Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.440
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Hazard Mater ; 470: 134263, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38613951

ABSTRACT

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Subject(s)
Antimony , Antioxidants , Gene Expression Regulation, Plant , Nanoparticles , Oryza , Selenium , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Oryza/genetics , Antimony/toxicity , Antioxidants/metabolism , Selenium/toxicity , Gene Expression Regulation, Plant/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development
2.
J Environ Sci (China) ; 143: 35-46, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644022

ABSTRACT

Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.


Subject(s)
Arsenic , Oryza , Selenium , Soil Pollutants , Soil , Oryza/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Selenium/analysis , Selenium/metabolism , Arsenic/analysis , Arsenic/metabolism , Soil/chemistry , Arsenites
3.
Food Chem Toxicol ; 188: 114677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641042

ABSTRACT

Consumption of rice-based foods provides essential nutrients required for infants and toddlers' growth. However, they could contain toxic and excess essential elements that may affect human health. The study aims to determine the composition of rice-based baby foods in the USA and outside and conduct a multiple-life stages probabilistic exposure and risk assessment of toxic and essential elements in children. Elemental concentrations were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in thirty-three rice-based baby foods. This includes 2 infant formulas, 11 rice baby cereals, and 20 rice snacks produced primarily in the United States, China, and other countries. A probabilistic risk assessment was conducted to assess risks of adverse health effects. Results showed that infant formula had higher median concentrations of selenium (Se), copper (Cu), zinc (Zn), sodium (Na), magnesium (Mg), calcium (Ca), and potassium (K) compared to rice baby cereal and rice snacks. On the contrary, rice snacks had the highest median concentration of Arsenic (As) (127 µg/kg) while rice baby cereals showed the highest median concentration of Cd (7 µg/kg). A higher lifetime estimated daily intake was observed for samples manufactured in the USA compared to those from China and other countries. Hazard quotient (HQ < 1) values were suggestive of minimal adverse health effects. However, lifetime carcinogenic risk analysis based on total As indicated an unacceptable cancer risk (>1E-04). These findings show a need for ongoing monitoring of rice-based foods consumed by infants and toddlers as supplementary and substitutes for breast milk or weaning food options. This can be useful in risk reduction and mitigation of early life exposure to improve health outcomes.


Subject(s)
Infant Food , Oryza , Oryza/chemistry , Humans , United States , Infant Food/analysis , Risk Assessment , Infant , Food Contamination/analysis , Trace Elements/analysis , China , Infant Formula/chemistry
4.
Food Res Int ; 184: 114243, 2024 May.
Article in English | MEDLINE | ID: mdl-38609222

ABSTRACT

Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.


Subject(s)
Lipidomics , Lipolysis , Fatty Acids , Fatty Acids, Nonesterified , Linoleic Acid , Rice Bran Oil
5.
Environ Pollut ; 348: 123768, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38493868

ABSTRACT

In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Trichloroethylene/metabolism , Biodegradation, Environmental , Carbon , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Hydrogen , Hydrogen-Ion Concentration
6.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474201

ABSTRACT

In recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both Mus musculus (rats) and Homo sapiens (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish. In the T2DM zebrafish, the thickness of ocular vascular walls significantly increased compared to the control group, which was mitigated after treatment with T3. Additionally, our findings demonstrate the regulatory effect of T3 on lipid metabolism, leading to the reduced synthesis and storage of adipose tissue in zebrafish. We validated the expression patterns of genes relevant to these processes using RT-qPCR. In the T2DM model, there was an almost two-fold upregulation in pparγ and cyp7a1 mRNA levels, coupled with a significant downregulation in cpt1a mRNA (p < 0.01) compared to the control group. The ELISA revealed that the protein expression levels of Pparγ and Rxrα exhibited a two-fold elevation in the T2DM group relative to the control. In the T3-treated group, Pparγ and Rxrα protein expression levels consistently exhibited a two-fold decrease compared to the model group. Lipid metabolomics showed that T3 could affect the metabolic pathways of zebrafish lipid regulation, including lipid synthesis and decomposition. We provided experimental evidence that T3 could mitigate lipid accumulation in our zebrafish T2DM model. Elucidating the lipid-lowering effects of T3 could help to minimize the detrimental impacts of overfeeding in aquaculture.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperlipidemias , Tocotrienols , Humans , Mice , Rats , Animals , Tocotrienols/metabolism , Zebrafish/metabolism , Diet, High-Fat , Hyperlipidemias/metabolism , Rice Bran Oil , Diabetes Mellitus, Type 2/metabolism , PPAR gamma/metabolism , RNA, Messenger/metabolism , Lipid Metabolism , Liver/metabolism
7.
Sci Rep ; 14(1): 7381, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548964

ABSTRACT

The aim of the present work is to biosynthesize Chitosan nanoparticles (CTNp) using tea (Camellia sinensis) extract, with potent antimicrobial properties towards phytopathogens of rice. Preliminary chemical analysis of the extract showed that they contain carbohydrate as major compound and uronic acid indicating the nature of acidic polysaccharide. The structure of the isolated polysaccharide was analyzed through FTIR and 1H NMR. The CTNp was prepared by the addition of isolated tea polysaccharides to chitosan solution. The structure and size of the CTNp was determined through FTIR and DLS analyses. The surface morphology and size of the CTNp was analysed by SEM and HRTEM. The crystalinity nature of the synthesized nanoparticle was identified by XRD analysis. The CTNp exhibited the antimicrobial properties against the most devastating pathogens of rice viz., Pyricularia grisea, Xanthomonas oryzae under in vitro condition. CTNp also suppressed the blast and blight disease of rice under the detached leaf assay. These results suggest that the biosynthesized CTNp can be used to control the most devastating pathogens of rice.


Subject(s)
Chitosan , Nanoparticles , Oryza , Chitosan/pharmacology , Nanoparticles/chemistry , Tea , Plant Extracts/pharmacology
8.
J Oleo Sci ; 73(4): 467-477, 2024.
Article in English | MEDLINE | ID: mdl-38556281

ABSTRACT

Rice bran (RB) and rice bran oil (RBO) are exploring as prominent food component worldwide and their compositional variation is being varied among the world due to regional and production process. In this study, Fermented Rice Bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus and Bifidobacterium bifidum) at 125×10 5 spore g -1 of rice bran, and investigated to evaluate nutritional quality. The Crude Rice Bran Oil (CRBO) was extracted from RB and its quality was also investigated compared to market available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (Threonine, valine, leucine, lysine, histidine and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, serine and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00 mg/g) were found in CRBO compared to MRBO (ranging 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% were found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%) respectively. The physiochemical parameters (density, refractive index, iodine value) were found satisfactory in all sample except acid value and peroxide value higher in CRBO. Heavy metal concentration was found within an acceptable range in both CRBO and MRBO. Thus FRB and RBO could be value added food supplement for human health.


Subject(s)
Antioxidants , Fatty Acids, Unsaturated , Humans , Rice Bran Oil/chemistry , Fatty Acids, Unsaturated/analysis , Antioxidants/analysis , Vitamin E , Phenols
9.
Am J Chin Med ; 52(2): 417-432, 2024.
Article in English | MEDLINE | ID: mdl-38480501

ABSTRACT

Red yeast rice (RYR) is known for its lipid-lowering effects in patients with hypercholesterolemia; however, its comparative efficacy with statins and risk reduction remains uncertain. This retrospective study analyzed data from 337,104 patients with hyperlipidemia in the Chang Gung Research Database cohort, spanning from January 2016 to December 2021. Exclusion criteria were applied to ensure data completeness and compliance, including an age limit of [Formula: see text] years, absence of RYR or statin treatment, and a treatment duration of [Formula: see text] days. Propensity score matching was employed to minimize bias based on baseline factors, with one patient matching with four patients in the comparison group. The study encompassed a total of 5,984 adult hyperlipidemic patients, with 1,197 in the RYR group and 4,787 in the statin group. The patients were also stratified into statin ([Formula: see text]) or combined use ([Formula: see text]) groups for further comparison. Following one year of treatment, both the RYR and statin groups exhibited reductions in total cholesterol and triglyceride levels. Most biochemical parameters showed no significant differences, except for elevated glutamic oxaloacetic transaminase levels in the RYR group ([Formula: see text]) and increased glycohemoglobin levels in the statin group at the three-month mark ([Formula: see text]). In patients with comorbid diabetes, hypertension, kidney, or liver diseases, RYR and statins demonstrated comparable risks for emergency room (ER) visits, stroke, and myocardial infarction (MI). However, the combination of RYR and statins was associated with reduced stroke-related hospitalizations in patients with diabetes, hypertension, and kidney disease, as well as decreased MI-related hospitalizations in patients with hypertension and kidney disease (all [Formula: see text]). In conclusion, both RYR and statins effectively lower blood lipid levels and mitigate related complications. Combining these therapies may lead to fewer ER visits, reduced stroke frequency, and fewer MI hospitalizations in hypertensive and kidney disease patients, and they decreased all-cause mortality in the kidney disease population. Further research on combined therapy is warranted.


Subject(s)
Biological Products , Diabetes Mellitus , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Hyperlipidemias , Hypertension , Kidney Diseases , Stroke , Adult , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/epidemiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Retrospective Studies , Hyperlipidemias/drug therapy , Hyperlipidemias/epidemiology , Lipids , Kidney Diseases/chemically induced , Diabetes Mellitus/drug therapy , Diabetes Mellitus/epidemiology
10.
Sci Rep ; 14(1): 6533, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503773

ABSTRACT

Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.


Subject(s)
Ammonium Compounds , Soil Pollutants , Soil/chemistry , Phosphorus , Sand , Clay , Nitrates , Nitrogen , Charcoal/chemistry , Soil Pollutants/analysis
11.
Plant Physiol Biochem ; 208: 108457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428159

ABSTRACT

Rice is an important food in the world, and selenium (Se) is a necessary trace element for the human. So the effects of selenomethionine (SeMet) on photosynthetic capacity, yield and quality of rice at different stages were studied. The results show that SeMet can increase the Ppotosynthetic capacity of rice leaves during each growth stage, the effect of 5 mg/L SeMet treatment was the most significant. At the mature stage of rice, SeMet significantly increased rice yield and total plant biomass, 7.5and 5 mg/L SeMet treatments had the most significant effects, respectively. In addition, SeMet significantly improved the content of Se and processing quality of rice, decreased chalkiness, inhibited amylose synthesis, and optimized flavor. The above indices showed the best results after treatment with 5 mg/L SeMet. It is hoped that this study will provide a theoretical basis for the application of organic selenium in rice production.


Subject(s)
Oryza , Selenium , Humans , Selenomethionine/pharmacology , Selenium/pharmacology
12.
J Med Food ; 27(3): 231-241, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502788

ABSTRACT

Various neurotransmitters are involved in regulating stress systems. In this study, we investigated the effects of gamma-aminobutyric acid-rich rice bran extract (GRBe) in mice stressed by forced swimming and tail suspension tests. Four weeks of oral administration of GRBe (500-2000 mg/kg) reduced the levels of dopamine and corticosterone in the blood and brain while increasing serotonin levels. GRBe was involved not only in stress but also in regulating sleep and obesity-related genes. Modern society experiences diverse and tense lives because of urbanization and informatization, which cause excessive stress due to complicated interpersonal relationships, heavy work burden, and fatigue from the organized society. High levels of stress cause psychological instability and disrupt the balance in the autonomic nervous system, which maintains the body's equilibrium, resulting in cardiovascular and cerebrovascular diseases, hormonal imbalances, and sleep disorders. Therefore, our results suggest that GRBe is a useful substance that can relieve tension by ultimately influencing a depressive-like state by lowering the levels of neuronal substances, hormones, and cytokines involved in stress and sleep disorders.


Subject(s)
Biological Products , Oryza , Sleep Wake Disorders , Mice , Animals , Depression/drug therapy , Swimming , gamma-Aminobutyric Acid , Disease Models, Animal , Stress, Psychological/drug therapy
13.
Mol Breed ; 44(3): 22, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435473

