advancements in understanding the health benefits associated with antioxidant phytochemicals.


Subject(s)
Antioxidants , Oxidative Stress , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidants/pharmacology , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Chronic Disease
4.
Phytother Res ; 38(3): 1695-1714, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38318763

ABSTRACT

Withania somnifera, the plant named Indian ginseng, Ashwagandha, or winter cherry, has been used since ancient times to cure various health ailments. Withania somnifera is rich in constituents belonging to chemical classes like alkaloids, saponins, flavonoids, phenolic acids, and withanolides. Several chemotypes were identified based on their phytochemical composition and credited for their multiple bioactivities. Besides, exhibiting neuroprotective, immunomodulatory, adaptogenic, anti-stress, bone health, plant has shown promising anti-cancer properties. Several withanolides have been reported to play a crucial role in cancer; they target cancer cells by different mechanisms such as modulating the expression of tumor suppressor genes, apoptosis, telomerase expression, and regulating cell signaling pathway. Though, many treatments are available for cancer; however, to date, no assured reliable cure for cancer is made available. Additionally, synthetic drugs may lead to development of resistance in time; therefore, focus on new and natural drugs for cancer therapeutics may prove a longtime effective alternative. This current report is a comprehensive combined analysis upto 2023 with articles focused on bio-activities of plant Withania somnifera from various sources, including national and international government sources. This review focuses on understanding of various mechanisms and pathways to inhibit uncontrolled cell growth by W. somnifera bioactives, as reported in literature. This review provides a recent updated status of the W. somnifera on pharmacological properties in general and anti-cancer in particular and may provide a guiding resource for researchers associated with natural product-based cancer research and healthcare management.


Subject(s)
Withania , Withanolides , Withanolides/pharmacology , Withania/chemistry , Plant Extracts/pharmacology , Phytochemicals
5.
J Food Sci ; 89(3): 1373-1386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343299

ABSTRACT

Onion is rich in bioactive and volatile compounds with antioxidant activity. However, the pungent odor of volatile compounds (VOCs) released restricts its use. The encapsulation of red onion extract by electrospinning is an alternative to mask this odor and protect its bioactive compounds. The main objective of this study was to encapsulate red onion bulb extract (ROE) in different concentrations into zein nanofibers by electrospinning and evaluate their thermal, antioxidant, and hydrophilicity properties. The major VOC in ROE was 3(2H)-furanone, 2-hexyl-5-methyl. Incorporating ROE into the polymeric solutions increased electrical conductivity and decreased apparent viscosity, rendering nanofibers with a lower average diameter. The loading capacity of ROE on fibers was high, reaching 91.5% (10% ROE). The morphology of the nanofibers was random and continuous; however, it showed beads at the highest ROE concentration (40%). The addition of ROE to the nanofibers increased their hydrophilicity. The nanofibers' antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and hydroxyl radicals ranged from 32.5% to 57.3%. The electrospun nanofibers have the potential to protect and mask VOCs. In addition, they offer a sustainable alternative to the synthetic antioxidants commonly employed in the food and packaging industry due to their antioxidant activities.


Subject(s)
Nanofibers , Zein , Onions , Antioxidants , Hydrophobic and Hydrophilic Interactions , Plant Extracts
6.
Animals (Basel) ; 14(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396549

ABSTRACT

This study explored the protective capacity of the essential oil (EO) of Cymbopogon citratus against oxidative stress induced by hydrogen peroxide (H2O2) and the inflammatory potential in zebrafish. Using five concentrations of EO (0.39, 0.78, 1.56, 3.12, and 6.25 µg/mL) in the presence of 7.5 mM H2O2, we analyzed the effects on neutrophil migration, caudal fin regeneration, cellular apoptosis, production of reactive oxygen species (ROS), and activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) after 96 h of exposure. A significant decrease in neutrophil migration was observed in all EO treatments compared to the control. Higher concentrations of EO (3.12 and 6.25 µg/mL) resulted in a significant decrease in caudal fin regeneration compared to the control. SOD activity was reduced at all EO concentrations, CAT activity significantly decreased at 3.12 µg/mL, and GST activity increased at 0.78 µg/mL and 1.56 µg/mL, compared to the control group. No significant changes in ROS production were detected. A reduction in cellular apoptosis was evident at all EO concentrations, suggesting that C. citratus EO exhibits anti-inflammatory properties, influences regenerative processes, and protects against oxidative stress and apoptosis.

7.
J Physiol ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38348606

ABSTRACT

We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.

8.
Chem Biol Interact ; 392: 110921, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382705

ABSTRACT

Cyclometalated Ir(III) complex [Ir(L)2(dppz)]PF6 (where L = 1-methyl-2-(thiophen-2-yl)-1H-benzo[d]imidazole and dppz = dipyrido [3,2-a:2',3'-c]phenazine) (Ir1) is potent anticancer agent whose potency can be significantly increased by irradiation with blue light. Structural features of the cyclometalated Ir(III) complex Ir1 investigated in this work, particularly the presence of dppz ligand possessing an extended planar area, suggest that this complex could interact with DNA. Here, we have shown that Ir1 accumulates predominantly in mitochondria of cancer cells where effectively and selectively binds mitochondrial (mt)DNA. Additionally, the results demonstrated that Ir1 effectively suppresses transcription of mitochondria-encoded genes, especially after irradiation, which may further affect mitochondrial (and thus also cellular) functions. The observation that Ir1 binds selectively to mtDNA implies that the mechanism of its biological activity in cancer cells may also be connected with its interaction and damage to mtDNA. Further investigations revealed that Ir1 tightly binds DNA in a cell-free environment, with sequence preference for GC over AT base pairs. Although the dppz ligand itself or as a ligand in structurally similar DNA-intercalating Ru polypyridine complexes based on dppz ligand intercalates into DNA, the DNA binding mode of Ir1 comprises surprisingly a groove binding rather than an intercalation. Also interestingly, after irradiation with visible (blue) light, Ir1 was capable of cleaving DNA, likely due to the production of superoxide anion radical. The results of this study show that mtDNA damage by Ir1 plays a significant role in its mechanism of antitumor efficacy. In addition, the results of this work are consistent with the hypothesis and support the view that targeting the mitochondrial genome is an effective strategy for anticancer (photo)therapy and that the class of photoactivatable dipyridophenazine Ir(III) compounds may represent prospective substances suitable for further testing.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , DNA, Mitochondrial , Iridium/pharmacology , Iridium/chemistry , Ligands , Prospective Studies , Mitochondria , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
9.
Nat Prod Res ; 38(4): 563-580, 2024.
Article in English | MEDLINE | ID: mdl-38285923

ABSTRACT

Phytochemicals have become significantly important for scientific research since these possess incredibly remarkable health benefits, especially antioxidant potential to scavenge free radicals and combat the harmful effects of oxidative stress caused by adverse environmental factors. The efficacy and quantity of these phytochemicals relies upon numerous factors including the extraction method, solvent polarity and the habitat features in which the plant is growing. In this study we emphasized on phytochemical analysis and antioxidant activity of Bistorta amplexicaulis, an important medicinal plant species from Kashmir Himalaya. We evaluated antioxidant activity using different assays from all the selected sites to enumerate the impact of habitat. The sites were selected based on varying habitat features and altitude. Our results revealed that Ethyl acetate is the potent solvent for the extraction of phytochemicals. Below ground parts exhibited better scavenging activity than the above ground parts. Amongst the sites, we found the maximum antioxidant potential at Site I. A positive correlation was found between antioxidant activity and altitude while soil attributes (OC, OM, N, P, and K) and most of the morphological traits showed a negative correlation. Overall, our study identified the elite populations that could be utilized for mass propagation and harness the ultimate antioxidant potential of B. amplexicaulis.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/analysis , Altitude , Phytochemicals/pharmacology , Phytochemicals/analysis , Ecosystem , Solvents
10.
BMC Complement Med Ther ; 24(1): 12, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167318

ABSTRACT

BACKGROUND: During the past two decades, the correlation between oxidative stress and a variety of serious illnesses such as atherosclerosis, chronic obstructive pulmonary disease (COPD), Alzheimer disease (AD) and cancer has been established. Medicinal plants and their derived phytochemicals have proven efficacy against free radicals and their associated diseases. The current work was aimed to evaluate the phytochemical constituents of Rhamnus pentapomica R. Parker via Gas Chromatography-Mass Spectrometry (GC-MS) and its antioxidant and anti-glioblastoma potentials. METHODS: The bioactive compounds were analysed in Rhamnus pentapomica R. Parker stem bark extracts by GC-MS analysis, and to evaluate their antioxidant and anti-glioblastoma effects following standard procedures. The stem bark was extracted with 80% methanol for 14 days to get crude methanolic extract (Rp.Cme) followed by polarity directed fractionation using solvents including ethyl acetate, chloroform, butanol to get ethyl acetate fraction (Rp.EtAc), chloroform fraction (Rp.Chf) and butanol fraction (Rp.Bt) respectively. Antioxidant assay was performed using DPPH free radicals and cell viability assay against U87 glioblastoma cancer cell lines was performed via MTT assay. RESULTS: In GC-MS analysis, thirty-one compounds were detected in Rp.Cme, 22 in Rp.Chf, 24 in Rp.EtAc and 18 compounds were detected in Rp.Bt. Among the identified compounds in Rp.Cme, 9-Octadecenoic acid (Z)-methyl ester (7.73%), Octasiloxane (5.13%) and Heptasiloxane (5.13%), Hexadecanoic acid, methyl ester (3.76%) and Pentadecanoic acid, 14-methyl-, methyl Ester (3.76%) were highly abundant.. In Rp.Chf, Benzene, 1,3-dimethyl- (3.24%) and in Rp.EtAc Benzene, 1,3-dimethyl-(11.29%) were highly abundant compounds. Antioxidant studies revealed that Rp.Cme and Rp.EtAc exhibit considerable antioxidant potentials with IC50 values of 153.53 µg/ml and 169.62 µg/ml respectively. Both fractions were also highly effective against glioblastoma cells with IC50 of 147.64 µg/ml and 76.41ug/ml respectively. CONCLUSION: Phytochemical analysis revealed the presence of important metabolites which might be active against free radicals and glioblastoma cells. Various samples of the plant exhibited considerable antioxidant and anti-glioblastoma potentials warranting further detailed studies.


Subject(s)
Glioblastoma , Rhamnus , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glioblastoma/drug therapy , Chloroform , Plant Bark/chemistry , Benzene , Free Radicals , Phytochemicals/pharmacology , Butanols , Esters
11.
J Cancer ; 15(3): 577-589, 2024.
Article in English | MEDLINE | ID: mdl-38213720

ABSTRACT

Cancer is rapidly becoming the leading cause of death globally. This study aimed to identify edible foods with cytotoxic and/or antioxidant activities that can prevent cancer when consumed in a regular diet. Sixty-eight edible foods were purchased from the local market, and the materials were extracted with 80% methanol. The cytotoxic activity of the extracts was evaluated using MTT on HeLa, H2228, HEK293, and H3122 cell lines. To study apoptosis, triple fluorescence labeling with DAPI, Annexin V, and propidium iodide was used. The phenolic content, antioxidant capacity, and free radical scavenging capabilities were studied using conventional spectrophotometric techniques. Among the edible foods, carrot, pointed gourd, wax gourd, ficus, apple, lemon, cumin seed, and white peppercorn showed moderate cytotoxicity in HeLa cells. The growth of HeLa cells was significantly inhibited dose-dependently by tomato, banana, Indian spinach, guava, lemon peel, and coriander (IC50, 24.54, 17.89, 13.18, 9.33, 1.23, and 2.96 µg/mL, respectively). Tomato, Indian spinach, lemon peel, and coriander exerted significant dose-dependent inhibition of H2228, HEK293, and H3122 cell proliferation. The tomato, Indian spinach, lemon peel, and coriander extracts induced HeLa cell apoptosis. White peppercorn, amaranth, apple, wax gourd, cumin seed, taro, and lemon peel contained significant amounts of polyphenols and showed high antioxidant activity. White peppercorn, apple, coriander, lemon peel, and ficus significantly scavenged DPPH free radicals (IC50 values of 10.23, 12.02, 13.49, 13.8, and 14.0 µg/mL, respectively). The overall results suggest that the daily intake of these antioxidant-rich cytotoxic foods can prevent or reduce the risk of cancer.

12.
Small ; 20(1): e2304491, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37653587

ABSTRACT

A composite nanoagent capable of phototriggered tumor microenvironment (TME) regulation is developed based on copper (II) metal-organic frameworks (MOFs) with encapsulation of blebbistatin (Bb) and surface modification of fibroblast activation protein-αtargeted peptide (Tp). Tp enables active targeting of the nanoagents to cancer-associated fibroblast (CAF) while near-infrared light triggers Cu2+ -to-Cu+ photoreduction in MOFs, which brings about the collapse of MOFs and the release of Bb and Cu+ . Bb mediates photogeneration of hydroxyl radicals (•OH) and therefore inhibits extracellular matrix production by inducing CAF apoptosis, which facilitates the penetration of nanoagent to deep tumor tissue. The dual-channel generation of •OH based on Bb and the Cu+ species, via distinct mechanisms, synergistically reinforces oxidative stress in TME capable of inducing immunogenic cell death, which activates the antitumor immune response and therefore reverses the immunosuppressive TME. The synergistic antitumor phototherapy efficacy of such a type of nanoagent based on the abovementioned TME remodeling is unequivocally verified in a cell-derived tumor xenograft model.


Subject(s)
Cancer-Associated Fibroblasts , Metal-Organic Frameworks , Neoplasms , Humans , Metal-Organic Frameworks/metabolism , Cancer-Associated Fibroblasts/metabolism , Tumor Microenvironment , Copper/metabolism , Neoplasms/metabolism , Cell Line, Tumor
13.
Chem Biodivers ; 21(1): e202301402, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100129

ABSTRACT

Drimia delagoensis has been utilized for its medicinal properties since antiquity. The bulb and leaves are predominantly composed of secondary metabolites that exhibit biological activity. The quantification of total phenolic and flavonoid content, as well as the assessment of antioxidant activity was conducted using the Folin-Ciocalteus method, coulometric analysis, DPPH and the FRAP assays. The ethyl acetate, aqueous, and hexane extracts of the bulb exhibited significantly high total phenolic contents (167.9000±0.3376 µg GAE/mg, 56.2500±0.0043 µg GAE/mg, and 26.4000±0.0198 µg GAE/mg, respectively) compared to the ethyl acetate (49.4400±0.1341 µg QE/mg), aqueous (9.5200±0.1274 µg QE/mg), and hexane leaf extracts (1.8091±0.0049 µg QE/mg). On the other hand, the ethyl acetate leaf extract exhibited the highest antioxidant and free radical scavenging activity. The ethyl acetate extract of D. delagoensis, was identified as a significant source of natural antioxidants, and its use in the management of diabetic foot ulcers linked with oxidative stress is supported.


Subject(s)
Acetates , Antioxidants , Drimia , Antioxidants/chemistry , Phenol , Hexanes , Flavonoids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phenols/chemistry
14.
Dose Response ; 21(4): 15593258231210431, 2023.
Article in English | MEDLINE | ID: mdl-37900620

ABSTRACT

The aerobic organisms not only need oxygen for survival, but oxygen is also fundamentally malignant to the aerobic organism on the grounds of free radical generation and their affiliation with free oxidative stress. This study was done to evaluate the antioxidant and protective properties of P kurroa, S aromaticum, L inermis, R emodi, and C longa against lipid peroxidation induced by different pro-oxidants. The aqueous extracts of these medicinal plants showed inhibition against thiobarbituric acid reactive species (TBARS) induced by different pro-oxidants (10 mM FeSO4 and 5 mM sodium nitroprusside) in the brain and liver of mice. Moreover, the free radical scavenging activities of the extracts were evaluated by the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. L inermis, S aromaticum, and R emodi showed higher inhibitory effects, which could be attributed to their significantly reduced ability and free radical scavenging activities. Therefore, the oxidative stress in the brain and liver could be potentially managed or prevented by the dietary intake of L inermis, S aromaticum, and R emodi plants, which justifies the use of these plants in various degenerative diseases. C longa and P kurroa showed relatively weak antioxidant activities.

15.
J Clin Med ; 12(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37685798

ABSTRACT

Oxidative stress, a condition induced by an excessive amount of free radicals, such as reactive oxygen species (ROS), shows several gender-related differences in basal cellular redox state and antioxidant responses. Crenotherapy with sulfureous mineral water can improve the cellular redox state. In this retrospective observational study, gender-related differences in the efficacy of sulfureous crenotherapy in decreasing oxidant species were investigated. Seventy-eight patients, stratified by sex, with osteoarthritis or degenerative joint disease and Vulgar psoriasis who have received a cycle of sulfureous mud-bath therapy + sulfureous hydropinotherapy were enrolled. Plasma concentration of oxidant species and clinical outcomes were measured at baseline and at the end of treatment. After 2 weeks of sulfureous crenotherapy, a significant amelioration of clinical outcomes and a significant reduction of oxidant species were observed in both sexes, more marked in females than in males (p = 0.0001 and p = 0.04, respectively). For patients with high oxidant species at baseline, females showed a greater reduction in itching compared to males (-95% vs. -50%), while men had a higher amelioration in pain and morning stiffness (-45% vs. -32%, and -50% vs. -37%, respectively). In conclusion, sulfureous crenotherapy can be a valuable strategy to improve cellular redox state in both sexes.

16.
Saudi J Biol Sci ; 30(10): 103783, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37680976

ABSTRACT

Plants have always been the prime focus in medicine industries due to their enormous ethnobotanical uses and multitude of biological and therapeutic properties. In the current study, preliminary phytochemical composition, Total phenolic content (TPC), and total flavonoid content (TFC) with the antioxidant and antibacterial activity of hydroalcoholic extract and n-hexane, chloroform and n-butanol fractions of five selected medicinal plants [Tephrosia purpurea (L.) Pers., Lavandula stoechas L., Aesculus indica (Wall. ex Cambess.) Hook, Iris ensata Thunb., and Kalanchoe pinnata (Lam.) Pers.] from Pakistan, have been evaluated. TPC and TFC were determined by Folin-Ciocalteu's and AlCl3 methods respectively. The antioxidant activity was performed by DPPH, ABTS, FRAP, and CUPRAC while the antibacterial potential of these plants was determined by agar well diffusion assay. K. pinnata (Lam.) Pers. exhibited the highest TPC (695 ± 13.2 mg.GA.Eq.g-1DE ± SD) in n-butanol fraction and the highest TFC in its chloroform faction (615 ± 6.31 mg Q.Eq.g-1 DE ± SD). The n-butanol fraction and hydroalcoholic extract of I. ensata Thunb. exhibited strong antioxidant potential by DPPH and CUPRAC assays respectively, whereas K. pinnata (Lam.) Pers. n-butanol fraction exhibited the strongest reducing potential. The hydroalcoholic extract of all tested plants exhibited significant antibacterial activity against tested bacterial strains with ZI (12-18 mm). Conclusively, K. pinnata (Lam.) Pers. (Family: Crassulaceae) and I. ensataThunb. (Family: Iridaceae) exhibited the highest antioxidant and antibacterial potential. They can be explored for the isolation of phytoconstituents responsible for this potential and serve as a lead for the production of new natural antioxidants and antibacterial agents that can be used to cure various diseases.

17.
Biomolecules ; 13(9)2023 08 24.
Article in English | MEDLINE | ID: mdl-37759691

ABSTRACT

Lipid peroxidation (LP) is the most important type of oxidative-radical damage in biological systems, owing to its interplay with ferroptosis and to its role in secondary damage to other biomolecules, such as proteins. The chemistry of LP and its biological consequences are reviewed with focus on the kinetics of the various processes, which helps understand the mechanisms and efficacy of antioxidant strategies. The main types of antioxidants are discussed in terms of structure-activity rationalization, with focus on mechanism and kinetics, as well as on their potential role in modulating ferroptosis. Phenols, pyri(mi)dinols, antioxidants based on heavy chalcogens (Se and Te), diarylamines, ascorbate and others are addressed, along with the latest unconventional antioxidant strategies based on the double-sided role of the superoxide/hydroperoxyl radical system.


Subject(s)
Antioxidants , Ferroptosis , Lipid Peroxidation , Ascorbic Acid , Oxidative Stress , Superoxides
18.
Antioxidants (Basel) ; 12(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37627623

ABSTRACT

Alzheimer's disease (AD) is a brain disorder that progressively undermines memory and thinking skills by affecting the hippocampus and entorhinal cortex. The main histopathological hallmarks of AD are the presence of abnormal protein aggregates (Aß and tau), synaptic dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. However, oxidative stress or oxidative damage is also evident and commonly overlooked or considered a consequence of the advancement of dementia symptoms. The control or onset of oxidative stress is linked to the activity of the amyloid-ß peptide, which may serve as both antioxidant and pro-oxidant molecules. Furthermore, oxidative stress is correlated with oxidative damage to proteins, nucleic acids, and lipids in vulnerable cell populations, which ultimately lead to neuronal death through different molecular mechanisms. By recognizing oxidative stress as an integral feature of AD, alternative therapeutic or preventive interventions are developed and tested as potential or complementary therapies for this devastating neurodegenerative disease.

19.
Molecules ; 28(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446627

ABSTRACT

Plants are commonly used in folk medicine. Research indicates that the mechanisms of biological activity of plant extracts may be essential in the treatment of various diseases. In this respect, we decided to test the ethanolic extracts of Bidens tripartita herb (BTH), Galium verum herb (GVH), and Rumicis hydrolapathum root (RHR) on angiogenic, anti-inflammatory, and antioxidant properties and their total polyphenols content. In vitro studies using endothelial cells were used to see tested extracts' angiogenic/angiostatic and anti-inflammatory properties. The DPPH assay and FRAP analysis were used to detect antioxidant properties of extracts. The Folin-Ciocalteu analysis was used to determine the content of total polyphenols. The results of gas chromatography-mass spectrometry analysis was also presented. In vitro study demonstrated that BTH, GVH, and RHR ethanolic extracts significantly increased cell invasiveness, compared with the control group. Increased endothelial proangiogenic invasiveness was accompanied by reduced metalloproteinase inhibitor 1 (TIMP-1) and raised in metalloproteinase 9 (MMP-9). Only BTH and GVH significantly reduced cell proliferation, while BTH and RHR facilitated migration. Additionally, tested extracts reduced the production of proangiogenic platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF). The most potent anti-inflammatory capacity showed BTH and GVH, reducing proinflammatory interleukin 8 (CXCL8) and interleukin 6 (Il-6), compared to RHR extract that has slightly less inhibited CXCL8 production without affecting IL-6 production. Moreover, we confirmed the antioxidant properties of all examined extracts. The highest activity was characterized by RHR, which has been correlated with the high content of polyphenols. In conclusion, the modifying influence of examined extracts can be promising in disorders with pathogenesis related to angiogenesis, inflammation and free radicals formation. BTH is the best choice among the three tested extracts with its antiangiogenic and anti-inflammatory properties.


Subject(s)
Galium , Rumex , Antioxidants/pharmacology , Antioxidants/chemistry , Galium/chemistry , Endothelial Cells , Interleukin-6 , Polyphenols/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Ethanol
20.
Antioxidants (Basel) ; 12(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37508008

ABSTRACT

Vitamins, hormones, free radicals, and antioxidant substances significantly influence athletic performance. The aim of this study was to evaluate whether these biological mediators changed during the season and if this was associated with the rate of improvement in performance after training, assessed by means of a standardized test. Professional male soccer players took part in the study. Two evaluations were performed: the first in the pre-season period and the second at the mid-point of the official season, after about 6 months of intensive training and weekly matches. Blood levels of vitamins D, B12, and folic acid, testosterone and cortisol, free radicals, and antioxidant substances were measured. Two hours after breakfast, a Yo-Yo test was performed. The relationships between the biological mediators and the rate of improvement after training (i.e., the increase in meters run in the Yo-Yo test between the pre-season and mid-season periods) were evaluated by means of a linear mixed models analysis. Results: Eighty-two paired tests were performed. The athletes showed better performance after training, with an increase in the meters run of about 20%. No significant relationships between the vitamin and hormone values and the gain in the performance test were observed. Plasmatic levels of free radicals increased significantly, as did the blood antioxidant potential. An indirect relationship between oxidative stress and the improvement in performance was observed (free radicals ß ± SE: = -0.33 ± 0.10; p-value = 0.001), with lower levels of oxidative stress being associated with higher levels of performance in the Yo-Yo test. Monitoring the measures of oxidative stress could be a useful additional tool for coaches in training and/or recovery programs tailored to each player.

SELECTION OF CITATIONS
SEARCH DETAIL