Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Publication year range
1.
Microbiol Spectr ; 12(4): e0326723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441475

ABSTRACT

Cellulolytic bacteria ferment dietary fiber into short-chain fatty acids, which play an important role in improving fiber utilization and maintaining intestinal health. Safe and effective cellulolytic bacteria are highly promising probiotic candidates. In this study, we isolated three strains of Bacillus cereus, which exhibited cellulolytic properties, from Kele pig feces. To assess the genetic basis of cellulose degradation by the isolates, whole-genome sequencing was used to detect functional genes associated with cellulose metabolism. Subsequently, we identified that the B. cereus CL2 strain was safe in mice by monitoring body weight changes, performing histopathologic evaluations, and determining routine blood indices. We next evaluated the biological characteristics of the CL2 strain in terms of its growth, tolerance, and antibiotic susceptibility, with a focus on its ability to produce short-chain fatty acids. Finally, the intestinal flora structure of the experimental animals was analyzed to assess the intestinal environment compatibility of the CL2 strain. In this study, we isolated a cellulolytic B. cereus CL2, which has multiple cellulolytic functional genes and favorable biological characteristics, from the feces of Kele pigs. Moreover, CL2 could produce a variety of short-chain fatty acids and does not significantly affect the diversity of the intestinal flora. In summary, the cellulolytic bacterium B. cereus CL2 is a promising strain for use as a commercial probiotic or in feed supplement. IMPORTANCE: Short-chain fatty acids are crucial constituents of the intestinal tract, playing an important and beneficial role in preserving the functional integrity of the intestinal barrier and modulating both immune responses and the structure of the intestinal flora. In the intestine, short-chain fatty acids are mainly produced by bacterial fermentation of cellulose. Therefore, we believe that safe and efficient cellulolytic bacteria have the potential to be novel probiotics. In this study, we systematically evaluated the safety and biological characteristics of the cellulolytic bacterium B. cereus CL2 and provide evidence for its use as a probiotic.


Subject(s)
Bacillus cereus , Probiotics , Animals , Swine , Mice , Bacillus cereus/genetics , Fatty Acids, Volatile , Intestines , Cellulose
2.
Food Chem Toxicol ; 184: 114437, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185402

ABSTRACT

The use of nano-based dietary supplements is increasing around the world, as nanotechnology can help enhance nutrient bioavailability. ALP1018 is a newly developed iron-zinc complex supplement designed as a nanoformulation to improve the efficacy of iron and zinc supplementation. However, safety concerns have been raised, as there is no clear evaluation of ALP1018 toxicity. The goal of this study was to determine the potential mutagenicity and genotoxicity of ALP1018 through three standard screenings: the Ames test, which evaluates bacterial reverse mutations; the in vitro test of chromosomal aberration in Chinese hamster lung cells; and the in vivo micronucleus assay using ICR mice. ALP1018 showed no mutagenic effect, as no increase was observed in the presence or absence of metabolic activation (S9 mix) in revertant colonies on all the bacterial strains used in the Ames test. No structural chromosomal abnormalities were observed in the presence or absence of the S9 mix in mammalian cells used in the chromosomal aberration assay. In the micronucleus test, the frequency of micronucleated polychromatic erythrocytes was not significantly increased in mouse bone marrow cells. Based on these findings, we can conclude that ALP1018 is safe to use and has no mutagenic or genotoxic potential.


Subject(s)
Chromosome Aberrations , DNA Damage , Cricetinae , Mice , Animals , Mutagenicity Tests , Mice, Inbred ICR , Micronucleus Tests , Cricetulus , Mutagens/toxicity , Dietary Supplements/toxicity , Iron , Zinc
3.
Front Toxicol ; 5: 1294780, 2023.
Article in English | MEDLINE | ID: mdl-38026842

ABSTRACT

Assessing chemical safety is essential to evaluate the potential risks of chemical exposure to human health and the environment. Traditional methods relying on animal testing are being replaced by 3R (reduction, refinement, and replacement) principle-based alternatives, mainly depending on in vitro test methods and the Adverse Outcome Pathway framework. However, these approaches often focus on the properties of the compound, missing the broader chemical-biological interaction perspective. Currently, the lack of comprehensive molecular characterization of the in vitro test system results in limited real-world representation and contextualization of the toxicological effect under study. Leveraging omics data strengthens the understanding of the responses of different biological systems, emphasizing holistic chemical-biological interactions when developing in vitro methods. Here, we discuss the relevance of meticulous test system characterization on two safety assessment relevant scenarios and how omics-based, data-driven approaches can improve the future generation of alternative methods.

4.
Vet Sci ; 10(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37888567

ABSTRACT

To evaluate the acute and chronic 28-day repeated-dose oral toxicity of Guixiong Yimu San (GYS) in mice and rats, high-performance liquid chromatography (HPLC) was used to determine the stachydrine hydrochloride in GYS as the quality control. In the acute toxicity trial, the mice were administered orally at a dose rate of 30.0 g GYS/kg body weight (BW) three times a day. The general behavior, side effects, and death rate were noticed for 14 days following treatment. In the subacute toxicity trial, the rats were administered orally at a dose rates of30.0, 15.0, and 7.5 g GYS/kg BW once a day for 28 days. The rats were monitored every day for clinical signs and deaths; changes in body weight and relative organ weights (ROW) were recorded every week, hematological, biochemical, and pathological parameters were also examined at the end of treatment. The results showed that the level of stachydrine hydrochloride in GYS was 2.272 mg/g. In the acute toxicity trial, the maximum-tolerated dose of GYS was more than 90.0 g/kg BW, and no adverse effects or mortalities were noticed during the 14 days in the mice. At the given dose, there were no death or toxicity signs all through the 28-day subacute toxicity trial.The oral administration of GYS at a dose rate of 30.0 g/kg/day BW had no substantial effects on BW, ROW, blood hematology, gross pathology, histopathology, and biochemistry (except glucose), so 30.0 g/kg BW/day was determined as the no-observed-adverse-effect dosage.

5.
Nutrients ; 15(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764747

ABSTRACT

Cajanus cajan (L.) Millsp., also known as pigeon pea, has roots that have exhibited much pharmacological potential. The present study was conducted to assess the safe dose of the ethanolic extract of C. cajan roots (EECR95) and to analyze the main soy isoflavones contents. In vitro, we investigated the mutagenicity and cytotoxic effect of EECR95 on Salmonella typhimurium-TA98 and TA100 (by Ames tests) and RAW 264.7, L-929, and HGF-1 cell lines (by MTT tests) for 24 h of incubation. We found no mutagenic or cytotoxic effects of EECR95. After administration of 0.2 or 1.0 g/kg bw of EECR95 to both male and female Wistar rats for 90 days, there were no significant adverse effects on the behaviors (body weight, water intake, and food intake), organ/tissue weights, or immunohistochemical staining, and the urine and hematological examinations of the rats were within normal ranges. EECR95 potentially decreases renal function markers in serum (serum uric acid, BUN, CRE, and GLU) or liver function markers (cholesterol, triglyceride, and glutamic-pyruvate-transaminase (GPT)). We also found that EECR95 contained five soy isoflavones (genistein, biochanin A, daidzein, genistin, and cajanol), which may be related to its hepatorenal protection. Based on the high dose (1.0 g/kg bw) of EECR95, a safe daily intake of EECR95 for human adults is estimated to be 972 mg/60 kg person/day.


Subject(s)
Antineoplastic Agents , Cajanus , Isoflavones , Adult , Male , Humans , Female , Animals , Rats , Cajanus/chemistry , Rats, Wistar , Uric Acid , Isoflavones/pharmacology , Kidney/physiology
6.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36763800

ABSTRACT

Microbial phytases are potentially excellent candidates for eliminating anti-nutrient i.e. phytic acid, due to hydrolysis of phospho-monoester linkages present in the phytic acid. An average 2.29-fold increase in phytase production was obtained after statistical optimization in solid-state fermentation. Aspergillus oryzae SBS50 phytase was immobilized on a Ca-alginate matrix with an effectiveness of 53%. Immobilized-phytase retained > 50% activity after recycling for five cycles and also displayed more stability in the presence of organic solvents, metal ions, and detergents as compared to free enzyme. Values of Km and Vmax of immobilized phytase were recorded as 0.66 mM and 666.6 nmol/sec, respectively. Immobilized phytase efficiently hydrolyzed the phytate contents in wheat and pearl millet flours, exhibiting > 70% catalytic activity even after three cycles. Phytase supplementation resulted in the improved nutritional quality of these flours. Furthermore, the safety assessment of the treated and untreated samples reveals the absence of any aflatoxin in the phytase produced by the mould. The results revealed the improved stability of phytase after immobilization and as a safe and significant additive for application in the food industry.


Subject(s)
6-Phytase , Aspergillus oryzae , Phytic Acid , Hydrolysis , Dietary Supplements , Animal Feed
7.
Foods ; 12(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36673385

ABSTRACT

Cinnamomum camphora seed kernel oil (CCSKO) is one of the important natural medium chain triglycerides (MCT) resources, with more than 95.00% of medium chain fatty acids found in the world, and has various physiological effects. However, CCSKO has not been generally recognized as a safe oil or new food resource yet. The acute oral toxicity test and a standard battery of genotoxicity tests (mammalian erythrocyte micronucleus test, Ames test, and in vitro mammalian cell TK gene mutation test) of CCSKO as a new edible plant oil were used in the study. The results of the acute oral toxicity test showed that CCSKO was preliminary non-toxic, with an LD50 value higher than 21.5 g/kg body weight. In the mammalian erythrocyte micronucleus test, there was no concentration-response relationship between the dose of CCSKO and micronucleus value in polychromatic erythrocytes compared to the negative control group. No genotoxicity was observed in the Ames test in the presence or absence of S9 at 5000 µg/mL. In vitro mammalian cell TK gene mutation test showed that CCSKO did not induce in vitro mammalian cell TK gene mutation in the presence or absence of S9 at 5000 µg/mL. These results indicated that CCSKO is a non-toxic natural medium-chain oil.

8.
Regul Toxicol Pharmacol ; 138: 105339, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36649820

ABSTRACT

Assessment of reversibility from nonclinical toxicity findings in animals with potential adverse clinical impact is required during pharmaceutical development, but there is flexibility around how and when this is performed and if recovery animals are necessary. For monoclonal antibodies (mAbs) and in accordance with ICH S6(R1) if inclusion of recovery animals is warranted, this need only occur in one study. Data on study designs for first-in-human (FIH)-enabling and later-development toxicity studies were shared from a recent collaboration between the NC3Rs, EPAA, Netherlands Medicines Evaluation Board (MEB) and 14 pharmaceutical companies. This enabled a review of practices on recovery animal use during mAb development and identification of opportunities to reduce research animal use. Recovery animals were included in 68% of FIH-enabling and 69% of later-development studies, often in multiple studies in the same program. Recovery groups were commonly in control plus one test article-dosed group or in all dose groups (45% of studies, each design). Based on the shared data review and conclusions, limiting inclusion of recovery to a single nonclinical toxicology study and species, study design optimisation and use of existing knowledge instead of additional recovery groups provide opportunities to further reduce animal use within mAb development programs.


Subject(s)
Antibodies, Monoclonal , Research Design , Animals , Humans , Antibodies, Monoclonal/adverse effects , Drug Evaluation, Preclinical , Drug Development , Control Groups
9.
Nat Prod Res ; 37(3): 514-521, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34612773

ABSTRACT

The effect of extracting solvents used by two methods on the TPC, TFC, antioxidant as well as lipoxygenase, and tyrosinase inhibition activities of O. ficus-indica fruit (peel and pulp) were studied. The results manifest that extracts with solvent polarities showed different levels of polyphenols contents and antioxidant activities. The extracts acquired by the Soxhlet method were the most fascinating. Interestingly, peel extracts contain more polyphenols than pulp and showed activities. Lipoxygenase and tyrosinase inhibitory activity of the fruit peel and pulp extracts was reported for the first time. The promising results obtained prompted to the formulation of a stable phytocosmetic emulsion system loaded with 1% pre-concentrated peel extract, aiming to revive facial skin properties. The efficacy of the formulations was determined through SPF and UVA protection factors. To the in vitro safety assessment CAM-TBS, HET-CAM, and red blood cell tests were achieved. Importantly, the formulation did not induce any toxicity.


Subject(s)
Opuntia , Polyphenols , Polyphenols/analysis , Antioxidants/pharmacology , Monophenol Monooxygenase , Fruit/chemistry , Flavonoids/pharmacology , Solvents , Lipoxygenase , Saudi Arabia , Plant Extracts/pharmacology
10.
Nucleic Acid Ther ; 33(1): 1-16, 2023 01.
Article in English | MEDLINE | ID: mdl-36579950

ABSTRACT

The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.


Subject(s)
Oligonucleotides, Antisense , Oligonucleotides , Animals , Humans , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Pharmaceutical Preparations , Drug Evaluation, Preclinical
11.
Article in English | MEDLINE | ID: mdl-36429544

ABSTRACT

Senecio vulgaris L. is a herbaceous species found worldwide. The demonstrated occurrence of pyrrolizidine alkaloids in this species and its ability to invade a great variety of habitats result in a serious risk of contamination of plant material batches addressed to the herbal teas market; this presents a potential health risk for consumers. In light of the above, this work aimed to assess the cytotoxic and genotoxic activity of S. vulgaris extracts in HepG2 cells. Dried plants were ground and extracted using two different methods, namely an organic solvent-based procedure (using methanol and chloroform), and an environmentally friendly extraction procedure (i.e., aqueous extraction), which mimicked the domestic preparation of herbal teas (5, 15, and 30 min of infusion). Extracts were then tested in HepG2 cells for their cytotoxic and genotoxic potentialities. Results were almost superimposable in both extracts, showing a slight loss in cell viability at the highest concentration tested, and a marked dose-dependent genotoxicity exerted by non-cytotoxic concentrations. It was found that the genotoxic effect is even more pronounced in aqueous extracts, which induced primary DNA damage after five minutes of infusion even at the lowest concentration tested. Given the broad intake of herbal infusions worldwide, this experimental approach might be proposed as a screening tool in the analysis of plant material lots addressed to the herbal infusion market.


Subject(s)
Senecio , Teas, Herbal , Humans , Hep G2 Cells , DNA Damage , Liver
12.
Pest Manag Sci ; 78(11): 4956-4962, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36181420

ABSTRACT

BACKGROUND: RNA interference (RNAi) has potential application in pest control, and selection of the specific target gene is one of the key steps in RNAi. As an important effector, the zinc finger protein (ZFP) gene has high similarity among aphid species, and may have potential use in an RNAi-based pest control strategy. This study assessed the control efficiency of an RNAi target, MPZC3H10, a CCCH-type ZFP gene, against green peach aphid. RESULTS: ZC3H10 amino acid sequence similarity is more than 97.71% among the five tested aphid species: Myzus persicae, Aphis citricidus, Acyrthosiphon pisum, Diuraphis noxia and Rhopalosiphum maidis. However, no homologous sequence was found in the transcriptome of their ladybeetle predator, Propylaea japonica. Spatial expression patterns revealed that MPZC3H10 showed high expression in the muscle and fat body of M. persicae. The RNAi bioassay revealed that silencing of MPZC3H10 resulted in high mortality (53.33%) in M. persicae. By contrast, there were no observed negative effects on the growth and development of P. japonica when fed on aphids treated with double-stranded RNA (dsRNA) or injected with a "high dose" of dsRNA. CONCLUSION: Targeting MPZC3H10 showed promising efficiency for green peach aphid control via artificially designed dsRNA, and was safe for the predatory ladybeetle. © 2022 Society of Chemical Industry.


Subject(s)
Aphids , Coleoptera , Animals , Aphids/physiology , Coleoptera/genetics , RNA Interference , RNA, Double-Stranded/genetics , Zinc Fingers
13.
Food Chem Toxicol ; 169: 113445, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36183923

ABSTRACT

Dietary supplements (DS) constitute a widely used group of products comprising vitamin, mineral, and botanical extract formulations. DS of botanical or herbal origins (HDS) comprise nearly 30% of all DS and are presented on the market either as single plant extracts or multi-extract-containing products. Despite generally safe toxicological profiles of most products currently present on the market, rising cases of liver injury caused by HDS - mostly by multi-ingredient and adulterated products - are of particular concern. Here we discuss the most prominent historical cases of HDS-induced hepatotoxicty - from Ephedra to Hydroxycut and OxyELITE Pro-NF, as well as products with suspected hepatotoxicity that are either currently on or are entering the market. We further provide discussion on overcoming the existing challenges with HDS-linked hepatotoxicity by introduction of advanced in silico, in vitro, in vivo, and microphysiological system approaches to address the matter of safety of those products before they reach the market.


Subject(s)
Chemical and Drug Induced Liver Injury , Dietary Supplements , Plant Extracts , Humans , Chemical and Drug Induced Liver Injury/etiology , Dietary Supplements/toxicity , Plant Extracts/toxicity , Vitamins/toxicity , Plant Preparations
14.
Toxicon ; 219: 106934, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36195155

ABSTRACT

Kochiae Fructus (KF) was listed as 'top grade' medicinal material by the 'Shennong's Herbal Classic of Materia Medica' and has been used in traditional Chinese medicine to delay aging and treat inflammation, such as rubella, eczema, cutaneous pruritus, etc. Our research focused on the antioxidant capability of water decoction and fractions from KF based on 2,2-iphenyl-1-picrylhydrazyl (DPPH) free radical and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical scavenging assay, the ferric reducing antioxidant power assay, and inhibitory effects on DNA and protein oxidative damage. The results of total phenolics and flavonoids contents showed that ethyl acetate fraction (EAF) possessed the highest phenolics and flavonoids with values of 112.90 ± 9.58 mg gallic acid equivalents/g and 329.60 ± 20.93 mg rutin equivalents/g, respectively. At the same time, the results of antioxidant capacities showed that EAF possessed best antioxidant abilities. In addition, in this work, we evaluated the oral safety of the water decoction of KF (KFWD) via the 14-day acute and 28-day subacute toxicity tests. The results of in vivo toxicity assessment showed that KFWD did not cause significant changes in the general clinical symptoms, hematology and biochemical parameters, organ weights, or histopathological appearances in mice or rats. In summary, the reason why KF has the traditional effect on delaying aging may be related to the fact that its rich in flavonoids and phenolics. Simultaneously, no toxicity was detected after acute or subacute treatment of KFWD, providing valuable evidence for the traditional safe use of KF.


Subject(s)
Antioxidants , Materia Medica , Mice , Rats , Animals , Antioxidants/pharmacology , Water , Flavonoids/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gallic Acid , Rutin , Sulfonic Acids/metabolism
15.
Heliyon ; 8(10): e11082, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36281378

ABSTRACT

Background: Premna Puberula Pamp. Pectin (PP) was a Wudang functional food in China. It has the effect of dispelling fire, clearing heat and detoxification in folk medicine. However, little studies have been reported for their preparation, quality control, effects and toxicity. Methods: The P. Puberula leaves were collected from different pharms and seasons. The compounds in PP were identified using UPLC-Q-TOF-MS/MS. UV-VIS spectrophotometry with phenol-sulfuric acid and sodium nitrite aluminum nitrate were conducted for analyzing the water-soluble sugars and total flavonoids, respectively. L9(34) orthogonal experimental method was used to optimize the preparation process of PP. For the pharmacological effects of PP, the swelling right hind paw of ICR mice was modeled using subcutaneous injection of carrageenan gum solution, and the local tissue inflammatory reactions of the model mice were investigated using vernier calipers and HE staining. The serum inflammatory factor expression was detected using ELISA. The acute toxicity experiments were carried out for safety assessment of PP in ICR mice. Results: Fifty-three compounds were initially identified in PP among which flavonoids were dominant (19 out of 53). The average values of water-soluble sugar content and total flavonoid content of PP were 13.366 and 4.970 mg/g, respectively. The best preparation process of PP was powder-liquid ratio 1: 20, temperature 90 °C, and stirring time 3 min. Data showed that PP reduced paw edema and decrease the serum level of IL-6, TNF-α and IL-1ß in the model mice. There was no toxic effect of PP on mice at a total dose of 6000 mg/kg/24h. Conclusion: In summary, by optimizing the preparation process, PP with stable quality can be obtained. PP has anti-inflammatory effects without toxicity.

16.
Regul Toxicol Pharmacol ; 134: 105215, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35842056

ABSTRACT

The present successor article comprises more than 180 substances representing a continuative compilation of toxicologically evaluated starting materials prompted by the wide use and high number of homeopathic and anthroposophic medicinal products (HMP) on the market together with the broad spectrum of active substances of botanical, mineral, chemical or animal origin contained therein, and by the equally important requirement of applying adequate safety principles as with conventional human medicinal products in line with the European regulatory framework. The February 2019 issue of the Regulatory Toxicology and Pharmacology journal includes the antecedent article bearing the same title and entailing safety evaluations of more than 170 raw materials processed in HMP. This part 2 article highlights scientific evaluation following recognized methods used in toxicology with a view to drug-regulatory authority's assessment principles and practice in the context of HMP, and offers useful systematic, scientifically substantiated and simultaneously pragmatic approaches in differentiated HMP risk assessment. As a unique feature, both articles provide the most extensive publicly available systematic compilation of a considerable number of substances processed in HMP as a transparent resource for applicants, pharmaceutical manufacturers, the scientific community and healthcare authorities to actively support regulatory decision making in practice.


Subject(s)
Homeopathy , Animals , Humans , Risk Assessment/methods
17.
J Oleo Sci ; 71(7): 959-974, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35691838

ABSTRACT

Pulsed electric field (PEF) is a nonthermal technology resulting in the rupture of cell membranes and increasing the electrical conductivity and the permeability of intracellular material. There was little work about the safety of food treated by PEF. The acute, subacute oral, and genetic toxicities were investigated to explore the safety of canola oil extracted by aid of PEF treatment (PTCO). The results showed that no negative consequences were caused by PEF. PTCO was regarded as practically non-toxic with a LD50 higher than 40 g/kg bw. No oil intake-related mortality, clinical, weight gain and organ coefficient abnormalities were observed. The histopathological symptoms indicated a mild load but not obvious toxicities on liver and kidney. The 28-day subacute toxicity test confirmed that less than 10 g/kg·d bw of oil intake did not exhibit any intake-related changes in physical, physiological, biochemical, hematological, and histopathological signs. The less than 4 of atherosclerosis index suggested that no risk of cardiovascular disease caused by PTCO intake. It was speculated that the PEF treatment would not cause any safety issues to food products.


Subject(s)
Electricity , Liver , Electric Conductivity , Kidney , Rapeseed Oil
18.
J Biopharm Stat ; 32(3): 450-473, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35771997

ABSTRACT

Torsades de pointes (TdP) is an irregular heart rhythm characterized by faster beat rates and potentially could lead to sudden cardiac death. Much effort has been invested in understanding the drug-induced TdP in preclinical studies. However, a comprehensive statistical learning framework that can accurately predict the drug-induced TdP risk from preclinical data is still lacking. We proposed ordinal logistic regression and ordinal random forest models to predict low-, intermediate-, and high-risk drugs based on datasets generated from two experimental protocols. Leave-one-drug-out cross-validation, stratified bootstrap, and permutation predictor importance were applied to estimate and interpret the model performance under uncertainty. The potential outlier drugs identified by our models are consistent with their descriptions in the literature. Our method is accurate, interpretable, and thus useable as supplemental evidence in the drug safety assessment.


Subject(s)
Torsades de Pointes , DNA-Binding Proteins , Drug Evaluation, Preclinical/methods , Electrocardiography , Humans , Risk Assessment , Torsades de Pointes/chemically induced , Torsades de Pointes/epidemiology
19.
J Ethnopharmacol ; 296: 115504, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35760258

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Moringa oleifera Lam. leaves infusion and powder are widely used by population due the nutritional and medicinal potentials, however data regarding safety of use are still inconclusive, leading to prohibition of this plant in some countries. AIM OF THE STUDY: The present work investigated the nutritional and phytochemical composition, acute and 28-day repeated dose toxicity, and genotoxicity of M. oleifera leaves infusion and powder. MATERIALS AND METHODS: For nutritional characterization of leaf powder, it was determined: humidity; mineral residue (ash); total lipid, protein, carbohydrate, and crude fiber contents; and total caloric value. Phytochemical composition was determined by high performance liquid chromatography (HPLC). The acute toxicity assay used Swiss female albino mice and oral administration in a single dose at 2000 and 5000 mg/kg of infusion or powder. The 28-day repeated dose toxicity assay employed female and male mice, with oral administration of infusion or powder at the doses 250, 500 and 1000 mg/kg. The animals were evaluated for body weight, water and feed consumption, biochemical and hematological parameters, and histology of the liver, spleen, and kidneys. In vivo genotoxicity and mutagenicity (2000 mg/kg) were evaluated by the comet assay and the micronucleus test, respectively. RESULTS: Nutritional characterization confirmed that M. oleifera leaves are rich in proteins, carbohydrates, lipids, minerals, and fiber. HPLC indicated the presence of flavonoids and cinnamic derivatives as major polyphenols. Acute toxicity did not reveal alterations in weight gain and water and feed consumptions and no change in biochemical, hematological, and histological parameters. Behavior alterations was observed in the first 2 h after administration at 5000 mg/kg in both treatments. Infusion did not present toxicity when administered for 28 days. Conversely, the powder at 500 and 1000 mg/kg promoted liver and kidney damages observed through biochemical parameters and histopathology. Genotoxicity and mutagenicity were not detected at 2000 mg/kg. CONCLUSIONS: The present study reveals that M. oleifera leaves are an important source of polyphenols and nutrients. Indiscriminate use of both infusion and crude leaf powder above 2000 mg/kg and powder at 500 and 1000 mg/kg are not recommended. Chronic toxicological studies and establishment of preparation protocols are suggested aiming to guarantee the safety in the use of M. oleifera leaves as nutraceutical by population.


Subject(s)
Moringa oleifera , Animals , Female , Male , Mice , Moringa oleifera/chemistry , Mutagens , Phytochemicals/analysis , Plant Extracts , Plant Leaves/chemistry , Plant Leaves/toxicity , Powders , Water
20.
Chin Med ; 17(1): 58, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581608

ABSTRACT

BACKGROUNDS: Traditional Chinese medicine and Western medicine combination (TCM-WMC) increased the complexity of compounds ingested. OBJECTIVE: To develop a method for screening hepatotoxic compounds in TCM-WMC based on chemical structures using artificial intelligence (AI) methods. METHODS: Drug-induced liver injury (DILI) data was collected from the public databases and published literatures. The total dataset formed by DILI data was randomly divided into training set and test set at a ratio of 3:1 approximately. Machine learning models of SGD (Stochastic Gradient Descent), kNN (k-Nearest Neighbor), SVM (Support Vector Machine), NB (Naive Bayes), DT (Decision Tree), RF (Random Forest), ANN (Artificial Neural Network), AdaBoost, LR (Logistic Regression) and one deep learning model (deep belief network, DBN) were adopted to construct models for screening hepatotoxic compounds. RESULT: Dataset of 2035 hepatotoxic compounds was collected in this research, in which 1505 compounds were as training set and 530 compounds were as test set. Results showed that RF obtained 0.838 of classification accuracy (CA), 0.827 of F1-score, 0.832 of Precision, 0.838 of Recall, 0.814 of area under the curve (AUC) on the training set and 0.767 of CA, 0.731 of F1, 0.739 of Precision, 0.767 of Recall, 0.739 of AUC on the test set, which was better than other eight machine learning methods. The DBN obtained 82.2% accuracy on the test set, which was higher than any other machine learning models on the test set. CONCLUSION: The DILI AI models were expected to effectively screen hepatotoxic compounds in TCM-WMC.

SELECTION OF CITATIONS
SEARCH DETAIL