ABSTRACT

Meeting the ever-increasing food demands of a growing global population while ensuring resource and environmental sustainability presents significant challenges for agriculture worldwide. Arbuscular mycorrhizal symbiosis (AMS) has emerged as a potential solution by increasing the surface area of a plant's root system and enhancing the absorption of phosphorus, nitrogen nutrients, and water. Consequently, there is a longstanding hypothesis that rice varieties exhibiting more efficient AMS could yield higher outputs at reduced input costs, paving the way for the development of Green Super Rice (GSR). Our prior research study identified a variant, OsCERK1DY, derived from Dongxiang wild-type rice, which notably enhanced AMS efficiency in the rice cultivar "ZZ35." This variant represents a promising gene for enhancing yield and nutrient use efficiency in rice breeding. In this study, we conducted a comparative analysis of biomass, crop growth characteristics, yield attributes, and nutrient absorption at varying soil nitrogen levels in the rice cultivar "ZZ35" and its chromosome single-segment substitution line, "GJDN1." In the field, GJDN1 exhibited a higher AM colonization level in its roots compared with ZZ35. Notably, GJDN1 displayed significantly higher effective panicle numbers and seed-setting rates than ZZ35. Moreover, the yield of GJDN1 with 75% nitrogen was 14.27% greater than the maximum yield achieved using ZZ35. At equivalent nitrogen levels, GJDN1 consistently outperformed ZZ35 in chlorophyll (Chl) content, dry matter accumulation, major nutrient element accumulation, N agronomic efficiency (NAE), N recovery efficiency (NRE), and N partial factor productivity (NPFP). The performance of OsCERK1DY overexpression lines corroborated these findings. These results support a model wherein the heightened level of AMS mediated by OsCERK1DY contributes to increased nitrogen, phosphorus, and potassium accumulation. This enhancement in nutrient utilization promotes higher fertilizer efficiency, dry matter accumulation, and ultimately, rice yield. Consequently, the OsCERK1DY gene emerges as a robust candidate for improving yield, reducing fertilizer usage, and facilitating a transition towards greener, lower-carbon agriculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01459-8.

14.
Food Chem ; 447: 138946, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38498952

ABSTRACT

Rice bran, recognized for its rich lipids and health-beneficial bioactive compounds, holds considerable promise in applications such as rice bran oil production. However, its susceptibility to lipid hydrolysis and oxidation during storage presents a significant challenge. In response, we conducted an in-depth metabolic profiling of rice bran over a storage period of 14 days. We focused on the identification of bioactive compounds and functional lipid species (25 acylglycerols and 53 phospholipids), closely tracking their dynamic changes over time. Our findings revealed significant reductions in these lipid molecular species, highlighting the impact of rancidity processes. Furthermore, we identified 19 characteristic lipid markers and elucidated that phospholipid and glycerolipid metabolism were key metabolic pathways involved. By shedding light on the mechanisms driving lipid degradation in stored rice bran, our study significantly advanced the understanding of lipid stability. These information provided valuable insights for countering rancidity and optimizing rice bran preservation strategies.


Subject(s)
Lipidomics , Oryza , Hydrolysis , Oxidation-Reduction , Phospholipids , Lipolysis , Rice Bran Oil
15.
Huan Jing Ke Xue ; 45(2): 929-939, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471931

ABSTRACT

The effects of biochar application on soil nitrous oxide (N2O) and methane (CH4) emissions in a typical rice-vegetable rotation system in Hainan after two years were investigated. The aim was to clarify the long-term effects of biochar on greenhouse gas emissions under this model, and it provided a theoretical basis for N2O and CH4 emission reduction in rice-vegetable rotation systems in tropical regions of China. Four treatments were set up in the field experiment, including no nitrogen fertilizer control (CK); nitrogen, phosphorus, and potassium fertilizer (CON); nitrogen, phosphorus, and potassium fertilizer combined with 20 t·hm-2 biochar (B1); and nitrogen, phosphorus, and potassium fertilizer combined with 40 t·hm-2 biochar (B2). The results showed that: ① compared with that in the CON treatment, the B1 and B2 treatments significantly reduced N2O emissions by 32% and 54% in the early rice season (P < 0.05, the same below), but the B1 and B2 treatments significantly increased N2O emissions by 31% and 81% in the late rice season. The cumulative emissions of N2O in the pepper season were significantly higher than those in the early and late rice seasons, and the B1 treatment significantly reduced N2O emissions by 35%. There was no significant difference between the B2 and CON treatments. ② Compared with that in the CON treatment, B1 and B2 significantly reduced CH4 emissions by 63% and 65% in the early rice season, and the B2 treatment significantly increased CH4 emissions by 41% in the late rice season. There was no significant difference between the B1 and CON treatments. There was no significant difference in cumulative CH4 emissions between treatments in the pepper season. ③ The late rice season contributed to the main global warming potential (GWP) of the rice-vegetable rotation system, and CH4 emissions determined the magnitude of GWP and greenhouse gas emission intensity (GHGI). After two years of biochar application, B1 reduced the GHGI of the whole rice-vegetable rotation system, and B2 increased the GHGI and reached a significant level. However, the B1 and B2 treatments significantly reduced GHGI in the early rice season and pepper season, and only the B2 treatment increased GHGI in the late rice season. ④ Compared with that in the CON treatment, the B1 and B2 treatments significantly increased the yield of early rice by 33% and 51%, and the B1 and B2 treatments significantly increased the yield of pepper season by 53% and 81%. In the late rice season, there was no significant difference in yield except for in the CK treatment without nitrogen fertilizer. The results showed that the magnitude of greenhouse gas emissions in the tropical rice-vegetable rotation system was mainly determined by CH4 emissions in the late rice season. After two years of biochar application, only low biochar combined with nitrogen fertilizer had a significant emission reduction effect, but high and low biochar combined with nitrogen fertilizer increased the yield of early rice and pepper crops continuously.


Subject(s)
Charcoal , Greenhouse Gases , Oryza , Greenhouse Gases/analysis , Agriculture/methods , Fertilizers/analysis , Soil , Nitrogen , China , Methane/analysis , Nitrous Oxide/analysis , Phosphorus , Vegetables , Potassium
16.
J Integr Med ; 22(2): 126-136, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38413255

ABSTRACT

BACKGROUND: Red yeast rice (RYR), a natural lipid-lowering agent, is widely used in clinical practice. However, the existing meta-analyses concerning the safety of RYR preparations have yielded inconsistent results, and the credibility of the evidence has not been quantified. OBJECTIVE: This study was designed to evaluate the existing evidence and offer a comprehensive understanding of the associations between the use of RYR preparations and various adverse health outcomes. SEARCH STRATEGY: Seven literature databases were searched from inception to May 5, 2023, using medical subject headings and free-text terms (e.g., "red yeast rice," "Xuezhikang," and "Zhibitai"). INCLUSION CRITERIA: Meta-analyses that investigated and quantitatively estimated associations between the use of RYR preparations and adverse health outcomes were included in this study. DATA EXTRACTION AND ANALYSIS: Two researchers independently extracted data using a standardized data collection table; any disagreements were resolved by consulting a third researcher. Based on the participant, intervention, comparator and outcome (PICO) framework in each eligible meta-analysis, a series of unique associations between the use of RYR preparations and adverse health outcomes were determined. The associations' effect estimates were re-evaluated using random-effect models. RESULTS: Fifteen meta-analyses, comprising 186 (164 unique) randomized controlled trials, were identified. Based on A MeaSurement Tool to Assess Systematic Reviews version 2, 3 (20%) and 12 (80%) of these meta-analyses had low and critically low confidence, respectively. A total of 61 unique associations between the use of RYR preparations and adverse health outcomes were extracted from eligible meta-analyses. Based on the random-effect models, 10 (16.4%) associations indicated a significant protective effect of RYR preparations against adverse health outcomes, while 5 (8.2%) indicated an increased risk of adverse health outcomes related to uric acid, alanine transaminase and aspartate transaminase levels. The other 46 (75.4%) associations showed no significant difference between the use of RYR preparations and control treatments. Regarding the credibility of the evidence, 21 (34.4%), 34 (55.7%) and 6 (9.8%) associations showed moderate, low and very low credibility, respectively. CONCLUSION: The evidence examined in this study suggests that RYR preparations are safe; however, the credibility of the evidence was not high. Further high-quality evidence is required. Please cite this article as: Ma ZY, Yang SP, Li Y, Xu TT, Yang YL, Yang HY, Li HB, Zhou LJ, Diao Y, Li SY. Associations between the use of red yeast rice preparations and adverse health outcomes: An umbrella review of meta-analyses of randomized controlled trials. J Integr Med. 2024; 22(2): 126-136.


Subject(s)
Biological Products , Humans , Randomized Controlled Trials as Topic , Biological Products/adverse effects
17.
J Food Sci Technol ; 61(3): 414-428, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38327867

ABSTRACT

Rice is considered the king of cereals. It is the only cereal that is being consumed by half of the population in the world. Rice and rice products have potential health benefits. One such rice aided product is rice washed water which is discussed in this article. Rice-washed water, which is commonly regarded as waste water and discarded, is a rich source of minerals and nutrients. The processing of rice washed water, nutritional analysis; edible fungi productions are detailed in this review. The article goes into detail about rice-washed water, which has been used for various purposes since our ancestors' time. The article provides a comprehensive report on the uses of rice-washed water in plant growth, Ayurveda, food, Cosmetics and a variety of other applications. Rice washed water is being utilized for various ailments since primitive times. The detailed report on the treatment utilizing rice washed water is also provided in this article. There are scarce researches with rice washed water, this article address the conventional uses of rice washed water, which can be taken up by the research community which needs more scientific validation. This review article also includes details about the composition and a variety of other important information about rice-washed water. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05722-2.

18.
Chemosphere ; 352: 141450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367876

ABSTRACT

The current study explores the co-pyrolysis of waste motor oil (WMO) and rice stubble in a designed lab-scale pyrolyzer to produce alternative energy fuels. The parameter screening was followed by optimization utilizing the Box-Behnken design (BBD). Reactor temperature (TR), mixing ratio (M), and holding time (t) affected the co-pyro-oil yield substantially. A maximum co-pyro-oil yield of 90.3% was achieved at a TR = 485 °C, t = 12.5 min, and M = 5% rice stubble to waste motor oil, which was further characterized and compared with the commercial diesel fuel properties. The highest research octane number of 76.15 was obtained for the co-pyro-oil (Co-PO), followed by the pyro-oil generated from only waste motor oil (POWMO). Consequently, the paraffin content increased to 64.34 wt% from 27.66 wt % for PO RS. The carbon number varied from C7-C17 for PO WMO and Co-Po, aligning with the diesel fuel requirements. Furthermore, a substantial enrichment in the physio-chemical properties of the produced Co-PO with reduced moisture content and enhancement in higher heating value (HHV) was also noticed. Hence, the generated Co-PO could be utilized as transport-grade fuel.


Subject(s)
Oryza , Petroleum , Gasoline , Pyrolysis , Oils
19.
Gene ; 893: 147936, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38381507

ABSTRACT

Pollen intine serves as a protective layer situated between the pollen exine and the plasma membrane. It performs essential functions during pollen development, including maintaining the morphological structure of the pollen, preventing the loss of pollen contents, and facilitating pollen germination. The formation of the intine layer commences at the bicellular pollen stage. Pectin, cellulose, hemicellulose and structural proteins are the key constituents of the pollen intine. In Arabidopsis and rice, numerous regulatory factors associated with polysaccharide metabolism and material transport have been identified, which regulate intine development. In this review, we elucidate the developmental processes of the pollen wall and provide a concise summary of the research advancements in the development and genetic regulation of the pollen intine in Arabidopsis and rice. A comprehensive understanding of intine development and regulation is crucial for unraveling the genetic network underlying intine development in higher plants.


Subject(s)
Arabidopsis , Oryza , Oryza/genetics , Arabidopsis/genetics , Gene Regulatory Networks , Gene Expression Regulation , Pollen/genetics
20.
Anim Sci J ; 95(1): e13923, 2024.
Article in English | MEDLINE | ID: mdl-38337192

ABSTRACT

This study was done to investigate which components of rice bran (RB) are involved in the inhibition of methanogenesis by fractionating the rice bran and adding it to a rumen in vitro culture system. The RB extract obtained using ethanol and water was screened in an in vitro fermentation system. The experimental treatment conditions were as follows: a control group containing a substrate without supplements; substrates with 0.06 g of RB; 0.6 mL of ethanol; 0.6 mL of distilled water (DW); 0.6 mL of ethanol-soluble fraction (ESF); 0.06 g of ethanol-insoluble rice bran (EIRB); 0.6 mL of water-soluble fraction (WSF); and 0.06 g of water-insoluble rice bran (WIRB). Based on the result of the analysis, the addition of ESF significantly decreased CH4 and CH4 /g dry matter digested, methanogen population (p < 0.05), while gas and dry matter digestibility (DMD) were comparable with the control group. Total short-chain fatty acid (SCFA), and proportion of propionate were reduced, and the proportion of butyrate was increased by the addition of ethanol and ESF (p < 0.05). This result suggests that the supplementation of 10% ESF can substantially reduce methane production in vitro without a negative effect on substrate digestibility.


Subject(s)
Oryza , Rumen , Animals , Rumen/metabolism , Fermentation , Water , Methane/metabolism , Ethanol/metabolism , Ethanol/pharmacology , Plant Extracts/pharmacology , Diet , Digestion , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL