Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Int J Nanomedicine ; 19: 3611-3622, 2024.
Article in English | MEDLINE | ID: mdl-38660022

ABSTRACT

Background: Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods: In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results: The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion: Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.


Subject(s)
Biological Availability , Carbon , Paeonia , Particle Size , Rats, Sprague-Dawley , Solubility , Xanthones , Xanthones/pharmacokinetics , Xanthones/chemistry , Xanthones/administration & dosage , Animals , Carbon/chemistry , Carbon/pharmacokinetics , Male , Rats , Paeonia/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Quantum Dots/chemistry , Quantum Dots/toxicity , Cell Line , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Cell Survival/drug effects
2.
Arch Pharm (Weinheim) ; 357(7): e2300768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593312

ABSTRACT

Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.


Subject(s)
Antineoplastic Agents, Phytogenic , Dioxolanes , Neoplasms , Dioxolanes/pharmacology , Dioxolanes/chemistry , Dioxolanes/chemical synthesis , Humans , Structure-Activity Relationship , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Molecular Structure , Piperidones
3.
Fitoterapia ; 175: 105899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471575

ABSTRACT

Limonin is a natural tetracyclic triterpenoid compound in citrus seeds that presents hepatoprotective effects but is often discarded as agricultural waste because of its low content and low solubility. Herein, limonin with high purity (98.11%) from citrus seeds was obtained via purification by high-speed counter-current chromatography (HSCCC) and recrystallization. Limonin-loaded liposomes (Lip-LM) prepared by thin film hydration and high pressure homogenization method to enhance its solubility and hepatoprotective effect on APAP-induced liver injury (AILI). Lip-LM appeared as lipid nanoparticles under a transmission electron microscope, and showed well dispersed nano-scale size (69.04 ± 0.42 nm), high encapsulation efficiency (93.67% ± 2.51%), sustained release, fine stability. Lip-LM also exhibited significantly better hepatoprotective activity on AILI than free limonin in vivo. In summary, Lip-LM might be used as a potential hepatoprotective agent in the form of dietary supplement and provide an effective strategy to improve the potential value of citrus seeds.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Citrus , Limonins , Liposomes , Protective Agents , Seeds , Limonins/isolation & purification , Limonins/pharmacology , Citrus/chemistry , Seeds/chemistry , Animals , Chemical and Drug Induced Liver Injury/prevention & control , Mice , Protective Agents/pharmacology , Protective Agents/isolation & purification , Male , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
4.
Pharm Res ; 41(3): 557-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302834

ABSTRACT

PURPOSE: Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS: The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS: EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS: This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.


Subject(s)
Catechin , Tea , Mice , Animals , Catechin/analysis , Catechin/metabolism , Catechin/pharmacology , Raloxifene Hydrochloride/pharmacology , Solubility , Micelles , Antioxidants , Plant Extracts/pharmacology
5.
Phytomedicine ; 126: 155416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394726

ABSTRACT

BACKGROUND: Scutellaria baicalensis Georgi is a well-known herb in traditional Chinese medicine that is frequently prescribed for various gastrointestinal conditions, including ulcerative colitis (UC). Its primary active constituent, baicalin, has poorly water solubility that reduces its efficacy. PURPOSE: To enhance the aqueous solubility of baicalin by optimising its extraction process. We compared the modulatory effects of isolated water-soluble baicalin and water-insoluble baicalin on UC, and delved deeper into the potential mechanisms of water-soluble baicalin. METHODS: We successfully extracted a more hydrophilic baicalin directly from an aqueous S. baicalensis Georgi extract through the process of recrystallisation following alcoholic precipitation of the aqueous extract obtained from S. baicalensis Georgi, eliminating the need for acid additives. This specific form of baicalin was conclusively identified by UV, IR, atomic absorption spectroscopy, elemental analysis, 1H NMR, 13C NMR, and ESI-HRMS. We subsequently compared the regulatory effects of baicalin on UC before and after optimisation, employing 16S rDNA sequencing, bile acid-targeted metabolomics, and transcriptome analysis to elucidate the potential mechanism of water-soluble baicalin; and the key genes and proteins implicated in this mechanism were verified through RT-PCR and western blotting. RESULTS: A new form of baicalin present in the aqueous solution of S. baicalensis Georgi was isolated, and its structural characterisation showed that it was bound to magnesium ions (baicalin magnesium) and exhibited favorable water solubility. Baicalin magnesium offers enhanced therapeutic benefits over baicalin for UC treatment, which alleviated the inflammatory response and oxidative stress levels while improving intestinal mucosal damage. Further investigation of the mechanism revealed that baicalin magnesium could effectively regulate bile acid metabolism and maintain intestinal microecological balance in UC mice, and suppress the activation of the nuclear factor-kappa B and peroxisome proliferator-activated receptor α signalling pathways, thereby playing a therapeutic role. CONCLUSIONS: Baicalin magnesium has good water solubility, which solves the bottleneck problem of water insolubility in the practical applications of baicalin. Moreover, baicalin magnesium exhibits therapeutic potential for UC significantly better than baicalin.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Mice , Animals , Colitis, Ulcerative/drug therapy , Magnesium , Flavonoids/pharmacology , Flavonoids/therapeutic use , Water
6.
Food Chem ; 444: 138631, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38325079

ABSTRACT

Naringenin (NGE), a typical flavanone abundant in citrus fruits, exhibits remarkable antioxidant activities. However, its low solubility in oil restricts its widespread use in inhibiting lipid oxidation. In this study, we present a novel and effective approach to address this limitation by developing a naringenin-phospholipid complex (NGE-PC COM). Comprehensive analytical techniques including Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were employed to confirm the formation of the NGE-PC COM and elucidate the interaction mechanism between NGE and phospholipids molecules. Notably, the oil-solubility of NGE was significantly enhanced by approximately 2700-fold when formulated as a phospholipid complex in soybean oil. The improved oil-solubility of NGE-PC COM enabled effective inhibition of oil thermal oxidation under high temperature conditions. Generally, this investigation proposed a novel and promising strategy for employing flavanones with strong antioxidant activities to enhance the thermal oxidative stability of edible oil during heating processes.


Subject(s)
Flavanones , Phospholipids , Phospholipids/chemistry , Soybean Oil , Antioxidants , Heating , Flavanones/chemistry , Solubility , Oxidative Stress , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
7.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338811

ABSTRACT

Commercial cyclodextrins (CDs) are commonly used to form inclusion complexes (ICs) with different molecules in order to enhance their water solubility, stability, and bioavailability. Nowadays, there is strong, convincing evidence of the anticancer effect of selenium (Se)-containing compounds. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their further evaluation and clinical use. In this work, we study the enhancement of solubility with CD complexes for a set of different nonsteroidal anti-inflammatory drug (NSAID) derivatives with Se as selenoester or diacyl diselenide chemical forms, with demonstrated antitumoral activity. The CD complexes were analyzed via nuclear magnetic resonance (NMR) spectroscopic techniques. In order to obtain additional data that could help explain the experimental results obtained, 3D models of the theoretical CD-compound complexes were constructed using molecular modeling techniques. Among all the compounds, I.3e and II.5 showed a remarkable increase in their water solubility, which could be ascribed to the formation of the most stable interactions with the CDs used, in agreement with the in silico studies performed. Thus, the preliminary results obtained in this work led us to confirm the selection of ß and γ-CD as the most suitable for overcoming the pharmaceutical drawbacks of these Se derivatives.


Subject(s)
Cyclodextrins , Selenium , Cyclodextrins/pharmacology , Cyclodextrins/chemistry , Solubility , Water/chemistry , Pharmaceutical Preparations , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
8.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256046

ABSTRACT

The implementation of innovative approaches is crucial in an ongoing endeavor to mitigate the impact of COVID-19 pandemic. The present study examines the strategic application of the SARS-CoV-2 Main Protease (Mpro) as a prospective instrument in the repertoire to combat the virus. The cloning, expression, and purification of Mpro, which plays a critical role in the viral life cycle, through heterologous expression in Escherichia coli in a completely soluble form produced an active enzyme. The hydrolysis of a specific substrate peptide comprising a six-amino-acid sequence (TSAVLQ) linked to a p-nitroaniline (pNA) fragment together with the use of a fluorogenic substrate allowed us to determine effective inhibitors incorporating selenium moieties, such as benzoselenoates and carbamoselenoates. The new inhibitors revealed their potential to proficiently inhibit Mpro with IC50-s in the low micromolar range. Our study contributes to the development of a new class of protease inhibitors targeting Mpro, ultimately strengthening the antiviral arsenal against COVID-19 and possibly, related coronaviruses.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Selenium , Humans , Selenium/pharmacology , Pandemics , Prospective Studies , SARS-CoV-2 , Escherichia coli
9.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38256926

ABSTRACT

Matrine (MAT), a natural Chinese herbal medicine, has a unique advantage in the treatment of various chronic diseases. However, its low melting point, low bioavailability, and high dosage restrict its subsequent development into new drugs. In this study, three kinds of MAT salts, namely, MAT-2,5-dihydroxybenzoic acid (MAT-25DHB), MAT-2,6-dihydroxybenzoic acid (MAT-26DHB), and MAT-salicylic acid-hydrate (MAT-SAL-H2O), were designed and synthesized to improve the drugability of MAT. The three salts were characterized by using various analytical techniques, including single-crystal X-ray diffractometry, powder X-ray diffractometry, differential scanning calorimetry, thermogravimetry, and infrared spectroscopy. The results of the thermal stability evaluation showed that the formation of salts improved the stability of MAT; MAT-25DHB is the most stable salt reported at present. The results of aqueous solubility showed that the solubility of MAT-25DHB was higher than that of MAT, while that of MAT-26DHB and MAT-SAL-H2O were less. Given that the MAT-25DHB salt further improved the solubility of MAT, it is expected to be subjected to further research as an optimized salt. Lattice energy and solvation free energy are important factors affecting the solubility of salts; the reasons for the changes of solubility and stability of three kinds of salts are explained by calculating them.

10.
ACS Appl Mater Interfaces ; 16(5): 5504-5512, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38278768

ABSTRACT

New insights into the unique biochemical properties of riboflavin (Rf), also known as vitamin B2, are leading to the development of its use not only as a vitamin supplement but also as a potential anti-inflammatory, immunomodulatory, antioxidant, anticancer, and antiviral agent, where it may play a role as an inhibitor of viral proteinases. At the same time, the comparison of the pharmacoactivity of Rf with its known metabolites, namely, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is very complicated due to its poor water solubility: 0.1-0.3 g/L versus 67 g/L for FMN and 50 g/L for FAD, which is the limiting factor for its administration in clinical practice. In this study, we report the recrystallization procedure of the type A Rf crystals into the slightly hydrophobic type B/C and a new hydrophilic crystal form that has been termed the P type. Our method of Rf crystal modification based on recrystallization from dilute alkaline solution provides an unprecedented extremely high water solubility of Rf, reaching 23.5 g/L. A comprehensive study of the physicochemical properties of type P riboflavin showed increased photodynamic therapeutic activity compared to the known types A and B/C against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. Importantly, our work not only demonstrates a simple and inexpensive method for the synthesis of riboflavin with high solubility, which should lead to increased bioactivity, but also opens up opportunities for improving both known and new therapeutic applications of vitamin B2.


Subject(s)
Flavin Mononucleotide , Flavin-Adenine Dinucleotide , Flavin-Adenine Dinucleotide/metabolism , Solubility , Riboflavin , Escherichia coli/metabolism , Water
11.
Pharm Nanotechnol ; 12(4): 365-377, 2024.
Article in English | MEDLINE | ID: mdl-38192139

ABSTRACT

BACKGROUND: Orally disintegrating tablets (ODTs) have become an excellent choice for delivering drugs as their palatability is greatly improved. In this work, ß-cyclodextrin has been used to improve the solubility of curcumin by encapsulating it into the hydrophobic cavity for the treatment of neurodegenerative disorders. OBJECTIVES: The current study aimed to present the design, formulation, and optimisation of fastdissolving oral tablets of curcumin- ß-cyclodextrin molecular inclusion complex using a 32-factorial design. METHODS: The drug-excipient compatibility was studied by FTIR spectroscopy. The inclusion complex of curcumin-ß-cyclodextrin was prepared using solvent casting and confirmed using XRD studies. Powder blends were evaluated for flow properties. Tablets prepared by direct compression were evaluated for post-compression parameters. Further, the effect of formulation variables, such as sodium starch glycolate (X1) and Neusilin® ULF2 (X2), on various responses, including disintegration time and dissolution at 2 hours, was studied using statistical models. RESULTS: Post-compression parameters, i.e., hardness (4.4-5 kg/cm2), thickness (3.82-3.93 mm), weight variation (±7.5%), friability (< 1%), wetting time (51-85 seconds) and drug content (96.28- 99.32%) were all found to be within the permissible limits and the disintegration time of tablets with super-disintegrants ranged between 45-58 seconds. The in-vitro dissolution profile of tablets showed that higher SSG and Neuslin® ULF2 levels promoted drug release. For statistical analysis, the 2FI model was chosen. Optimised variables for formulation have been determined and validated with the experimental findings based on the significant desirability factor. CONCLUSION: The current study reveals the validated curcumin-ß-cyclodextrin inclusion complex fastdissolving tablets with SSG and Neusilin® ULF2 to be an ideal choice for effectively treating neurodegenerative disorders.


Subject(s)
Curcumin , Neurodegenerative Diseases , Solubility , Tablets , Water , beta-Cyclodextrins , Curcumin/chemistry , Curcumin/administration & dosage , beta-Cyclodextrins/chemistry , Water/chemistry , Neurodegenerative Diseases/drug therapy , Excipients/chemistry , Drug Liberation , Starch/chemistry , Starch/analogs & derivatives , Drug Compounding/methods , Administration, Oral , Hardness , Hydrophobic and Hydrophilic Interactions , Humans , Drug Carriers/chemistry
12.
Ultrason Sonochem ; 102: 106732, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150958

ABSTRACT

The utilization of peptide-chelated calcium is low due to the influence of factors such as solubility, heat and digestive environmental conditions; therefore, it is crucial to protect, prolong and stabilize this nutrient in order to enhance its efficacy. This study was conducted to prepare corn peptide-chelated calcium microcapsules using ß-cyclodextrin (ß-CD) as the wall material through an improved ultrasonic-assisted method. The structure, solubility, thermal stability, and in vitro gastrointestinal digestion of these microcapsules were thoroughly investigated and analyzed. The microcapsules were prepared using the following recommended conditions: a chelate concentration of 5 mg/mL, a mass ratio of chelate to ß-CD of 1:8 g/g, and a synchronous dual-frequency ultrasound (20/28 kHz) at a power of 75 W, a duty ratio of 20/5 s/s, and a time of 20 min. These specific parameters were carefully selected to ensure the optimal fabrication of the microcapsules. The results showed that the utilization of dual-frequency ultrasound resulted in a significant increase in both the encapsulation rate and yield, which were enhanced by 15.84 % and 15.68 %, respectively, reaching impressive values of 79.17 % and 90.60 %. Moreover, the results of the structure index analysis provided further confirmation that ultrasonic treatment had a significant impact on the structure of the microcapsules, leading to a noticeable reduction in particle size and transformation into nanoparticles. Furthermore, the microcapsules demonstrated excellent solubility within a wide pH range of 2 to 10, with solubility ranging from 93.54 % to 88.68 %. Additionally, these microcapsules exhibited remarkable thermal stability, retaining a minimum of 84.8 % of their stability when exposed to temperatures ranging from 40 to 80 °C. Moreover, during gastric and intestinal digestion, these microcapsules exhibited a high slow-release rate of 44.66 % and 51.6 %, indicating their ability to gradually release calcium contents. The inclusion of dual-frequency ultrasound in the preparation of high calcium microcapsules yielded promising outcomes. Overall, our work presents a novel method for synthesizing corn peptide-chelated calcium microcapsules with desirable properties such as good solubility, excellent thermal stability, and a significant slow-release effect. These microcapsules have the potential to serve as fortified high calcium supplements.


Subject(s)
Calcium , Zea mays , Capsules/chemistry , Solubility , Peptides
13.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139827

ABSTRACT

With the development of technology, natural material components are widely used in various fields of science. Natural product components in phytochemical compounds are secondary metabolites produced by plants; they have been shown to have many pharmacological activities. Phytochemical compounds obtained from plants have an important role in herbal medicine. Herbal medicine is safer and cheaper than synthetic medicine. However, herbal medicines have weaknesses, such as low solubility, less stability, low bioavailability, and experiencing physical and chemical degradation, reducing their pharmacological activity. Recent herbal nano-delivery developments are mostly plant-based. A nanotechnology-based system was developed to deliver herbal therapies with better bioavailability, namely the nanohydrogel system. Nanohydrogel is a delivery system that can overcome the disadvantages of using herbal compounds because it can increase solubility, increase pharmacological activity and bioavailability, reduce toxicity, slow delivery, increase stability, improve biodistribution, and prevent physical or chemical degradation. This review article aimed to provide an overview of recent advances in developing nanohydrogel formulations derived from natural ingredients to increase solubility and pharmacological activity, as well as a summary of the challenges faced by delivery systems based on nanohydrogel derived from natural materials. A total of 25 phytochemicals derived from natural products that have been developed into nanohydrogel were proven to increase the activity and solubility of these chemical compounds.

14.
Pharmaceutics ; 15(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38004524

ABSTRACT

To prevent neural tube defects and other cardiovascular diseases in newborns, folic acid (FA) is recommended in pregnant women. A daily dose of 600 µg FA consumption is widely prescribed for women during pregnancy and 400 µg for women with childbearing potential. FA is a class IV compound according to the Biopharmaceutics Classification System (BCS) due to its low permeability (1.7 × 10-6 cm/s) and low solubility (1.6 mg/L); therefore, it must be administered via a formulation that enhances its solubility. Studies reported in the literature have proved that co-amorphization and salt formation of a poorly soluble drug with amino acids (AA) can significantly increase its solubility. Although arginine has been used with FA as a supplement, there is no information on the effect of basic AA (arginine and lysine) on the physical and chemical properties of FA-AA binary formulations. The present study implemented a conductimetric titration methodology to find the effective molar ratio to maximize FA solubility. The results showed that a 1:2.5 FA:AA molar ratio maximized solubility for arginine and lysine. Binary formulations were prepared using different methods, which led to an amorphous system confirmed by the presence of a glass transition, broad FTIR bands, and the absence of an X-ray diffraction pattern. Results of FA:AA (1:2.5) solubility increased in the range of 5500-6000 times compared with pure FA. In addition to solubility enhancement, the binary systems presented morphological properties that depend on the preparation method and whose consideration could be strategic for scaling purposes.

15.
Int J Nanomedicine ; 18: 6705-6724, 2023.
Article in English | MEDLINE | ID: mdl-38026532

ABSTRACT

Purpose: Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods: In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-ß-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results: The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion: We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.


Subject(s)
Astragalus Plant , Biological Products , Drugs, Chinese Herbal , Flavonoids/chemistry , Astragalus Plant/chemistry , Polysaccharides/chemistry , Drugs, Chinese Herbal/chemistry
16.
World J Gastrointest Oncol ; 15(8): 1342-1348, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37663948

ABSTRACT

Curcumin is a natural compound with a diketone structure, which can control the growth, metastasis, recurrence, neovascularization, invasion, and drug resistance of gastrointestinal tumors by inhibiting nuclear factor κB, overexpression of tumor cells, vascular endothelial growth factor, etc. However, due to the low bioavailability of curcumin formulation, it did not fully exert its pharmacological effects, and its application and development in the treatment of various malignant tumors are still limited. This review summarizes the research on drug delivery systems of curcumin combating digestive tract tumors in order to further reduce the toxic side effects of curcumin-containing drugs and fully exert their pharmacological activities, and improve their bioavailability and clinical value.

17.
BMC Biotechnol ; 23(1): 36, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684623

ABSTRACT

BACKGROUND: Lamotrigine is an effective antiseizure medication that can be used in the management of focal and generalized epilepsies in pediatric patients. This study was conducted to quantify and compare the solubility of lamotrigine in age-specific biorelevant media that simulated the fasted and fed conditions of the gastric and intestinal environments in pediatrics and adults. Another aim was to predict how traditional, re-formulated, modified, and new oral formulations would behave in the gastric and intestinal environments across different age groups. METHODS: Solubility studies of lamotrigine were conducted in 16 different age-specific biorelevant media over the pH range and temperature specified by the current biopharmaceutical classification system-based criteria. The age-specific biorelevant media simulated the environments in the stomach and proximal gastrointestinal tract in both fasted and fed conditions of adults and pediatric sub-populations. The solubility of lamotrigine was determined using a pre-validated HPLC-UV method. RESULTS: Lamotrigine showed low solubility in the 16 age-specific biorelevant media as indicated by a dose number of > 1. There were significant age-specific variabilities in the solubility of lamotrigine in the different age-specific biorelevant media. Pediatric/adult solubility ratios of lamotrigine fell outside the 80-125% range in 6 (50.0%) and were borderline in 3 (25.0%) out of the 12 compared media. These ratios indicated that the solubility of lamotrigine showed considerable differences in 9 out of the 12 (75.0%) of the compared media. CONCLUSION: Future studies are still needed to generate more pediatric biopharmaceutical data to help understand the performances of oral dosage forms in pediatric sub-populations.


Subject(s)
Biological Products , Stomach , Adult , Humans , Child , Lamotrigine , Solubility , Age Factors
18.
Foods ; 12(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37685181

ABSTRACT

Organic heme iron in the form of heme iron polypeptide (HIP) is a bioavailable form of iron that can be used for dietary supplements. However, one practical challenge with HIP is that the quality of HIP prepared with different batches of raw material could lead to HIP products with inconsistent characteristics. In this study, skipjack tuna blood, a by-product in canned tuna industry, was converted to HIP at different degrees of enzymatic hydrolysis. The variation in HIP physical-chemical characteristics from different batches was evaluated, including composition, solubility, and molecular weight distribution. It was found that the batch variation had no effect on HIP composition and solubility; however, the degree of hydrolysis (DH) and the size of peptides that interact with heme greatly influenced HIP solubility at pH 2. Tuna-HIP with a low DH (DH, 8%) had 1.76-fold greater solubility than tuna-HIP with a high DH (DH, 32%). High-performance liquid chromatography (HPLC) revealed that tuna-HIP with a low DH had a molecular weight ranging from 1 kDa to 5 kDa. In summary, HIP-derived tuna blood was found to contain 70.54 ± 3.22 mg/100 g of iron and exhibit good solubility at 58.0 ± 2.16% at pH 2. Thus, tuna-HIP with a low DH might be a suitable functional ingredient for iron fortification of food.

19.
J Food Sci ; 88(9): 3714-3724, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37548649

ABSTRACT

Tomato pomace, composed of peels and seeds, is often discarded or used as animal feed. However, it contains valuable phytochemicals, including lycopene. Lycopene, a natural pigment, is an antioxidant known for reducing the risk of chronic diseases like cardiovascular ailments and cancer. In this study, we aimed to study the possibility of valorizing tomato pomace by quantifying phenolic compounds, evaluating the antioxidant activity of their extracts, as well as extracting and quantifying lycopene, and studying the effect of tomato peel extract on the oxidative stability of chicken patties during storage. The effectiveness of different solvent mixtures for the extraction of lycopene was evaluated using Hansen solubility parameters (HSPs). The obtained results showed that the best solvent mixture was hexane/acetone (50/50) with a Hansen theoretical distance of 7.2, indicating its favorable solvation power. It also achieved a notable extraction yield of 3.12% and the highest lycopene yield of 20.05 mg/100 g. This combination demonstrated the highest values in terms of total phenolic (24.06 mg equivalent gallic acid/100 g dry matter) and flavonoid content (30.55 mg equivalent catechin/100 g dry matter), indicating a significant presence of these compounds. However, its 1,1-diphenyl-2-picrylhydrazyl (13.51 µg/mL) and ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, (8.52 µg/mL) IC50 values were comparatively lower than the other mixes. The use of this fraction as a food additive and antioxidant showed significant competitiveness with the conventional preservative, 2,6-di-tert-butyl-4-methylphenol. Tomato extract can be considered a potential natural preservative in food preparations due to its high lycopene content. PRACTICAL APPLICATION: This research provides valuable insights into optimizing the extraction of antioxidants from tomato pomace, using HSPs. The findings have the potential to benefit the food industry by developing improved methods for preserving chicken meat through the application of these optimized antioxidant extracts. By enhancing the preservation process, this study may contribute to extending the shelf life and maintaining the quality of chicken meat, leading to reduced food waste and improved consumer satisfaction.


Subject(s)
Refuse Disposal , Solanum lycopersicum , Animals , Antioxidants/chemistry , Lycopene/analysis , Chickens , Solubility , Plant Extracts/chemistry , Solvents/chemistry , Butylated Hydroxytoluene/analysis , Seeds/chemistry , Phenols/analysis , Meat
20.
Chemosphere ; 340: 139936, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619755

ABSTRACT

Seawater pollution from various sources such as industrial effluents, ship washing at sea, and oil spills harm humans and the marine environment. Therefore, finding ways to eliminate this pollution is crucial. This study successfully modified a polyurethane sponge through a simple dip-coating method with functionalized graphene oxide incorporating octadecylamine and oleic acid, resulting in a hydrophobic sponge capable of absorbing crude oil and various organic solvents. Characterization analyses confirmed the synthesis. The absorption capacity of the modified sponges was examined, for example, the PU sponge has absorbed 4 g/g engine oil, while the modified GO-ODA-PU sponge has increased its absorption to 36 g/g. The GO-ODA-PU sponge demonstrated great reusability compared to the GO-OA-PU sponge owing to the strong covalent bond formed between GO and ODA, which is superior to the weak hydrogen bond formed between GO and OA. The absorption capacity of the GO-OA-PU sponge decreased by 30%. The contact angle test showed that GO-ODA-PU and GO-OA-PU sponges had contact angles of 131° and 115°, respectively. Additionally, the GO-ODA-PU sponge performed optimally for semi-polar solvents in the solubility parameter range of 18-19, with its absorption capacity reaching its maximum value. The amount of oil recycling is even possible up to 98%.


Subject(s)
Environmental Pollution , Petroleum , Humans , Solubility , Hydrogen Bonding , Industry
SELECTION OF CITATIONS
SEARCH DETAIL