Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Publication year range
1.
J Pharm Biomed Anal ; 242: 116011, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38359492

ABSTRACT

Liver cancer and gastric cancer have extremely high morbidity and mortality rates worldwide. It is well known that an increase or decrease in trace metals may be associated with the formation and development of a variety of diseases, including cancer. Therefore, this study aimed to evaluate the contents of aluminium (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn) in cancerous liver and gastric tissues, compared to adjacent healthy tissues, and to investigate the relationship between trace metals and cancer progression. During surgery, multiple samples were taken from the cancerous and adjacent healthy tissues of patients with liver and gastric cancer, and trace metal levels within these samples were analysed using inductively coupled plasma mass spectrometry (ICP-MS). We found that concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn in tissues from patients with liver cancer were significantly lower than those in healthy controls (P < 0.05). Similarly, patients with gastric cancer also showed lower levels of Cd, Co, Cr, Mn, Ni, and Zn-but higher levels of Cu and Se-compared to the controls (P < 0.05). In addition, patients with liver and gastric cancers who had poorly differentiated tumours and positive lymph node metastases showed lower levels of trace metals (P < 0.05), although no significant changes in their concentrations were observed to correlate with sex, age, or body mass index (BMI). Logistic regression, principal component analysis (PCA), Bayesian kernel regression (BKMR), weighted quantile sum (WQS) regression, and quantile-based g computing (qgcomp) models were used to analyse the relationships between trace metal concentrations in liver and gastric cancer tissues and the progression of these cancers. We found that single or mixed trace metal levels were negatively associated with poor differentiation and lymph node metastasis in both liver and gastric cancer, and the posterior inclusion probability (PIP) of each metal showed that Cd contributed the most to poor differentiation and lymph node metastasis in both liver and gastric cancer (all PIP = 1.000). These data help to clarify the relationship between changes in trace metal levels in cancerous liver and gastric tissues and the progression of these cancers. Further research is warranted, however, to fully elucidate the mechanisms and causations underlying these findings.


Subject(s)
Arsenic , Liver Neoplasms , Metals, Heavy , Selenium , Stomach Neoplasms , Trace Elements , Humans , Cadmium , Bayes Theorem , Lead , Lymphatic Metastasis , Trace Elements/analysis , Zinc , Nickel , Cobalt
2.
Mar Pollut Bull ; 200: 116059, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335628

ABSTRACT

The ultraphytoplankton composition and dynamics were assessed during a Saharan dust event occurring off the southern Tunisian coasts during the MERITE-HIPPOCAMPE Trans-Mediterranean oceanographic cruise. The composition of atmospheric dust was characterized in terms of nutriments and trace metals. Data-assimilative hydrodynamic model revealed no differences in the hydrological features along the sampling track and almost no water transport occurred during the period of atmospheric deposition. Dust deposition increased the growth rates and the productivity of the major phytoplanktonic cytometric groups, resulting in the highest surface biomass along the Mediterranean transect. One group, distinguished by low fluorescence and nanoplanktonic size, reacted to dust deposition within hours, exhibiting the highest growth rate and net productivity. The dust composition showed a substantial enrichment with organic phosphorous representing (56 % of Total phosphorus) and trace metals mainly Fe, Mn and V.


Subject(s)
Dust , Trace Elements , Dust/analysis , Phosphorus , Trace Elements/analysis , Africa, Northern , Environmental Monitoring/methods
3.
Biofactors ; 50(1): 161-180, 2024.
Article in English | MEDLINE | ID: mdl-37597249

ABSTRACT

Recent reports indicated that the phytochemical curcumin possesses iron-chelating activity. Here, by employing the fruit fly Drosophila melanogaster, we conducted feeding studies supplementing curcumin or, as a control, the iron chelator bathophenanthroline (BPA). First, the absorption and further metabolization of dietary curcuminoids were proved by metabolomics analyses. Next, we found that 0.2% dietary curcumin, similar to BPA, lowered the iron but also the cobalt content, and to a lesser extent affected the manganese and zinc status. Supplementation during larval stages was required and sufficient for both compounds to elicit these alterations in adult animals. However, curcumin-induced retarded larval development was not attributable to the changed trace metal status. In addition, a reduction in the iron content of up to 70% by curcumin or BPA supplementation did not reduce heme-dependent catalase activity and tolerance toward H2 O2 in D. melanogaster. Moreover, polyamines were not influenced by curcumin treatment and decreased iron levels. This was confirmed for selected organs from 0.2% curcumin-treated mice, except for the spleen. Here, elevated spermidine level and concomitant upregulation of genes involved in polyamine production were associated with a putatively anemia-derived increased spleen mass. Our data underline that the metal-chelating property of curcumin needs to be considered in feeding studies.


Subject(s)
Curcumin , Drosophila melanogaster , Mice , Animals , Drosophila melanogaster/genetics , Curcumin/pharmacology , Cobalt , Polyamines , Iron , Oxidative Stress , Chelating Agents , Antioxidants , Dietary Supplements
4.
Tissue Eng Regen Med ; 21(2): 261-275, 2024 02.
Article in English | MEDLINE | ID: mdl-37979087

ABSTRACT

BACKGROUND: Bioglasses are used in applications related to bone rehabilitation and repair. The mechanical and bioactive properties of polysaccharides like alginate and agarose can be modulated or improved using bioglass nanoparticles. Further essential metal ions used as crosslinker have the potential to supplement cultured cells for better growth and proliferation. METHOD: In this study, the alginate bioink is modulated for fabrication of tissue engineering scaffolds by extrusion-based 3D bioprinting using agarose, bioglass nanoparticles and combination of essential trace elements such as iron, zinc, and copper. Homogeneous bioink was obtained by in situ mixing and bioprinting of its components with twin screw extruder (TSE) based 3D bioprinting, and then distribution of metal ions was induced through post-printing diffusion of metal ions in the printed scaffolds. The mechanical and 3d bioprinting properties, microscopic structure, biocompatibility of the crosslinked alginate/agarose hydrogels were analyzed for different concentrations of bioglass. The adipose derived mesenchymal stem cells (ADMSC) and osteoblast cells (MC3T3) were used to evaluate this hydrogel's biological performances. RESULTS: The porosity of hydrogels significantly improves with the incorporation of the bioglass. More bioglass concentration results in improved mechanical (compressive, dynamic, and cyclic) and 3D bioprinting properties. Cell growth and extracellular matrix are also enhanced with bioglass concentration. CONCLUSION: For bioprinting of the bioinks, the advanced TSE head was attached to 3D bioprinter and in situ fabrication of cell encapsulated scaffold was obtained with optimized composition considering minimal effects on cell damage. Fabricated bioinks demonstrate a biocompatible and noncytotoxic scaffold for culturing MC3T3 and ADMSC, while bioglass controls the cellular behaviors such as cell growth and extracellular matrix formation.


Subject(s)
Bioprinting , Ceramics , Nanoparticles , Tissue Engineering/methods , Sepharose , Alginates/chemistry , Nanoparticles/chemistry , Hydrogels/chemistry , Bioprinting/methods
5.
Environ Monit Assess ; 196(1): 87, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147204

ABSTRACT

The production for crude oil usually leads to contamination of the soil with trace metals and organic contaminants from spilled petroleum. Organic contaminants were generally paid more attention than trace metals in the oilfield pollution. Many studies have investigated the impacts of some petroleum hydrocarbon pollutants, however, the impacts and risk assessment of trace metals remain largely unexplored. Moreover, under some circumstances, the risks associated with trace metals are not necessarily lower than those associated with organic contaminants. This study aimed to investigate methods to evaluate the possible risks associated with 11 trace metals (Ti, Ba, Sr, Rb, V, Li, Mo, Co, Cs, Bi, and Tl) in soil and biota samples from the Shengli Oilfield using ICP-MS. The results showed that 11 trace metals in the surface soils exceeded the local background levels. The geo-accumulation index (Igeo) indicated that the soils had light-moderate to moderate contamination levels, with higher Igeo value of Ba, V, Li, Mo, Co, and Cs. The individual potential ecological risk indices ([Formula: see text]) demonstrated moderate Bi and Tl pollution in soils. Comparatively, the [Formula: see text] is recommended for the risk assessment of trace metals on the ecosystem around the oilfield area. Mo, Bi, and Sr easily accumulate in plants, as reflected by their bioaccumulation factor. Ti, Ba, V, Li, Co, Cs, Bi, and Tl exhibited considerable biomagnification, particularly in birds. In this study, trace metals showed considerable bioaccumulation and biomagnification, and the risks of these trace metals on the ecosystem around oilfield production area need more attention.


Subject(s)
Petroleum , Trace Elements , Bioaccumulation , Ecosystem , Oil and Gas Fields , Environmental Monitoring , Soil
6.
Environ Sci Pollut Res Int ; 30(54): 115064-115080, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37878179

ABSTRACT

This study addresses the challenges of biodiesel production costs and waste oil disposal by investigating the use of low-cost waste oil as a feedstock. The impact of heating temperature on biodiesel yield and trace metal levels is examined using response surface methodology (RSM). Optimal conditions for high biodiesel yields (95-98%) from canola oil are determined with a methanol/oil ratio of 12:1, 1 wt% catalyst, and 60-min reaction time. For crude bioglycerol, the optimal conditions involve a methanol/oil ratio of 4.25:1, 2.93 wt% catalyst, and 119.15-min reaction time. Elemental analysis reveals the presence of high-concentration metals like Cu and Zn and low-concentration ones such as Pb, As, Se, and Zr in both oil feedstocks and their respective biodiesel and bioglycerol products. The study demonstrates that thermal stress on canola oil significantly impacts biodiesel and bioglycerol yields and trace metal levels during the transesterification process. The findings contribute to enhancing cost-effectiveness and environmental sustainability in biodiesel production.


Subject(s)
Brassica napus , Plant Oils , Biofuels/analysis , Rapeseed Oil , Methanol , Esterification , Catalysis
7.
Toxicol Appl Pharmacol ; 477: 116694, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37739320

ABSTRACT

Oxidative stress and insulin resistance are two key mechanisms for the development of diabetic cardiomyopathy (DCM, cardiac remodeling and dysfunction). In this review, we discussed how zinc and metallothionein (MT) protect the heart from type 1 or type 2 diabetes (T1D or T2D) through its anti-oxidative function and insulin-mediated PI3K/Akt signaling activation. Both T1D and T2D-induced DCM, shown by cardiac structural remodeling and dysfunction, in wild-type mice, but not in cardiomyocyte-specific overexpressing MT mice. In contrast, mice with global MT gene deletion were more susceptible to the development of DCM. When we used zinc to treat mice with either T1D or T2D, cardiac remodeling and dysfunction were significantly prevented along with increased cardiac MT expression. To support the role of zinc homeostasis in insulin signaling pathways, treatment of diabetic mice with zinc showed the preservation of phosphorylation levels of insulin-mediated glucose metabolism-related Akt2 and GSK-3ß and even rescued cardiac pathogenesis induced by global deletion of Akt2 gene in a MT-dependent manner. These results suggest the protection by zinc from DCM is through both the induction of MT and sensitization of insulin signaling. Combined our own and other works, this review comprehensively summarized the roles of zinc homeostasis in the development and progression of DCM and its therapeutic implications. At the end, we provided pre-clinical and clinical evidence for the preventive and therapeutic potential of zinc supplementation through its anti-oxidative stress and sensitizing insulin signaling actions. Understanding the intricate connections between zinc and DCM provides insights for the future interventional approaches.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Mice , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/metabolism , Zinc/therapeutic use , Zinc/metabolism , Insulin , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Ventricular Remodeling , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , Oxidative Stress
8.
Mar Pollut Bull ; 194(Pt B): 115379, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37567128

ABSTRACT

Herein, we aim to provide a baseline assessment of the pollution status of the water column in coastal areas of Saudi Arabia (Red Sea and the Gulf of Aqaba), using trace metals (Cd, Co, Cr, Cu, Ni, Pb and Zn), total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs), in seawater samples obtained from 71 sampling stations in June-July 2021. Concerning trace metals, the maximum concentrations for Co, Cu and Ni were detected in Al-Shuqaiq, whereas the highest Pb and Zn concentrations were found in the Jeddah lagoon waters. Elevated concentrations of TPHs and the highest sum of PAHs were recorded in surface waters of Al Lith, Jeddah lagoon and Jeddah Mena. Overall, the concentrations of all trace metals, TPHs and individual PAHs for which environmental standards have been stipulated for the Kingdom of Saudi Arabia fall well below the threshold values.


Subject(s)
Metals, Heavy , Petroleum , Polycyclic Aromatic Hydrocarbons , Trace Elements , Water Pollutants, Chemical , Geologic Sediments , Water , Indian Ocean , Lead , Water Pollutants, Chemical/analysis , Environmental Monitoring , Saudi Arabia , Hydrocarbons , Metals, Heavy/analysis
9.
Environ Pollut ; 337: 122100, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37392867

ABSTRACT

Cadmium (Cd) and lead (Pb) are known to enhance immune cell damages and to decrease cellular immunity, promoting higher susceptibility to infectious diseases. Selenium (Se) is an essential element involved in immunity and reactive oxygen species scavenging. This study aimed at evaluating how Cd and Pb and low nutritional (Se) quality modulate immune response to a bacterial lipopolysaccharide (LPS) challenge in wood mice (Apodemus sylvaticus). Mice were trapped near a former smelter in northern France in sites of High or Low contamination. Individuals were challenged immediately after capture or after five days of captivity, fed a standard or a Se-deficient diet. Immune response was measured with leukocyte count and plasma concentration of TNF-α, a pro-inflammatory cytokine. Faecal and plasma corticosterone (CORT), a stress-hormone involved in anti-inflammatory processes, was measured to assess potential endocrine mechanisms. Higher hepatic Se and lower faecal CORT were measured in free-ranging wood mice from High site. LPS-challenged individuals from High site showed steeper decrease of circulating leukocytes of all types, higher TNF-α concentrations, and a significant increase of CORT, compared to individuals from Low site. Challenged captive animals fed standard food exhibited similar patterns (decrease of leukocytes, increase of CORT, and detectable levels of TNF-α), with individuals from lowly contaminated site having higher immune responses than their counterparts from highly polluted site. Animals fed Se-deficient food exhibited lymphocytes decrease, no CORT variation, and average levels of TNF-α. These results suggest (i) a higher inflammatory response to immune challenge in free-ranging animals highly exposed to Cd and Pb, (ii) a faster recovery of inflammatory response in animals lowly exposed to pollution when fed standard food than more exposed individuals, and (iii) a functional role of Se in the inflammatory response. The role of Se and mechanisms underlying the relationship between glucocorticoid and cytokine remain to be elucidated.


Subject(s)
Cadmium , Selenium , Mice , Animals , Cadmium/analysis , Tumor Necrosis Factor-alpha , Lipopolysaccharides/toxicity , Lead , Murinae , Environmental Pollution/analysis , Corticosterone , Nutritive Value , Immunity
10.
Life (Basel) ; 13(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37374198

ABSTRACT

BACKGROUND: Currently, the use of medicinal plants has increased. Artemisia species have been used in several applications, including medicinal use and uses in cosmetics, foods and beverages. Artemisia arborescens L. and Artemisia inculta are part of the Mediterranean diet in the form of aqueous infusions. Herein, we aimed to compare the secondary metabolites of the decoctions and two different extracts (methanolic and aqueous-glycerolic) of these two species, as well as their antioxidant capacity and trace metal levels. METHODS: Total phenolic, total flavonoid, total terpenes, total hydroxycinnamate, total flavonol, total anthocyanin contents and antioxidant/antiradical activity were determined, and GC/MS analysis was applied to identify and quantify phenolics and terpenoids. Trace metals were quantified with ICP-MS. RESULTS: Aqueous-glycerolic extracts demonstrated higher levels of total secondary metabolites, greater antioxidant potential and higher terpenoid levels than decoctions and methanolic extracts. Subsequently, the aqueous-glycerolic extract of a particularly high phenolic content was further analyzed applying targeted LC-MS/MS as the most appropriate analytic tool for the determination of the phenolic profile. Overall, twenty-two metabolites were identified. The potential contribution of infusions consumption to metal intake was additionally evaluated, and did not exceed the recommended daily intake. CONCLUSIONS: Our results support the use of these two species in several food, cosmetic or pharmaceutical applications.

11.
Biol Trace Elem Res ; 201(3): 1503-1519, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35467266

ABSTRACT

Tea (Camellia sinensis L.) is one of the most widely consumed non-alcoholic beverages worldwide. In the present study, 73 commercial tea samples were collected from tea plantations in the Southwest, South, Jiangnan, and Jiangbei regions of China. The contents of four macroelements (phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) and 15 trace metals (arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), zinc (Zn), aluminium (Al), copper (Cu), manganese (Mn), iron (Fe), nickel (Ni), thorium (Th), thallium (Tl), rubidium (Rb) and barium (Ba)) in tea samples were determined. The mean concentrations of As, Cd, Cr, Hg, Pb, Zn, Al, Cu, Mn, Fe, Ni, Th, Tl, Rb and Ba were in the range of 0.02-0.61, 0.008-0.126, 0.09-1.12, 0.001-0.012, 0.07-1.62, 19.5-73.2, 170-2100, 5.9-43.3, 228-2040, 60-337, 2.09-17.95, 0.002-0.08, 0.004-0.409, 0-150.50 and 3.1-41.2 µg/g, respectively, which were all lower than the maximum permissible limits stipulated by China (NY/T 288-2012, NY 659-2003). The target hazard quotients of each heavy metal were lower than one, and the combined risk hazard index of all heavy metals for adults was in the range of 0.10-0.85; therefore, there was no significant carcinogenic health risks to tea drinking consumers under the current dietary intake. Significant differences were found in the content of trace elements (Zn, Cu, Fe, Ni, Th, Tl, Rb and Ba) (p < 0.05); however, no significant differences were found in the content of macroelements (P, K, Ca and Mg) and trace metals (As, Cd, Cr, Hg, Pb, Al and Mn) in teas from different regions. Therefore, the region did not affect the heavy metal exposure risk. Correlation coefficient and principal component analyses were performed to determine the source of the elements. Three principal factors were obtained: factor 1 was positively related to Ca, Mg, As, Cd, Cr, Hg, Pb, Al, Mn, Fe and Th (32.63%); factor 2 to P, Zn, Cu and Ni (18.64%) and factor 3 to K and Rb (10.10%). Thus, the elements in the same factor might originate from the same source. This study provides an essential basis to understand the variance and potential risks of different elements in tea from different regions of China.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Trace Elements , Arsenic/analysis , Cadmium/analysis , Chromium/analysis , Environmental Monitoring , Lead/analysis , Magnesium/analysis , Manganese/analysis , Mercury/analysis , Metals, Heavy/analysis , Nickel/analysis , Risk Assessment , Rubidium , Tea , Thallium , Trace Elements/analysis , Zinc/analysis
12.
Environ Toxicol Chem ; 42(2): 512-524, 2023 02.
Article in English | MEDLINE | ID: mdl-36345954

ABSTRACT

Responses of stream ecosystems to gradual reductions in metal loading following remediation or restoration activities have been well documented in the literature. However, much less is known about how these systems respond to the immediate or more rapid elimination of metal inputs. Construction of a water treatment plant on the North Fork of Clear Creek (NFCC; CO, USA), a US Environmental Protection Agency Superfund site, captured, diverted, and treated the two major point-source inputs of acid mine drainage (AMD) and provided an opportunity to investigate immediate improvements in water quality. We conducted a 9-year study that included intensive within- and among-year monitoring of receiving-stream chemistry and benthic communities before and after construction of the treatment plant. Results showed a 64%-86% decrease in metal concentrations within months at the most contaminated sites. Benthic communities responded with increased abundance and diversity, but downstream stations remained impaired relative to reference conditions, with significantly lower taxonomic richness represented by a few dominant taxa (i.e., Baetis sp., Hydropsyche sp., Simulium sp., Orthocladiinae). Elevated metal concentrations from apparent residual sources, and relatively high conductivity from contributing major ions not removed during the treatment process, are likely limiting downstream recovery. Our study demonstrates that direct AMD treatment can rapidly improve water quality and benefit aquatic life, but effectiveness is limited, in part, to the extent that inputs of metals are captured and treated. Consideration should also be given to the effects of elevated major ion concentrations from the treated effluent not removed during the lime treatment process. Continued chemical and biological monitoring will be needed to quantify the NFCC recovery trajectory and to inform future remediation strategies. Environ Toxicol Chem 2023;42:512-524. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Humans , Animals , Environmental Monitoring/methods , Metals , Water Quality , Mining , Acids
13.
Nutrients ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36501035

ABSTRACT

Nutrition is an essential factor for human health. Earlier research has suggested that Arctic residents are vulnerable to environmental toxic exposures through traditional foods. Although Russia is the largest Arctic country, the evidence on the topic from the Russian part of the Arctic is scarce. We studied associations between blood concentrations of essential and non-essential elements and traditional food consumption in 297 adults from seven rural settlements in the Nenets Autonomous Area, Northwest Russia. Blood arsenic concentration was positively associated with consumption of rainbow smelt, pink salmon, Arctic char and navaga fish. Frequent consumption of northern pike was associated with increased concentration of blood mercury. Blood mercury and arsenic concentrations were significantly associated with blood selenium. We also observed positive associations between blood lead levels and the frequency of goose consumption. Moreover, subjects who reported to be hunters had higher blood levels of lead, suggesting contamination of goose meat with fragments of shotgun shells. Blood cobalt and manganese concentrations were inversely associated with serum ferritin levels. Positive associations between blood levels of manganese and lead were observed. Moreover, blood lead concentrations were significantly associated with cadmium, mercury, copper, and zinc. Our results corroborate earlier findings on the traditional foods as source of non-essential elements for the Arctic residents. Observed correlations between the levels of lead and other elements warrant further research and may have potential implications for the studies on the associations between essential elements and health outcomes.


Subject(s)
Arsenic , Mercury , Selenium , Trace Elements , Adult , Animals , Humans , Lead , Manganese , Arctic Regions , Arsenic/analysis , Cadmium , Selenium/analysis , Diet , Russia
14.
Sci Total Environ ; 849: 157882, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35944632

ABSTRACT

Geochemical behaviors of trace metals in the sediment profiles are crucial for predicting the associated environmental risks in aquatic ecosystems. However, the comprehensive transport of trace metals under both equilibrium and dynamic conditions is still unclear under the changing hydrological regime. Here, the equilibrium partitioning behaviors and remobilization of five trace metals (Ni, Cu, Zn, As, and Pb) in sedimentary profiles within the tributaries of the Three Gorges Reservoir were explored by the partitioning coefficient (Kd), diffusive gradients in thin films (DGT), and DGT induced flux in sediments (DIFS) model. According to the Kd values, As posed the highest migration ability among the trace metals in the sediment profiles under equilibrium circumstances. Similarly, the dynamic processes of trace metals simulated by the DIFS model also suggested that As displayed the highest desorption rate despite having the lowest labile pool size. Moreover, all trace metals were classified as the "partially sustained" case, while the supply abilities of As and other trace metals were limited by the diffusion and the desorption kinetics, respectively. In addition, DGT-labile trace metals showed a diffusion trend from the sediment to the water column (except for Zn) at the sediment-water interface, indicating potential risks to water quality. Specifically, the equilibrium partitioning behaviors revealed the potential labile pool of trace metals in the solid phase, and the dynamic resupply process between the solid phase and porewater remained undetermined. In comparison, although DGT simulated the kinetic process of trace metals in the sediments, the labile pool of the trace metals could not be obtained. This study provided a holistic insight into the complementary trace metal behaviors under both equilibrium and dynamic conditions in the sediment and was beneficial to the water quality protection and internal pollution remediation in the aquatic environment.


Subject(s)
Trace Elements , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Geologic Sediments , Lead , Water Pollutants, Chemical/analysis
15.
Mar Drugs ; 20(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35621975

ABSTRACT

In recent years, natural deep eutectic solvents (NADES) have been widely investigated for the extraction of food and medicinal plants as well as seaweeds. However, the ability of NADES for trace elements co-extraction from natural sources is not well investigated. The aim of this study was to investigate the ability of common NADES for trace elements co-extraction from Fucus vesiculosus. All of the tested NADES did not recover As and Co (concentration

Subject(s)
Fucus , Deep Eutectic Solvents , Plant Extracts , Solvents , Water
16.
J Hazard Mater ; 424(Pt A): 127224, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34583157

ABSTRACT

Screening and cultivating crop varieties with low Cd accumulation is an effective way to safely utilize the Cd slightly contaminated soil. The characteristics and mechanism of Cd uptake by 13 wheat varieties in two calcareous soils with similar Cd contamination level but different P supply level were studied. The grain Cd concentration of almost all varieties in low-P soil was significantly higher than that in high-P soil and exceeded the maximum level of 0.2 mg kg-1 recommended by the Codex Alimentarius Commission. The pH value of low-P soil was significantly lower than that of high-P soil by 0.27 units, while leaf [Mn] (proxy for rhizosphere carboxylates) and the activities of soil alkaline phosphatase and phytase were significantly higher than those of high-P soil by 35%, 55%, and 286%, respectively. The exchangeable Cd concentration in low-P soil was 2.93 times higher than that in high-P soil, while the Cd concentration of oxides and organic species was significantly lower than that in high-P soil by 21% and 64%, respectively, collectively increasing soluble Cd concentration in low-P soil by 38%. In low-P calcareous soil, P mobilization induced the change of root-zone microenvironment, resulting in the mobilization of Cd.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Phosphorus , Soil , Soil Pollutants/analysis , Triticum
17.
Environ Sci Pollut Res Int ; 29(5): 7514-7531, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34476713

ABSTRACT

Understanding the transport of sediments in urban estuaries and their effects on water quality and microorganisms is a convergent challenge that has yet to be addressed especially as a result of natural hazards that affect the hydrodynamics of estuarine systems. This study provides a holistic view of the longitudinal nature and character of sediment in an urban estuary, the Galveston Bay Estuary System (GBES), under daily and extreme flow regimes and presents the results of water and sediment sampling after Hurricane Harvey. The sediment sampling quantified total suspended sediment (TSS) concentrations, metal concentrations, and the diversity of microbial communities. The results revealed the impact of the substantial sediment loads that were transported into the GBES in terms of sediment grain type, the spatial distribution of trace metals, and the diversity of microbial communities. A measurable shift in the percentage of silt relative to historical norms was noted in the GBES after Hurricane Harvey. Not only did sediment metal data confirms this shift and its ensuing impact on metal concentrations; microbial data provided ample evidence of the effect of leaks and spills from wastewater treatment plants, superfund sites, and industrial runoff on microbial diversity. The research demonstrates the importance of understanding longitudinal sediment transport and deposition in estuarine systems under daily flow regimes but more critically, following natural hazard events to ensure sustainability and resilience of systems such as the GBES that encounter numerous acute and chronic stresses.


Subject(s)
Cyclonic Storms , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Geologic Sediments , Retrospective Studies , Water Pollutants, Chemical/analysis
18.
Food Chem ; 375: 131823, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34920305

ABSTRACT

Suppressing toxic aldehydic lipid oxidation product (LOP) generation in culinary oils is now considered vital, since the deleterious effects arising from their ingestion are implicated in a wide range of disease conditions. Partial substitution involves the replenishment of thermally-stressed culinary oils with corresponding unheated ones. This technique was tested by employing 10%, 25%, 50%, and 75% (v/v) partial substitutions of coconut, olive, rapeseed, and sunflower oils at 180℃ for a 300 min continuous thermo-oxidation duration. Oil samples were analysed by proton nuclear magnetic resonance (1H NMR) spectroscopy. Trace metal levels, including oxidation-reduction (redox)-active metal ions credited with enhancing cooking oil oxidation were also analysed using inductively coupled plasma-optical emission spectroscopy (ICP-OES). As expected, the degree of oil unsaturation, and the % partial substitutions significantly influenced their susceptibility to thermo-oxidation. In view of the very low polyunsaturated fatty acid (PUFA) and monounsaturated fatty acid (MUFA) contents of coconut oil, both the class and concentrations of evolved LOPs were found to be least affected by this partial substitution process. Aldehydic LOPs were greatly suppressed in partially-substituted rapeseed oil. The % suppression activity of LOPs evaluated for the partially substituted oils were generally high making partial oil substitutions an effective chemical-free method in suppressing LOPs at both industrial and commercial levels. In general, the % partial oil substitutions were directly related to the dilution effect observed for LOPs quantified in the oils. Furthermore, trace metal ion concentrations measured in the culinary oils did not influence the evolution of LOPs in the oils.


Subject(s)
Dietary Fats, Unsaturated , Oils , Ions , Lipid Peroxidation , Olive Oil , Oxidation-Reduction , Plant Oils , Sunflower Oil
19.
J Plant Physiol ; 268: 153561, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34801776

ABSTRACT

Nodulation and symbiotic nitrogen fixation are important factors that determine legume growth. A pot experiment was carried out to determine the effects of Zn-Pb contamination on nodule apoplast (cell walls and intercellular spaces) of bird's foot trefoil (Lotus corniculatus L.) that spontaneously colonized old calamine wastes. The plants were grown in pots filled with sterile calamine substrate (M, metal treated) or expanded clay (NM, untreated) and inoculated with calamine-derived Lotus-nodulating Bradyrhizobium liaoningense. Apoplast reorganization in the nodules was examined using specific dyes for cellulose, pectin and lignin detection, and immuno-histochemical techniques based on monoclonal antibodies against xyloglucan (Lm25), pectins (Jim5 and Jim7), and structural proteins (arabinogalactan protein - Lm14 and extensin - Jim12). Microscopic analysis of metal-treated nodules revealed changes in the apoplast structure and composition of nodule cortex tissues and infected cells. Wall thickening was accompanied by intensified deposition of cellulose, xyloglucan, esterified pectin, arabinogalactan protein and extensin. The metal presence redirected also lignin and suberin deposition in the walls of the nodule cortex tissues. Our results showed reorganization of the apoplast of cortex tissues and infected cells of Lotus nodules under Zn-Pb presence. These changes in the apoplast structure and composition may have created actual barriers for the toxic ions. For this reason, they can be regarded as an element of legume defense strategy against metal stress that enables effective functioning of L. corniculatus-rhizobia symbiosis on Zn-Pb polluted calamine tailings.


Subject(s)
Lead , Lotus , Root Nodules, Plant/growth & development , Zinc , Lignin , Lotus/drug effects , Nitrogen Fixation , Pectins , Root Nodules, Plant/drug effects , Soil Pollutants , Symbiosis
20.
Biol Trace Elem Res ; 200(6): 3009-3022, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34558016

ABSTRACT

The ingestion of toxic metals through liquid herbal medicine over a long period of time, and in excessive dose, may result in chronic accumulation that could cause disorder to several organs of the body. This study evaluated the concentration, source, and probable health risk of 8 trace metals in liquid herbal medicines sold in Nigeria. Triplicate samples of 10 different brands of liquid herbal formulations were analyzed using flame atomic absorption spectrophotometer. Elemental concentrations (mg L-1) ranged as < 0.00120 (nickel), 0.329-1.23 (zinc), < 0.00150-0.0750 (chromium), 0.565-6.94 (manganese), 1.75-19.4 (iron), < 0.00150-0.266 (cobalt), < 0.0018-3.01 (lead), and < 0.00900-0.0281 (copper). The estimated hazard quotient (HQ) and hazard index (HI) of trace metals (zinc, chromium, manganese, iron, cobalt, lead, and copper) were < 1.00, except for one of the herbal products which depicted a value of < 1.50, an indication that there is no major probable health effect due to exposure. Carcinogenic risks were lower than the threshold level of 10.0-6-10.0-4; this probably reflects non-existent carcinogenic risk in both age groups. The principal component analysis revealed the likelihood of geogenic and anthropogenic activities as indirect sources of trace metals in the herbs. Using hierarchical cluster analysis, AAB and AHM herbal mixtures showed strong similarities in cluster 1, while the remaining herbs reflected identical association within cluster 2. Based on the results of this study, there is need to periodically monitor levels of toxic metals in herbal medicine in order to ensure regulatory compliance and safeguard the health of its consumers.


Subject(s)
Metals, Heavy , Trace Elements , Carcinogens/analysis , Chromium/analysis , Cobalt/analysis , Copper/analysis , Environmental Monitoring/methods , Herbal Medicine , Iron/analysis , Manganese/analysis , Metals, Heavy/analysis , Nigeria , Risk Assessment , Spectrophotometry, Atomic , Trace Elements/analysis , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL