Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Molecules ; 29(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38338429

ABSTRACT

Photodynamic inactivation (PDI) is a highly effective treatment that can eliminate harmful microorganisms in a variety of settings. This study explored the efficacy of a curcumin-rich extract, Curcuma L., (Cur)- and essential oil component, trans-cinnamaldehyde, (Ca)-mediated PDI against Listeria monocytogenes ATCC 15313 (Lm) including planktonic cells and established biofilms on silicone rubber (Si), polytetrafluoroethylene (PTFE), stainless steel 316 (SS), and polyethylene terephthalate (PET). Applying Ca- and Cur-mediated PDI resulted in planktonic cell reductions of 2.7 and 6.4 log CFU/cm2, respectively. Flow cytometric measurements (FCMs) coupled with CFDA/PI and TOTO®-1 staining evidenced that Ca- doubled and Cur-mediated PDI quadrupled the cell damage. Moreover, the enzymatic activity of Lm cells was considerably reduced by Cur-mediated PDI, indicating its superior efficacy. Photosensitization also affected Lm biofilms, but their reduction did not exceed 3.7 log CFU/cm2. Cur-mediated PDI effectively impaired cells on PET and PTFE, while Ca-mediated PDI caused no (TOTO®-1) or only slight (PI) cell damage, sparing the activity of cells. In turn, applying Ca-mediate PDI to Si largely diminished the enzymatic activity in Lm. SS contained 20% dead cells, suggesting that SS itself impacts Lm viability. In addition, the efficacy of Ca-mediated PDI was enhanced on the SS, leading to increased damage to the cells. The weakened viability of Lm on Si and SS could be linked to unfavorable interactions with the surfaces, resulting in a better effect of Ca against Lm. In conclusion, Cur demonstrated excellent photosensitizing properties against Lm in both planktonic and biofilm states. The efficacy of Ca was lower than that of Cur. However, Ca bears potent antibiofilm effects, which vary depending on the surface on which Lm resides. Therefore, this study may help identify more effective plant-based compounds to combat L. monocytogenes in an environmentally sustainable manner.


Subject(s)
Acrolein/analogs & derivatives , Listeria monocytogenes , Quinolinium Compounds , Thiazoles , Curcuma , Anti-Bacterial Agents/pharmacology , Biofilms , Polytetrafluoroethylene
2.
Poult Sci ; 102(8): 102812, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37302329

ABSTRACT

Cleanliness of eggs is critical in successful hatching egg operations. The objective of this study was to investigate the effect of trans-cinnamaldehyde nanoemulsion (TCNE) wash treatments, as a sanitation strategy, on embryonic development in fertilized eggs. Trans-cinnamaldehyde is a generally recognized as safe status phytochemical obtained from cinnamon bark. TCNE were prepared with emulsifiers Tween 80 (Tw.80) or gum Arabic and lecithin (GAL) by sonication. Day-old fertilized eggs were subjected to TCNE wash treatments at 34°C for 5 min, followed by 18 d of incubation at 37.7°C. Washing of fertilized eggs with TCNE-Tw.80 or GAL at 0.48% concentration did not significantly alter the egg weight at d 18 of incubation, as compared to baseline and control (P > 0.05). The egg weight loss (calculated as percentage) did not differ significantly between eggs subjected to nanoemulsion wash treatments and control eggs (P > 0.05). In case of embryo fertility and mortality, for baseline and control, ∼ 95% fertility rate was achieved, with combined early and midterm mortality at 16%. Likewise, TCNE-Tw.80 or TCNE-GAL resulted in 95% fertility (P > 0.05), with 11% and 17% combined early and midterm mortality, respectively. Furthermore, TCNE wash treatments did not differ significantly in yolk sac and embryo weight (as compared to control) and did not affect the length of the d 18 embryo (P > 0.05). Moreover, TCNE wash treatments did not alter tibia weight and length (P > 0.05). Results suggest that TCNE could potentially be used as a natural antimicrobial for fertilized egg sanitation. Further studies in industry settings are warranted.


Subject(s)
Chickens , Zygote , Chick Embryo , Animals , Ovum , Embryonic Development , Lecithins , Eggs
3.
Fish Shellfish Immunol ; 131: 908-917, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36356856

ABSTRACT

The purpose of this study was to evaluate the effects of dietary trans-cinnamaldehyde (TC) on growth performance, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei. Shrimp were randomly divided into 4 groups, with 3 replicants in each group and 70 shrimp in each replicant. The contents of TC in the four groups were 0, 0.4, 0.8 and 1.2 g kg-1, respectively. Samples were taken after 56 days, followed by a 7-day vibrio harveyi challenge experiment. The results showed that TC significantly improved the growth performance by enhancing the activity of digestive enzymes in shrimp (P < 0.05). TC also reduced the content of crude fat (P < 0.05). The addition of TC to the diet attenuated lipid deposition, as evidenced by a reduction in the content of crude fat and a decrease in plasma levels of cholesterol and triglycerides (P < 0.05). The expression of key genes for fatty acid and triglycerides synthesis were significantly down-regulated and key genes for fatty acid ß-oxidation were significantly up-regulated (P < 0.05). In addition, the immune response and antioxidant capability of shrimp were significantly enhanced by the addition of TC to the diet (P < 0.05). Meanwhile, TC could improve intestinal health by increasing the abundance of beneficial bacteria and decreasing the abundance of pathogenic bacteria, but had no significant effect on alpha diversity and beta diversity (P > 0.05). In addition, the results of histopathological sections and plasma transaminase studies showed that TC could improve the health status of hepatopancreas and was a safe nutritional supplement. After the 7-day Vibrio harveyi challenge, the cumulative mortality of shrimp decreased with increasing levels of dietary TC compared with control group (P < 0.05). These results suggested that TC could be used as a nutritional supplement for shrimp to enhance disease resistance and reduce lipid accumulation.


Subject(s)
Gastrointestinal Microbiome , Penaeidae , Animals , Animal Feed/analysis , Lipid Metabolism , Immunity, Innate , Diet/veterinary , Fatty Acids/metabolism , Triglycerides/metabolism , Lipids
4.
Vet Parasitol ; 307-308: 109712, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35635852

ABSTRACT

Haemaphysalis longicornis (Acari: Ixodidae) is an important vector of numerous pathogens and poses a great threat to veterinary and public health. Commercially available tick repellents are extensively used and primarily comprise synthetic molecules; however, there are concerns over their safety and environmental impacts. Biologically based acaricides, particularly the plant-derived essential oils (EOs), may constitute an appealing alternative. We screened 20 different EOs by packet tests of unfed H. longicornis nymphs, and found that EOs of cinnamon, clove and chamomile were the most toxic (mortality > 80 %). Cinnamon EO had the most competitive acaricidal activity, with lethal concentration 50 (LC50) rates of 0.4530 %, 0.2316 % and 0.0342 % (v/v) for unfed adults, nymphs and larvae, respectively. Furthermore, 5.00 % (v/v) cinnamon EO showed reproductive inhibition against H. longicornis, with significantly higher rates of oviposition reduction (53.19 %) and hatching reduction (46.21 %) compared with the negative control group. Composition analysis of cinnamon EO by gas chromatography-mass spectrometry (GC-MS) revealed that the major chemical compounds were trans-cinnamaldehyde (72.21 %) and cinnamic acid (19.45 %), with the former showing similar levels of acaricidal activity and oviposition inhibition as cinnamon EO. This study has demonstrated the potential of cinnamon EO and trans-cinnamaldehyde as natural acaricides against H. longicornis, and is the first to characterize their oviposition inhibition activity.


Subject(s)
Acaricides , Ixodidae , Oils, Volatile , Acaricides/chemistry , Acaricides/pharmacology , Animals , Cinnamomum zeylanicum/chemistry , Female , Larva , Nymph , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology
5.
Eur J Pharmacol ; 914: 174687, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34883072

ABSTRACT

BACKGROUND: Trans-cinnamaldehyde (TCA) is a main compound of Cinnamomum cassia, used in traditional Chinese medicine to treat many ailments. Increasing evidence has demonstrated the therapeutic effects of TCA in cardiovascular diseases. PURPOSE: The present study aimed to determine whether TCA exerts antihypertrophic effects in vitro and in vivo and to elucidate the underlying mechanisms of these effects. METHODS: Neonatal rat cardiac myocytes (NRCMs) and adult mouse cardiac myocytes (AMCMs) were treated with 50 µΜ phenylephrine (PE) for 48 h. Tubulin detyrosination, store-operated Ca2+ entry (SOCE), stromal interaction molecule-1 (STIM1)/Orai1 translocation, and calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathways were analyzed in NRCMs. Meanwhile, tubulin detyrosination, junctophilin-2, T-tubule distribution pattern, Ca2+ handling, and sarcomere shortening were observed in AMCMs. Male C57BL/6 mice were stimulated with PE (70 mg/kg per day) with or without TCA treatment for 2 weeks. Cardiac hypertrophy and tubulin detyrosination were also assessed. RESULTS: TCA was confirmed to alleviate cardiac hypertrophy induced by PE stimulation in vitro and in vivo. PE-induced cardiac hypertrophy was associated with excessive tubulin detyrosination and overexpression of vasohibin 1 (VASH1) and small vasohibin binding protein (SVBP), two key proteins responsible for tubulin detyrosination. These effects were largely blocked by TCA administration. PE treatment also enhanced SOCE with massive translocation of STIM1 and Orai1, Ca2+ mishandling, reduced sarcomere shortening, junctophilin-2, and T-tubule redistribution, all of which were significantly ameliorated by TCA administration. CONCLUSION: Our study indicated that the therapeutic effects of TCA against cardiac hypertrophy may be associated with its ability to reduce tubulin detyrosination.


Subject(s)
Acrolein/analogs & derivatives , Cardiomegaly , Microtubules , Myocytes, Cardiac , Tubulin/metabolism , Acrolein/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Membrane Proteins/metabolism , Mice , Microtubules/drug effects , Microtubules/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Rats , Signal Transduction/drug effects , Treatment Outcome , Tubulin Modulators/pharmacology
6.
Int J Med Sci ; 18(12): 2480-2492, 2021.
Article in English | MEDLINE | ID: mdl-34104079

ABSTRACT

Background: Trans-cinnamaldehyde (tCA), a bioactive component found in Cinnamomum cassia, has been reported to exhibit anti-inflammatory and antioxidant effects, but its efficacy in muscle cells has yet to be found. In this study, we investigated the inhibitory effect of tCA on inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in C2C12 mouse skeletal myoblasts. Methods: To investigate the anti-inflammatory and antioxidant effects of tCA in LPS-treated C2C12 cells, we measured the levels of pro-inflammatory mediator, cytokines, and reactive oxygen species (ROS). To elucidate the mechanism underlying the effect of tCA, the expression of genes involved in the expression of inflammatory and oxidative regulators was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of tCA against LPS in the zebrafish model. Results: tCA significantly inhibited the LPS-induced release of pro-inflammatory mediators and cytokines, which was associated with decreased expression of their regulatory genes. tCA also suppressed the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor, and attenuated the nuclear translocation of nuclear factor-kappa B (NF-κB) and the binding of LPS to TLR4 on the cell surface in LPS-treated C2C12 cells. Furthermore, tCA abolished LPS-induced generation of ROS and expression levels of ROS producing enzymes, NADPH oxidase 1 (NOX1) and NOX2. However, tCA enhanced the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated C2C12 myoblasts. In addition, tCA showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. Conclusions: Our findings suggest that tCA exerts its inhibitory ability against LPS-induced inflammatory and antioxidant stress in C2C12 myoblasts by targeting the TLR4/NF-κB, which might be mediated by the NOXs and Nrf2/HO-1 pathways.


Subject(s)
Acrolein/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Inflammation/drug therapy , Oxidative Stress/drug effects , Acrolein/pharmacology , Acrolein/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical , Inflammation/immunology , Lipopolysaccharides/immunology , Mice , Myoblasts , NF-kappa B/metabolism , Oxidative Stress/immunology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Toll-Like Receptor 4/metabolism , Zebrafish
7.
Pharmacol Res ; 164: 105376, 2021 02.
Article in English | MEDLINE | ID: mdl-33316383

ABSTRACT

Depression is a common global mental disorder that seriously harms human physical and mental health. With the development of society, the increase of pressure and the role of various other factors make the incidence of depression increase year by year. However, there is a lack of drugs that have a fast onset, significant effects, and few side effects. Some volatile oils from traditional natural herbal medicines are usually used to relieve depression and calm emotions, such as Lavender essential oil and Acorus tatarinowii essential oil. It was reported that these volatile oils, are easy to enter the brain through the blood-brain barrier and have good antidepressant effects with little toxicity and side effects. In this review, we summarized the classification of depression, and listed the history of using volatile oils to fight depression in some countries. Importantly, we summarized the anti-depressant natural volatile oils and their monomers from herbal medicine, discussed the anti-depressive mechanisms of the volatile oils from natural medicine. The volatile oils of natural medicine and antidepressant drugs were compared and analyzed, and the application of volatile oils was explained from the clinical use and administration routes. This review would be helpful for the development of potential anti-depressant medicine and provide new alternative treatments for depressive disorders.


Subject(s)
Antidepressive Agents/administration & dosage , Depression/drug therapy , Depressive Disorder/drug therapy , Oils, Volatile/administration & dosage , Plant Oils/administration & dosage , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/classification , Depression/classification , Depressive Disorder/classification , Humans , Oils, Volatile/chemistry , Oils, Volatile/classification , Phytotherapy , Plant Oils/chemistry , Plant Oils/classification , Plants, Medicinal
8.
Food Chem ; 338: 128071, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33092005

ABSTRACT

This study was proposed to investigate the possibility of co-delivering essential oils and lipophilic nutrients via lecithin stabilized emulsions. Emulsions with different droplet sizes (62.5-105 nm), zeta potentials (-33.7 to -58.6 mV), and PdI values (0.155-0.275) were successfully prepared. Incorporation of curcumin into emulsions significantly improved its water solubility (1700-fold), thermal and photochemical stability. The droplet size of curcumin-loaded emulsions did not change over 30 days of storage at 4 °C. Gastrointestinal tract (GIT) digestion caused significant changes in the droplet size and interfacial properties of curcumin-loaded emulsions. The bioaccessibility of encapsulated curcumin was 4.79-10.6-fold higher than that of free molecule. This is mainly attributed to the different solubility of curcumin in essential oils, which also showed different bioaccessibility. The findings suggested that emulsions can be novel carriers for co-delivering essential oils and lipophilic nutrients with increased stability and bioaccessibility.


Subject(s)
Emulsions/chemistry , Glycine max/chemistry , Lecithins/chemistry , Nutrients/metabolism , Oils, Volatile/chemistry , Water/chemistry , Cold Temperature , Curcumin/chemistry , Nutrients/analysis , Rheology , Solubility , Glycine max/metabolism
9.
Biol Pharm Bull ; 43(11): 1707-1714, 2020.
Article in English | MEDLINE | ID: mdl-33132316

ABSTRACT

Oxidative stress, which is characterized by overproduction of reactive oxygen species (ROS), is considered a major risk factor associated with fibroblast death in severe lung diseases such as idiopathic pulmonary fibrosis. trans-Cinnamaldehyde (tCA), the major phytochemical constituent in cinnamon, is known to possess strong anti-oxidant activity. However, whether tCA can defend lung fibroblasts against oxidative injury remains to be elucidated. Therefore, this study was conducted to investigate the protective effects of tCA on oxidative stress in V79-4 Chinese hamster lung fibroblasts. The current results showed that tCA inhibited hydrogen peroxide (H2O2)-induced cytotoxicity by blocking abnormal accumulation of ROS in V79-4 Chinese hamster lung fibroblasts. tCA attenuated apoptosis by suppressing of mitochondrial dysfunction and cytosolic release of cytochrome c, increasing the rate of Bcl-2/Bax expression and reducing the activity of caspase-9 and caspase-3 in H2O2-stimulated V79-4 cells, suggesting that tCA protected V79-4 cells from the induction of mitochondria-mediated apoptosis by H2O2. Additionally, the activation of nuclear factor-erythroid-2-related factor 2 (Nrf2) was markedly promoted by tCA in the presence of H2O2, which was associated with the enhanced expression of heme oxygenase-1 (HO-1). However, inhibiting the activity of HO-1 by zinc protoporphyrin IX, a potent inhibitor of HO-1, eliminated the ROS scavenging and protective effects of tCA, indicating that tCA was able to protect V79-4 lung fibroblasts from H2O2-induced oxidative stress by activating the Nrf2 signaling pathway. Therefore, it is suggested that tCA may be useful as a candidate for the treatment of oxidative stress-mediated lung injuries in the future.


Subject(s)
Acrolein/analogs & derivatives , Antioxidants/pharmacology , Heme Oxygenase-1/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , NF-E2-Related Factor 2/metabolism , Acrolein/pharmacology , Acrolein/therapeutic use , Animals , Antioxidants/therapeutic use , Apoptosis/drug effects , Cell Line , Cricetinae , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Fibroblasts/pathology , Heme Oxygenase-1/antagonists & inhibitors , Humans , Hydrogen Peroxide/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/cytology , Lung/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Protoporphyrins/pharmacology , Signal Transduction/drug effects
10.
Pestic Biochem Physiol ; 168: 104644, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32711777

ABSTRACT

To find new and safe type of control agents against phytopathogenic fungi, the fumigant antifungal activity of 10 plant essential oils and constituents identified in cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils was investigated against two phytopathogenic fungi, Raffaelea quercus-mongolicae and Rhizoctonia solani. Among plant essential oils, cinnamon bark and lemongrass essential oils showed 100% inhibition of R. quercus-mongolicae and R. solani at 5 mg/paper disc, respectively. Among test constituents, salicylaldehyde, eugenol, and hydrocinnamaldehyde showed 100% inhibition of growth of R. quercus-mongolicae at 2.5 mg/paper disc. Neral, geraniol, geranial, trans-cinnamaldehyde, methyl cinnamate, isoeugenol, and methyl eugenol exhibited >80% inhibition of growth of R. quercus-mongolicae at 2.5 mg/paper disc. Neral, geranial, trans-cinnamaldehyde, hydrocinnamaldehyde, and salicylaldehyde showed 100% inhibition of growth of R. solani at 2.5 mg/paper disc. A fumigant antifungal bioassay of artificial blends of the constituents identified in cinnamon bark and lemongrass essential oils indicated that trans-cinnamaldehyde and geranial were major contributors to the fumigant antifungal activity of the artificial blend. Confocal laser scanning microscopy images of fungi treated with cinnamon bark and lemongrass essential oils, trans-cinnamaldehyde, neral, and geranial revealed the reactive oxygen species (ROS) generation and cell membrane disruption.


Subject(s)
Cymbopogon , Oils, Volatile , Antifungal Agents , Cinnamomum zeylanicum , Fungi , Plant Bark , Plant Oils , Reactive Oxygen Species
11.
Int J Mol Sci ; 21(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599846

ABSTRACT

Abnormal amyloid-ß (Aß) accumulation is the most significant feature of Alzheimer's disease (AD). Among the several secretases involved in the generation of Aß, ß-secretase (BACE1) is the first rate-limiting enzyme in Aß production that can be utilized to prevent the development of Aß-related pathologies. Cinnamon extract, used in traditional medicine, was shown to inhibit the aggregation of tau protein and Aß aggregation. However, the effect of trans-cinnamaldehyde (TCA), the main component of cinnamon, on Aß deposition is unknown. Five-month-old 5XFAD mice were treated with TCA for eight weeks. Seven-month-old 5XFAD mice were evaluated for cognitive and spatial memory function. Brain samples collected at the conclusion of the treatment were assessed by immunofluorescence and biochemical analyses. Additional in vivo experiments were conducted to elucidate the mechanisms underlying the effect of TCA in the role of Aß deposition. TCA treatment led to improvements in cognitive impairment and reduced Aß deposition in the brains of 5XFAD mice. Interestingly, the levels of BACE1 were decreased, whereas the mRNA and protein levels of three well-known regulators of BACE1, silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC1α), and PPARγ, were increased in TCA-treated 5XFAD mice. TCA led to an improvement in AD pathology by reducing BACE1 levels through the activation of the SIRT1-PGC1α-PPARγ pathway, suggesting that TCA might be a useful therapeutic approach in AD.


Subject(s)
Acrolein/analogs & derivatives , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/toxicity , Gene Expression Regulation/drug effects , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/metabolism , Acrolein/pharmacology , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Animals , Antimutagenic Agents/pharmacology , Female , Humans , Male , Mice , Mice, Transgenic , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Sirtuin 1/genetics
12.
Molecules ; 23(5)2018 05 07.
Article in English | MEDLINE | ID: mdl-29735955

ABSTRACT

The xanthine oxidase inhibitory activity and thermostability of Cinnamomum osmophloeum leaf oil microencapsulated with ß-cyclodextrin were evaluated in this study. The yield of leaf oil microcapsules was 86.3% using the optimal reaction conditions at the leaf oil to ß-cyclodextrin ratio of 15:85 and ethanol to water ratio ranging from 1:3 to 1:5. Based on the FTIR analysis, the characteristic absorption bands of major constituent, trans-cinnamaldehyde, were confirmed in the spectra of leaf oil microcapsules. According to the dry-heat aging test, ß-cyclodextrin was thermostable under the high temperature conditions, and it was beneficial to reduce the emission of C. osmophloeum leaf oil. Leaf oil microcapsules exhibited high xanthine oxidase inhibitory activity, with an IC50 value of 83.3 µg/mL. It is concluded that the lifetime of C. osmophloeum leaf oil can be effectively improved by microencapsulation, and leaf oil microcapsules possess superior xanthine oxidase inhibitory activity.


Subject(s)
Acrolein/analogs & derivatives , Cinnamomum/chemistry , Gout Suppressants/chemistry , Plant Oils/chemistry , Xanthine Oxidase/antagonists & inhibitors , beta-Cyclodextrins/chemistry , Acrolein/chemistry , Acrolein/isolation & purification , Capsules/chemical synthesis , Drug Compounding/methods , Drug Stability , Enzyme Assays , Gout Suppressants/isolation & purification , Hot Temperature , Humans , Plant Leaves/chemistry , Plant Oils/isolation & purification , Xanthine Oxidase/chemistry
13.
Microb Pathog ; 120: 198-203, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29702210

ABSTRACT

BACKGROUND: In the current healthcare environment, an alarming rise in multi-drug resistant bacterial infections has led to a global health threat. The lack of new antibiotics has created a need for developing alternative strategies. OBJECTIVE: Understanding the antibacterial mechanisms of cinnamon and its constituents is crucial to enhance it as a potential new source of antibiotic. The objective of this review is to provide a compilation of all described mechanisms of antibacterial action of cinnamon and its constituents and synergism with commercial antibiotics in order to better understand how cinnamon and its constituents can collaborate as alternative treatment to multi-drug resistant bacterial infections. METHODS: The relevant references on antibacterial activities of cinnamon and its constituents were searched. Meanwhile, the references were classified according to the type of mechanism of action against bacteria. Relationships of cinnamon or its constituents and antibiotics were also analyzed and summarized. RESULTS: Cinnamon extracts, essential oils, and their compounds have been reported to inhibit bacteria by damaging cell membrane; altering the lipid profile; inhibiting ATPases, cell division, membrane porins, motility, and biofilm formation; and via anti-quorum sensing effects. CONCLUSION: This review describes the antibacterial effects of cinnamon and its constituents, such as cinnamaldehyde and cinnamic acid, against pathogenic Gram-positive and Gram-negative bacteria. The review also provides an overview of the current knowledge of the primary modes of action of these compounds as well as the synergistic interactions between cinnamon or its constituents with known antibacterial agents. This information will be useful in improving the effectiveness of therapeutics based on these compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cinnamomum zeylanicum/chemistry , Plant Extracts/pharmacology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Adenosine Triphosphatases/drug effects , Biofilms/drug effects , Biofilms/growth & development , Cell Division/drug effects , Cell Membrane/drug effects , Cinnamates/pharmacology , Databases, Factual , Drug Combinations , Drug Resistance, Multiple, Bacterial/drug effects , Drug Synergism , Oils, Volatile/pharmacology , Porins/drug effects , Quorum Sensing/drug effects
14.
J Tradit Chin Med ; 38(4): 548-555, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32186079

ABSTRACT

OBJECTIVE: To evaluate whether endothelial dysfunction and hypertension are prevented by trans-cinnamaldehyde (tCA) through the activation of endothelial nitric oxide synthase (eNOS). METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and stimulated with tCA to determine cell viability using the methyl thiazolyl tetrazolium assay. The effect of tCA on nitric oxide (NO) production was determined by diaminofluorescein-dyes in the absence or presence of inhibitors of eNOS, AMPK, PKA, and AKT. The effect of tCA on blood pressure was determined by the tail-cuff method in obesity spontaneous hypertension (SHR. Cg-Leprcp/NDmcr) rats. The phosphorylation of eNOS and protein expression of the insulin-signaling pathway (InsR-IRS1-PI3K-AKT) were measured by western blot. RESULTS: tCA at concentrations less than 100 ¦ÌM did not affect cell viability in cultured HUVECs. Stimulation with tCA promoted NO release in a time-dependent manner compared with the control group. tCA-treated HUVECs also significantly increased AKT-Ser473 and eNOS- Ser1177 phosphorylation. In SHR-CP rats, treatment with tCA at a dose of 40 mg/kg/day for 6 weeks markedly reduced the systolic blood pressure and diastolic blood pressure, increased the phosphorylation of AKT and eNOS, and increased urinary nitric oxidation. CONCLUSION: tCA attenuated endothelial dysfunction and reduced blood pressure in SHR-CP rats. The underlying mechanisms may involve the increase in AKT and eNOS phosphorylation and the release of eNOS-derived NO.

15.
Molecules ; 22(12)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29257084

ABSTRACT

trans-Cinnamaldehyde (tCIN), an active compound found in cinnamon, is well known for its antioxidant, anticancer, and anti-inflammatory activities. The ß-cyclodextrin (ß-CD) oligomer has been used for a variety of applications in nanotechnology, including pharmaceutical and cosmetic applications. Here, we aimed to evaluate the anti-inflammatory and antioxidant effects of tCIN self-included in ß-CD complexes (CIs) in lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophages. RAW 264.7 macrophages were treated with increasing concentrations of ß-CD, tCIN, or CIs for different times. ß-CD alone did not affect the production of nitric oxide (NO) or reactive oxygen species (ROS). However, both tCIN and CI significantly reduced NO and ROS production. Thus, CIs may have strong anti-inflammatory and antioxidant effects, similar to those of tCIN when used alone.


Subject(s)
Acrolein/analogs & derivatives , Free Radical Scavengers/pharmacology , beta-Cyclodextrins/pharmacology , Acrolein/pharmacology , Animals , Cell Survival/drug effects , Drug Evaluation, Preclinical , Lipopolysaccharides/pharmacology , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
16.
Neuropharmacology ; 110(Pt A): 503-518, 2016 11.
Article in English | MEDLINE | ID: mdl-27543415

ABSTRACT

Microglia activation and neuroinflammation are critically involved in pathogenesis of neurodegenerative disorders. Patients with neurodegenerative disorders often suffer memory impairment and currently there is no effective treatment for inflammation-led memory impairment. Trans-cinnamaldehyde (TCA) isolated from medicinal herb Cinnamomum cassia has been shown to exhibit anti-inflammatory capability. However, the potential of TCA to be used to improve memory impairment under neuroinflammation has not been explored. Primary microglia stimulated by lipopolysaccharide (LPS) were used to evaluate the potential anti-neuroinflammatory effects of TCA by examining the production of nitric oxide (NO), expression of inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines, and activation of MAPKs. A mouse model of LPS-induced memory impairment was established to assess the neuroprotective effects of TCA against memory deficit and synaptic plasticity inhibition by both behavioral tests and electrophysiological recordings. TCA pretreatment decreased LPS-induced morphological changes, NO production and IL-1ß release in primary microglia. Decreased NO production was due to the accelerated degradation of iNOS mRNA in LPS-stimulated microglia through TCA's inhibitory effect on MEK1/2-ERK1/2 signaling pathway. TCA was able to reduce the levels of iNOS and phosphorylated ERK1/2 in hippocampus of mice challenged with LPS. Most importantly, TCA significantly lessened memory deficit and improved synaptic plasticity in LPS-challenged mice. This study demonstrates that TCA suppressed microglial activation by destabilizing iNOS mRNA, which leads to improved memory impairment in mice suffering neuroinflammation.


Subject(s)
Acrolein/analogs & derivatives , Memory Disorders/drug therapy , Microglia/drug effects , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase Type II/metabolism , Nootropic Agents/pharmacology , Acrolein/pharmacology , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cerebral Cortex , Disease Models, Animal , Enzyme Stability/drug effects , Escherichia coli , Lipopolysaccharides , MAP Kinase Signaling System/drug effects , Male , Memory Disorders/enzymology , Memory Disorders/immunology , Memory Disorders/pathology , Mice, Inbred ICR , Microglia/enzymology , Microglia/pathology , Nitric Oxide/metabolism , RNA, Messenger/metabolism , Random Allocation , Rats, Sprague-Dawley
17.
Int J Food Microbiol ; 217: 35-41, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26490647

ABSTRACT

Here, we examined the antimicrobial effects of soy sauce containing essential oils (EOs) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes at 22°C and 4°C. To screen a variety of combined effects, soy sauce was mixed with six different EOs (carvacrol, thymol, eugenol, trans-cinnamaldehyde, ß-resorcylic acid, and vanillin), each at a concentration of 1mM for 10 min. None of the oils showed bactericidal activity when used alone. Soy sauce combined with carvacrol and thymol induced the greatest antibacterial activity against all tested bacteria; therefore, these oils were further tested at 0.25, 0.5, and 1mM (0.0039%, 0.0078%, and 0.0157%) for 1, 5, and 10 min at 4°C and 22°C. In addition, sensory evaluation of soy sauce containing each EO at 0.25, 0.5, 1, and 2mM was performed using the nine point hedonic test. Carvacrol or thymol (1mM) eliminated all the test bacteria (initial population, 7.0-7.5logCFU/ml) in 1-5 min at 22°C and within 10 min at 4°C. L. monocytogenes was slightly more tolerant at 4°C, which may be attributable to the ability of the cell membrane to adapt to low temperatures. The sensory scores for soy sauce containing EOs were not significantly different from that of soy sauce without EOs (P>0.05). The stability of EO efficacy in soy sauce was also verified. These results suggest that carvacrol and thymol act synergistically with other factors present in soy sauce to increase antimicrobial activity against major foodborne pathogens at both 4°C and 22°C. The synergism may be attributable to the combination of factors (mainly high salt concentration and low pH imparted by organic acids) present in soy sauce and the membrane attacking properties of carvacrol and thymol. This method will facilitate the production of microbiologically safe soy sauce, soy sauce-based marinades, and various marinated foods.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli O157/drug effects , Listeria monocytogenes/drug effects , Monoterpenes/pharmacology , Salmonella typhimurium/drug effects , Soy Foods , Thymol/pharmacology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Cymenes , Drug Synergism , Eugenol/pharmacology , Food Microbiology/methods , Hydroxybenzoates , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Plant Oils/pharmacology
18.
Poult Sci ; 94(9): 2183-90, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217023

ABSTRACT

Aflatoxins (AF) are toxic metabolites primarily produced by molds, Aspergillus flavus and Aspergillus parasiticus. Contamination of poultry feed with AF is a major concern to the poultry industry due to severe economic losses stemming from poor performance, reduced egg production, and diminished egg hatchability. This study investigated the inhibitory effect of 2 generally regarded as safe (GRAS), natural plant compounds, namely carvacrol (CR) and trans-cinnamaldehyde (TC), on A. flavus and A. parasiticus growth and AF production in potato dextrose broth (PDB) and in poultry feed. In broth culture, PDB supplemented with CR (0%, 0.02%, 0.04% and 0.08%) or TC (0%, 0.005%, 0.01% and 0.02%) was inoculated with A. flavus or A. parasiticus (6 log CFU/mL), and mold counts and AF production were determined on days 0, 1, 3, and 5. Similarly, 200 g portions of poultry feed supplemented with CR or TC (0%, 0.4%, 0.8%, and 1.0%) were inoculated with each mold, and their counts and AF concentrations in the feed were determined at 0, 1, 2, 3, 4, 8, and 12 weeks of storage. Moreover, the effect of CR and TC on the expression of AF synthesis genes in A. flavus and A. parasiticus (aflC, nor1, norA, and ver1) was determined using real-time quantitative PCR (RT-qPCR). All experiments had duplicate samples and were replicated 3 times. Results indicated that CR and TC reduced A. flavus and A. parasiticus growth and AF production in broth culture and chicken feed (P<0.05). All tested concentrations of CR and TC decreased AF production in broth culture and chicken feed by at least 60% when compared to controls (P<0.05). In addition, CR and TC down-regulated the expression of major genes associated with AF synthesis in the molds (P<0.05). Results suggest the potential use of CR and TC as feed additives to control AF contamination in poultry feed.


Subject(s)
Acrolein/analogs & derivatives , Aflatoxins/metabolism , Animal Feed/microbiology , Aspergillus flavus/drug effects , Aspergillus/drug effects , Fungicides, Industrial/pharmacology , Monoterpenes/pharmacology , Acrolein/administration & dosage , Acrolein/pharmacology , Animal Feed/analysis , Animals , Aspergillus/genetics , Aspergillus/physiology , Aspergillus flavus/physiology , Chickens , Cymenes , Diet/veterinary , Dietary Supplements/analysis , Fungicides, Industrial/administration & dosage , Monoterpenes/administration & dosage , Poultry Diseases/microbiology , Poultry Diseases/prevention & control
19.
Pest Manag Sci ; 70(2): 264-70, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23801453

ABSTRACT

BACKGROUND: Repellents are a common method for preventing flea bites, making an effective system for flea repellent screening advantageous. We describe an improved technique to facilitate repellent activity screening of numerous plant-based Ctenocephalides felis (cat flea) repellents. RESULTS: Two long strips of filter paper were impregnated with test compounds (dissolved in ethanol) and ethanol only, respectively. After drying, the two filter papers were glued together along the long side and inserted into a glass tube containing non-fed cat fleas. The distribution of cat fleas in each half of the filter paper was recorded after 30 min to calculate repellency. Results showed that the essential oil of Cinnamomum osmophloeum (from leaf), Taiwania cryptomerioides (from heartwood) and Plectranthus amboinicus (from leaf) exhibits repellent activity against cat fleas in a dose dependent manner. Moreover, the repellent activities against cat fleas of 2% trans-cinnamaldehyde (the main constituent of Ci. osmophloeum essential oil) and 0.5% thymol (the main constituent of P. amboinicus essential oil) are 97.6% and 90.6%, and can persist for up to 4 and 8 h, respectively. These results are comparable to those of 15% DEET. CONCLUSION: The proposed screening technique can facilitate the pre-screening of numerous flea repellents for further evaluation on animal or human subjects.


Subject(s)
Biological Assay/methods , Drug Evaluation, Preclinical/methods , Insect Repellents/pharmacology , Plant Extracts/pharmacology , Siphonaptera/drug effects , Animals , Biological Assay/economics , Cost-Benefit Analysis , Drug Evaluation, Preclinical/economics
20.
Phytomedicine ; 20(12): 1119-23, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23827666

ABSTRACT

Trans-cinnamaldehyde, a component of leaves from Cinnamomum osmophloeum kaneh, has been shown to counteract tumor growth. The substance exerts its effect at least in part by triggering apoptosis. The propapoptotic signaling involves altered gene expression and mitochondrial depolarization. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). The present study explored, whether trans-cinnamaldehyde triggers eryptosis. Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, and [Ca(2+)]i from Fluo3-fluorescence. A 48 h exposure to trans-cinnamaldehyde (30 µM) significantly decreased forward scatter and increased annexin-V-binding, effects paralleled by increase of [Ca(2+)]i. Trans-cinnamaldehyde exposure was followed by a slight but significant increase of hemolysis. Removal of extracellular Ca(2+) virtually abolished the effect of trans-cinnamaldehyde (30 µM) on annexin-V-binding. The present observations show that trans-cinnamaldehyde triggers suicidal death of erythrocytes, i.e. cells devoid of mitochondria and gene expression.


Subject(s)
Acrolein/analogs & derivatives , Annexin A5/metabolism , Calcium/metabolism , Erythrocytes/drug effects , Acrolein/pharmacology , Apoptosis/drug effects , Calcium/analysis , Cell Size/drug effects , Erythrocytes/physiology , Humans , Phosphatidylserines
SELECTION OF CITATIONS
SEARCH DETAIL