Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Publication year range
1.
Phytochemistry ; 219: 113988, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224846

ABSTRACT

Hedscandines A-C (1-3), three undescribed indole alkaloids were isolated from Hedyotis scandens Roxb, a traditional Chinese medicine widely used in the treatment of respiratory ailments. Their structures were elucidated by extensive spectroscopic data and electronic circular dichroism calculation. Hedscandine A (1), possessed a unique carbon skeleton with a 1,4-oxazonin-2(3H)-one core system and displayed a rapid bactericidal activity against MRSA with a MIC value of 16 µg/mL. Mechanistic studies showed that compound 1 could disrupt the integrity of bacterial cell membranes and thus lead to bacterial death.


Subject(s)
Hedyotis , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Indole Alkaloids/chemistry
2.
Fitoterapia ; 172: 105754, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992781

ABSTRACT

Canthium Lam. is a genus of flowering plants of the Rubiaceae family with about 80-102 species mainly distributed in Asia, tropical and subtropical Africa. The genus is closely related to Keetia E. Phillips and Psydrax Gaertn. and plants of this genus are used in folk medicine for the treatment of diarrhea, worms, leucorrhoea, constipation, snake bites, diabetes, hypertension, venereal diseases, and malaria. The present review covers a period of 52 years of biological and chemical investigations into the genus Canthium and has resulted in the isolation of about 96 secondary metabolites and several reported biological properties. For the Rubiaceae family, iridoids were reported as being the chemotaxonomic markers of this genus (∼25%). Other reported classes of compounds include alkaloids, flavonoids, phenolic compounds, cyanogenic glycosides, coumarins, sugar alcohols, lignans, triterpenoids, and benzoquinones. The main reported pharmacological properties of most species of this genus include antioxidant, antiplasmodial, antipyretic, anti-inflammatory, antidiabetic, neuroprotective and antimicrobial activities with the latter being the most prominent. Considering the diversity of compounds reported from plants of this genus and their wide range of biological activities, it is considered to be worthy to further investigate them for the discovery of potentially new and cost effective drugs.


Subject(s)
Phytotherapy , Rubiaceae , Ethnopharmacology , Plant Extracts/chemistry , Molecular Structure , Phytochemicals
3.
Nat Prod Res ; 38(5): 711-718, 2024.
Article in English | MEDLINE | ID: mdl-36971058

ABSTRACT

A new naphthoquinone derivative (1) together with twenty-three known compounds (2-24), were isolated from the aerial parts of Rubia cordifolia L. Their structures were elucidated on the basis of NMR and HR-ESIMS data. Compounds 1-13 were assessed for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 2-6 exhibited significant inhibitory activities with IC50 values of 21.37, 13.81, 24.56, 20.32, and 30.08 µmol·L-1, respectively.


Subject(s)
Naphthoquinones , Rubia , Animals , Mice , Rubia/chemistry , Magnetic Resonance Spectroscopy , RAW 264.7 Cells , Naphthoquinones/pharmacology , Plant Components, Aerial , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Nat Prod Res ; 38(1): 91-96, 2024.
Article in English | MEDLINE | ID: mdl-35921492

ABSTRACT

Two new anthraquinone derivatives sapranquinones A and B (1 and 2) together with two known biogenetically related anthraquinone derivatives (3 and 4) were isolated from the stems of Saprosma crassipes H. S. Lo. The structures of these compounds were elucidated using comprehensive spectroscopic methods. Compounds 1-4 were evaluated for their antibacterial activities and compounds 1 and 3 had a broad spectrum antibacterial activity against Staphylococcus albus, Escherichia coli, Bacillus cereus, Micrococcus tetragenus, and Micrococcus luteus with MIC values ranging from 1.25 to 5 µg/mL.


Subject(s)
Anthraquinones , Rubiaceae , Anthraquinones/chemistry , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectrum Analysis , Rubiaceae/chemistry , Escherichia coli , Microbial Sensitivity Tests
5.
Phytochemistry ; 217: 113904, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926152

ABSTRACT

Seventeen undescribed iridoid derivatives (1-17) and four known compounds (18-21) were isolated from the whole plant of Hedyotis diffusa Willd. Their structures were elucidated based on unambiguous spectroscopic data (UV, IR, HRESIMS, CD, and 1D and 2D NMR). It is noteworthy that compounds 1-8, which possess unique long-chain aliphatic acid moiety, were reported for the first time among the iridoid natural products. All compounds were evaluated for their anti-inflammatory activities in lipopolysaccharide-induced RAW 264.7 cells. Compounds 2, 4, and 6 showed significant suppression effects on nitric oxide production, with IC50 values of 5.69, 6.16, and 6.84 µM, respectively. The structure-activity relationships of these compounds indicated that long-chain aliphatic moieties at C-10 might be the key group for their anti-inflammatory activities. The therapeutic properties of these iridoid derivatives could give an insight into utilizing H. diffusa as a natural source of anti-inflammatory agents.


Subject(s)
Hedyotis , Iridoids , Iridoids/pharmacology , Iridoids/chemistry , Hedyotis/chemistry , Plant Extracts/chemistry , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
6.
Plants (Basel) ; 12(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37896046

ABSTRACT

Metabolic syndrome (MetS) predisposes individuals to chronic non-communicable diseases (NCDs) like type 2 diabetes (T2D), non-alcoholic fatty liver disease, atherosclerosis, and cardiovascular disorders caused by systemic inflammation, intestinal dysbiosis, and diminished antioxidant ability, leading to oxidative stress and compromised insulin sensitivity across vital organs. NCDs present a global health challenge characterized by lengthy and costly pharmacological treatments. Complementary and alternative medicine using herbal therapies has gained popularity. Approximately 350,000 plant species are considered medicinal, with 80% of the world's population opting for traditional remedies; however, only 21,000 plants are scientifically confirmed by the WHO. The Rubiaceae family is promissory for preventing and treating MetS and associated NCDs due to its rich content of metabolites renowned for their antioxidative, anti-inflammatory, and metabolic regulatory properties. These compounds influence transcription factors and mitigate chronic low-grade inflammation, liver lipotoxicity, oxidative stress, and insulin resistance, making them a cost-effective non-pharmacological approach for MetS prevention and treatment. This review aims to collect and update data that validate the traditional uses of the Rubiaceae family for treating MetS and associated NCDs from experimental models and human subjects, highlighting the mechanisms through which their extracts and metabolites modulate glucose and lipid metabolism at the molecular, biochemical, and physiological levels.

7.
Physiol Mol Biol Plants ; 29(6): 843-853, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37520807

ABSTRACT

Rubia podantha Diels is endemic to southwestern China and belongs to the family Rubiaceae. It is used in traditional Chinese medicines. To enrich the genetic data and resolve Rubiaceae's phylogeny, we assembled a complete chloroplast (cp) genome of R. podantha using Illumina HiSeq reads. The whole length of the cp genome was 154,866 bp. Annotation using PGA software found 113 genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. The large single-copy region was 84,717 bp, the inverted repeat B (IRa) region was 26,516 bp, the small single copy was 17,117 bp, and the inverted repeats B (IRb) region was 26,516 bp. Moreover, 64 SSRs were identified. Phylogenomic analysis using cp genomes of 109 Rubiaceae species found that R. podantha is closely related to R. cordifola. Rubiaceae was separated into three subfamilies: Ixoroideae, Cinchonoideae, and Rubiodeae. The genus Saprosma was not imbedded within the Spermacoceae alliance as reported in previous studies. Instead, it was imbedded within the Psychotrieae alliance. Divergence time estimation indicated that R. podantha split from its relative R. cordifolia around 1.25 million years ago. The assembled chloroplast genome in this study provided useful molecular information about the evolution of R. podantha and was a basis for phylogenetic analyses of Rubiaceae. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01302-y.

8.
Am J Bot ; 110(6): e16194, 2023 06.
Article in English | MEDLINE | ID: mdl-37283436

ABSTRACT

PREMISE: Distyly is a condition in which individual plants in a population express two floral morphs, L- and S-morph, characterized by reciprocal placements of anthers and stigmas between morphs. The function of distyly requires that pollinators collect pollen from L- and S-morphs on different parts along their bodies to then deposit it on the stigmas of the opposite morph, known as legitimate pollination. However, different pollinator groups might differ in the ability to transfer pollen legitimately. METHODS: We investigated patterns of pollen pickup along the body of different functional groups (hummingbirds and bees) using preserved specimens to analyze their role in the reproductive success of Palicourea rigida. We measured pollen deposition on the body of pollinators, on stigmas, and fruit production after a single visit. RESULTS: Pollen from L- and S-flowers appeared segregated on different body parts of the hummingbird and bee used in the study. S-pollen was deposited primarily on the proximal regions (near the head), and L-pollen was placed in the distal regions (tip of the proboscis and bill). Hummingbirds were more efficient at legitimate pollination than bees, particularly to S-stigmas. However, fruit formation after single visits by both pollinators was similar. CONCLUSIONS: The morphology of distylous flowers allows the segregated placement of L-and S-pollen on different body parts of the animal specimens used, facilitating the promotion of legitimate pollen transfer, an observation consistent between the two functional pollinator groups. Also, the results show that full fruit set requires more than one visit.


Subject(s)
Butterflies , Rubiaceae , Bees , Animals , Fruit , Reproduction , Pollination , Pollen , Rubiaceae/anatomy & histology , Flowers/anatomy & histology , Birds
9.
Phytochemistry ; 212: 113705, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37172671

ABSTRACT

Eight previously undescribed iridoid glycosides together with 20 known congeners were isolated from the aerial parts of Paederia scandens (Lour.) Merrill (Rubiaceae). Their structures incorporating absolute configurations were elucidated based on the comprehensive analyses of NMR data, HR-ESI-MS spectrometry, and ECD data. The potential anti-inflammatory activities of the isolated iridoids were evaluated in lipopolysaccharide-stimulated RAW 264.7 macrophages. Compound 6 significantly inhibited the production of nitric oxide with an IC50 value of 15.30 µM. The results of immunoblotting, qPCR, and immunofluorescence staining assays revealed that compound 6 exhibited anti-inflammatory activity by suppressing nuclear translocation of NF-κB and reducing the expression of COX-2, iNOS, IL-1ß, and IL-6. These results provide a basis for further development and utilization of P. scandens as a natural source of potential anti-inflammatory agents.


Subject(s)
Iridoid Glycosides , Rubiaceae , Iridoid Glycosides/pharmacology , Iridoids/pharmacology , Iridoids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , NF-kappa B , Rubiaceae/chemistry , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology , Nitric Oxide
10.
Nat Prod Res ; 37(5): 764-768, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35617512

ABSTRACT

Richardia brasiliensis is a species used in folk medicine and rich in active compounds. In this study, the extracts were submitted to UHPLC-ESI-MS/MS analysis and total polyphenols, tannins, and flavonoids assays. Besides, it was determined its antioxidant capacity, oxidative stress markers and toxicological profile. Fourteen polyphenols were found and, in the dosages, a slight change in the concentrations in each extract was observed. Regarding the antioxidant capacity, the responses were different in the methods used. There was an increase in lipid peroxidation, and NO, however total ROS remained unchanged. The cells remained more than 90% viable and the extracts did not cause damage to single strands of DNA, with the exception of the crude autumn and spring extracts at 500 µg/mL. The results found in this study suggest that extracts are potentially toxic to human leukocyte cells in high concentrations; however, more studies should be performed in different cell lines.


Subject(s)
Antioxidants , Rubiaceae , Humans , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Tannins , Polyphenols/pharmacology , Phytochemicals/analysis , Flavonoids/pharmacology , Flavonoids/analysis
11.
Nat Prod Res ; 37(3): 397-403, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34933627

ABSTRACT

Oldenlandia diffusa is an important Chinese traditional medicine with various biological activities such as anti-tumor, anti-inflammatory, anti-oxidant, antibacterial, neuroprotective and hepatoprotective effects. During our course of finding novel compounds from O. diffusa, two new alternariol derivatives named 9-O-(trans-p-coumaroyl)-alternariol (1), 9-O-(trans-caffeoyl)-alternariol (2), together with six known compounds (3-8) were isolated. Their structures were established on the basis of spectroscopic and physicochemical analysis. All isolates were evaluated for in vitro cytotoxic activities on MCF-7, HepG2, A549 and A2780 cancer cells. As a result, new compounds 1 and 2 exhibited potent cytotoxic activities on A2780 cancer cells with IC50 values of 3.1 and 9.4 µM, respectively. And a conclusion was deduced that the p-coumaroyl or caffeoyl moiety could greatly increased the cytotoxic activity of alternariol on cancer cells.


Subject(s)
Oldenlandia , Ovarian Neoplasms , Humans , Female , Cell Line, Tumor , Oldenlandia/chemistry
12.
Plant Physiol Biochem ; 194: 627-637, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36535102

ABSTRACT

Species of the genus Coffea accumulate diterpenes of the ent-kaurane family in the endosperm of their seeds, of which cafestol and kahweol are the most abundant. The diterpenes are mainly stored in esterified form with fatty acids, mostly palmitate. In contrast to the numerous studies on their effects on human health and therapeutic applications, nothing was previously known about their biological and ecological role in planta. The antifungal and anti-insect activities of cafestol and cafestol palmitate were thus investigated in this study. Cafestol significantly affected the mycelial growth of five of the six phytopathogenic fungi tested. It also greatly reduced the percentage of pupation of larvae and the pupae and adult masses of one of the two fruit flies tested. By contrast, cafestol palmitate had no significant effect against any of the fungi and insects studied. Using confocal imaging and oil body isolation and analysis, we showed that diterpenes are localized in endosperm oil bodies, suggesting that esterification with fatty acids enables the accumulation of large amounts of diterpenes in a non-toxic form. Diterpene measurements in all organs of seedlings recovered from whole seed germination or embryos isolated from the endosperm showed that diterpenes are transferred from the endosperm to the cotyledons during seedling growth and then distributed to all organs, including the hypocotyl and the root. Collectively, our findings show that coffee diterpenes are broad-spectrum defence compounds that protect not only the seed on the mother plant and in the soil, but also the seedling after germination.


Subject(s)
Coffea , Diterpenes , Humans , Coffee , Seedlings/chemistry , Antifungal Agents/pharmacology , Endosperm/chemistry , Germination , Diterpenes/pharmacology , Seeds/chemistry , Fatty Acids
13.
J Asian Nat Prod Res ; 25(1): 27-35, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35503565

ABSTRACT

Two new iridoid glycosides, named productasperulosidic acid butyl ester (1) and E-6-O-3-hydroxy-p-methoxycinnamoyl scandoside methyl ester (2), along with nine known ones (3-11), were isolated from Hedyotis diffusa Willd. The structures of them were elucidated by extensive 1D, 2D NMR and HR-ESI-MS spectral data. Compounds 1-11 showed no significant cytotoxic activity against HeLa cells.


Subject(s)
Drugs, Chinese Herbal , Hedyotis , Humans , Iridoid Glycosides , Hedyotis/chemistry , HeLa Cells , Molecular Structure , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
14.
Reprod Sci ; 30(2): 690-700, 2023 02.
Article in English | MEDLINE | ID: mdl-35969364

ABSTRACT

Inadequate release of nitric oxide (NO) by the penile tissue impacts negatively on penile erection causing erectile dysfunction (ED). Fadogia agrestis has been implicated in the management of ED without information on key biomolecules associated with ED in male rats. Therefore, this study evaluated the influence of aqueous extract of Fadogia agrestis stem (AEFAS) on key biomolecules associated with ED in the penile and testicular tissues of male Wistar rats induced with ED by paroxetine. Thirty male rats were assigned into 6 groups (I, II, III, IV, V and VI) of 5. Group I (sham control, without ED) was administered distilled water orally. Paroxetine-induced ED rats in groups II (negative control), III (positive control), IV, V and VI received distilled water, sildenafil citrate (SC, 50 mg/kg body weight) and AEFAS at 18, 50 and 100 mg/kg body weight respectively. Paroxetine lowered/reduced (p < 0.05) the MF, IF, EF, NO, cGMP, catalase, SOD, T-SH, GSH and GST whilst it prolonged/increased ML, IL, EL, PEI, AChE, PDE5, arginase, ACE, TBARS and H2O2. Contrastingly, AEFAS like sildenafil citrate increased (p < 0.05) the penile and testicular NO, cGMP, catalase, SOD, T-SH, GSH and GST and reduced AChE, PDE5, arginase, ACE, TBARS and H2O2 to levels that compared favourably (p > 0.05) with those of sham control. The study concluded that AEFAS restored the NO/cGMP pathway and ED-associated key enzymes in the penile and testicular tissues of male rats via antioxidant means. The study recommended the use of aqueous extract of Fadogia agrestis stem in managing ED after clinical trials.


Subject(s)
Erectile Dysfunction , Humans , Male , Rats , Animals , Erectile Dysfunction/chemically induced , Erectile Dysfunction/drug therapy , Rats, Wistar , Sildenafil Citrate , Paroxetine/therapeutic use , Catalase , Arginase/metabolism , Arginase/therapeutic use , Thiobarbituric Acid Reactive Substances , Hydrogen Peroxide , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Body Weight , Superoxide Dismutase
15.
Molecules ; 27(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364108

ABSTRACT

There is a previously neglected influence of geochemical conditions on plant phytochemistry. In particular, high concentrations of dissolved salts can affect their biosynthesis of natural products. Detoxification is most likely an important aspect for the plant, but additional natural products can also give it an expanded range of bioactivities. During the phytochemical analysis a Palicourea luxurians plant collected in a sulfate-rich environment (near the Río Sucio, Costa Rica) showed an interesting natural product in this regard. The structure of this compound was determined using spectroscopic and computational methods (NMR, MS, UV, IR, CD, optical rotation, quantum chemical calculations) and resulted in a megastigmane sulfate ester possessing a ß-ionone core structure, namely blumenol C sulfate (1, C13H22O5S). The levels of sulfur and sulfate ions in the leaves of the plant were determined using elemental analysis and compared to the corresponding levels in comparable plant leaves from a less sulfate-rich environments. The analyses show the leaves from which we isolated blumenol C sulfate (1) to contain 35% more sulfur and 80% more sulfate than the other samples. Antimicrobial and antioxidant activities of compound 1 were tested against Escherichia coli, E. coli ampR and Bacillus subtilis as well as measured using complementary in vitro FRAP and ATBS assays, respectively. These bioactivities are comparable to those determined for structurally related megastigmanes. The sulfur and sulfate content of the plant leaves from the sulfate-rich environment was significantly higher than that of the other plants. Against this background of salt stress, we discuss a possible biosynthesis of blumenol C sulfate (1). Furthermore, there appears to be no benefit for the plant in terms of extended bioactivities. Hence, the formation of blumenol C sulfate (1) probably primarily serves the plant detoxification process.


Subject(s)
Biological Products , Rubiaceae , Rubiaceae/chemistry , Norisoprenoids/analysis , Sulfates/analysis , Escherichia coli , Plant Leaves/chemistry , Biological Products/analysis , Sulfur/analysis
16.
Plant Sci ; 325: 111479, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36181945

ABSTRACT

The behavior of florigen(s) and environment-influenced regulatory pathways that control floral initiation in tropical perennials species with complex phenological cycles is poorly understood. Understanding the mechanisms underlying this process is important for food production in the face of climate change, thus, we used Coffea sp. L. (Rubiaceae) as a model to explore this issue. Homologs of FLOWERING LOCUS T (CaFT1) and environment-related regulators CONSTANS (CaCO), PHYTOCHROME INTERACTING FACTOR 4 (CaPIF4) and FLOWERING LOCUS C (CaFLC) were retrieved from coffee genomes and identified through phylogenetic analysis. Overexpression of CaFT1 in Arabidopsis caused early-flowering phenotype and yeast two hybrid studies indicated CaFT1 binding to bZIP floral regulator FD, which suggests that CaFT1 is a coffee florigen. Expression of CaFT1 and other floral regulators, together with carbohydrate analysis, were evaluated over one year using three contrasting genotypes, two C. arabica cultivars and C. canephora. All genotypes showed active and variable CaFT1 transcription from February until October, indicating the potential window for floral induction that reached a maximum in the cold period of June. CaCO expression, as expected, varied over a 24-hour day period and monthly with day length, whereas expression of temperature-responsive homologs, CaFLC and CaPIF4, did not correlate with temperature changes nor CaFT1 expression, suggesting alternative FT regulatory pathways in coffee. Based on our results, we suggest a continuum of floral induction that allows different starting points for floral activation, which explains developmental asynchronicity and prolonged anthesis events in tropical perennial species.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Florigen/metabolism , Coffee/metabolism , Gene Expression Regulation, Plant , Flowers/genetics , Flowers/metabolism , Phylogeny , Gene Expression Regulation, Developmental , Arabidopsis/genetics , Arabidopsis Proteins/metabolism
17.
S Afr J Bot ; 151: 146-155, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36193345

ABSTRACT

Medicinal plants are being used as an alternative source of health management to cure various human ailments. The healing role is attributed to the hidden dynamic groups of various phytoconstituents, most of which have been recorded from plants and their derivatives. Nowadays, medicinal plants have gained more attention due to their pharmacological and industrial potential. Aromatic compounds are one of the dynamic groups of secondary metabolites (SM) naturally present in plants; and anthraquinones of this group are found to be attractive due to their high bioactivity and low toxicity. They have been reported to exhibit anticancer, antimicrobial, immune-suppressive, antioxidant, antipyretic, diuretic and anti-inflammatory activities. Anthraquinones have been also shown to exhibit potent antiviral effects against different species of viruses. Though, it has been reported that a medicinal plant with antiviral activity against one viral infection may be used to combat other types of viral infections. Therefore, in this review, we explored and highlighted the antiviral properties of anthraquinones of Polygonaceae, Rubiaceae and Asphodelaceae families. Anthraquinones from these plant families have been reported for their effects on human respiratory syncytial virus and influenza virus. They are hence presumed to have antiviral potential against SARS-CoV as well. Thus, anthraquinones are potential candidates that need to be screened thoroughly and developed as drugs to combat COVID-19. The information documented in this review could therefore serve as a starting point in developing novel drugs that may help to curb the SARS-COVID-19 pandemic.

18.
Mitochondrial DNA B Resour ; 7(8): 1466-1467, 2022.
Article in English | MEDLINE | ID: mdl-35965643

ABSTRACT

Rubia yunnanensis Diels 1912 (Rubiaceae) is a plant used in traditional Chinese medicine. We here assembled a complete chloroplast (cp) genome for R. yunnanensis using Illumina HiSeq reads. The genome is 155,108 bp in length. The genome contains 113 genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. The large single-copy (LSC) region is 84,848 bp, inverted repeat A (IRa) region is 26,573 bp, small single-copy (SSC) region is 17,114 bp, and inverted repeat B (IRb) region is 26,573 bp. A phylogenomic analysis found that R. yunnanensis is close to R. cordifolia. The assembled cp genome in this study provided a basis for the conservation and phylogenetic studies of R. yunnanensis.

19.
Regul Toxicol Pharmacol ; 133: 105221, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35792244

ABSTRACT

Richardia brasiliensis, known as poaia branca, is a medicinal species widely distributed throughout Brazil and used in folk medicine. However, studies on its toxicity are practically non-existent, and little is known about its biological activity. This study aimed to investigate its phytochemical compounds, assess its in vitro and in vivo toxicities, and determine its antiproliferative activity. UHPLC-ESI-HRFTMS performed the phytochemical characterization, and the antiproliferative activity was analyzed in different tumor cell lines. In vitro toxicity was evaluated in PBMC cells, and in vivo acute and repeated dose toxicity was evaluated according to OECD guidelines. It was identified alkaloids and terpenes as significant compounds. Regarding its antiproliferative activity, the human melanoma strain decreased its viability by about 95%. In vitro toxicity showed that the extracts maintained the viability of PBMCs; however, higher concentrations were able to increase the production of dsDNA quantity. In vivo tests showed no mortality nor signs of toxicity; the alterations found in hematological and biochemical parameters are within the standards for the species. The results indicate that R. brasiliensis has a good effect against the tumor cell line; still, more studies on its toxicity at higher concentrations are needed.


Subject(s)
Alkaloids , Leukocytes, Mononuclear , Cell Line, Tumor , Humans , Phytochemicals/toxicity , Plant Extracts/chemistry , Plant Extracts/toxicity
20.
J Nat Med ; 76(4): 748-755, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35902551

ABSTRACT

Ophiorrhiza plants (Family Rubiaceae) are known to produce diverse monoterpenoid indole alkaloids including camptothecin with potent antitumor activity. This review contains a summary of recent chemical studies reported over the past 10 years regarding alkaloids (monoterpenoid indole and tetrahydroisoquinoline alkaloids, and cyclopeptide) in Ophiorrhiza plants. In addition, the alkaloid biosynthetic pathways based on their reported structures were proposed.


Subject(s)
Alkaloids , Rubiaceae , Alkaloids/chemistry , Biosynthetic Pathways , Camptothecin/chemistry , Camptothecin/metabolism , Rubiaceae/chemistry , Rubiaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL