Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Foods ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611413

ABSTRACT

Finding stable and bioavailable calcium supplements is crucial for addressing calcium deficiency. In this study, glycated peptide-calcium chelates (WMPHs-COS-Ca) were prepared from walnut meal protein hydrolysates (WMPHs) and chitosan oligosaccharides (COSs) through the Maillard reaction, and the structural properties and stability of the WMPHs-COS-Ca were characterized. The results showed that WMPHs and COSs exhibited high binding affinities, with a glycation degree of 64.82%. After glycation, Asp, Lys, and Arg decreased by 2.07%, 0.46%, and 1.06%, respectively, which indicated that these three amino acids are involved in the Maillard reaction. In addition, compared with the WMPHs, the emulsifying ability and emulsion stability of the WMPHs-COS increased by 10.16 mg2/g and 52.73 min, respectively, suggesting that WMPHs-COS have better processing characteristics. After chelation with calcium ions, the calcium chelation rate of peptides with molecular weights less than 1 kDa was the highest (64.88%), and the optimized preparation conditions were 5:1 w/w for WMPH-COS/CaCl2s, with a temperature of 50 °C, a chelation time of 50 min, and a pH of 7.0. Scanning electron microscopy showed that the "bridging role" of WMPHs-COS changed to a loose structure. UV-vis spectroscopy and Fourier transform infrared spectrometry results indicated that the amino nitrogen atoms, carboxyl oxygen atoms, and carbon oxygen atoms in WMPHs-COS chelated with calcium ions, forming WMPHs-COS-Ca. Moreover, WMPHs-COS-Ca was relatively stable at high temperatures and under acidic and alkaline environmental and digestion conditions in the gastrointestinal tract, indicating that WMPHs-COS-Ca have a greater degree of bioavailability.

2.
Food Chem ; 401: 134218, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36115235

ABSTRACT

In this work, CPP-Ca chelate was synthesized by chelating casein phosphopeptide (CPP) and calcium and characterized by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The antioxidant activity and calcium holding capacity of CPP-Ca were evaluated and its secondary structure transition was monitored during gastrointestinal digestion by in situ Raman spectroscopy. The results demonstrated that calcium chelating rate reached 40 % and calcium ion was bound to CPP mainly through the interaction of carboxyl and amino groups. The result of calcium holding capacity confirmed the formation of calcium phosphate precipitates could be delayed by 10-15 min with increasing CPP concentration. In vitro simulated digestion revealed CPP-Ca exhibited excellent calcium solubility and its secondary structural changes occurred, especially α-helix and ß-sheet content. These findings provided significant insights into enhancing bioavailability of calcium supplements and developing of calcium functional foods for human and animals.


Subject(s)
Caseins , Phosphopeptides , Animals , Humans , Caseins/chemistry , Calcium/chemistry , Antioxidants , Calcium, Dietary , Calcium Phosphates , Digestion
3.
Int J Biol Macromol ; 173: 554-579, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33508358

ABSTRACT

The preparation, chemical properties and bio-activities of polysaccharides derived from halophytes have gained an increasing interest in the past few years. Phytochemical and pharmacological reports have shown that carbohydrates are important biologically active compounds of halophytes with numerous biological potentials. It is believed that the mechanisms involved in these bio-activities are due to the modulation of immune system. The main objective of this summary is to appraise available literature of a comparative study on the extraction, structural characterizations and biological potentials, particularly immunomodulatory effects, of carbohydrates isolated from halophytes (10 families). This review also attempts to discuss on bioactivities of polysaccharides related with their structure-activity relationship. Data indicated that the highest polysaccharides yield of around 35% was obtained under microwave irradiation. Structurally, results revealed that the most of extracted carbohydrates are pectic polysaccharides which mainly composed of arabinose (from 0.9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.


Subject(s)
Pectins/chemistry , Pectins/pharmacology , Salt-Tolerant Plants/chemistry , Carbohydrate Sequence , Immunomodulation , Microwaves , Pectins/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL