Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Transgenic Res ; 33(1-2): 21-33, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573429

ABSTRACT

Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.


Subject(s)
Elastin-Like Polypeptides , Silk , Silk/genetics , Arthropod Proteins , Elastin/genetics , Elastin/chemistry , Elastin/metabolism , Nicotiana/genetics , Recombinant Fusion Proteins/genetics
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621945

ABSTRACT

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Subject(s)
Diabetic Nephropathies , Vascular Endothelial Growth Factor A , Rats , Male , Animals , Rats, Wistar , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Ultrafiltration , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Fibrosis , Hypoxia , Signal Transduction , RNA, Messenger/metabolism
3.
Phytochem Anal ; 35(5): 1112-1122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38500381

ABSTRACT

INTRODUCTION: Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear. OBJECTIVES: This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS). METHODS: Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay. RESULTS: Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and ß-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing. CONCLUSION: A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.


Subject(s)
Anticoagulants , Molecular Docking Simulation , Polygonum , Thrombin , Ultrafiltration , Zebrafish , Polygonum/chemistry , Chromatography, High Pressure Liquid/methods , Anticoagulants/pharmacology , Anticoagulants/chemistry , Ultrafiltration/methods , Animals , Thrombin/metabolism , Mass Spectrometry/methods , Ligands
4.
J Med Virol ; 96(3): e29517, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476091

ABSTRACT

Herbal medicines (HMs) are one of the main sources for the development of lead antiviral compounds. However, due to the complex composition of HMs, the screening of active compounds within these is inefficient and requires a significant time investment. We report a novel and efficient virus-based screening method for antiviral active compounds in HMs. This method involves the centrifugal ultrafiltration of viruses, known as the virus-based affinity ultrafiltration method (VAUM). This method is suitable to identify virus specific active compounds from complex matrices such as HMs. The effectiveness of the VAUM was evaluated using influenza A virus (IAV) H1N1. Using this method, four compounds that bind to the surface protein of H1N1 were identified from dried fruits of Terminalia chebula (TC). Through competitive inhibition assays, the influenza surface protein, neuraminidase (NA), was identified as the target protein of these four TC-derived compounds. Three compounds were identified by high performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS), and their anti-H1N1 activities were verified by examining the cytopathic effect (CPE) and by performing a virus yield reduction assay. Further mechanistic studies demonstrated that these three compounds directly bind to NA and inhibit its activity. In summary, we describe here a VAUM that we designed, one that can be used to accurately screen antiviral active compounds in HMs and also help improve the efficiency of screening antiviral drugs found in natural products.


Subject(s)
Influenza A Virus, H1N1 Subtype , Plants, Medicinal , Humans , Ultrafiltration , Plant Extracts/pharmacology , Antiviral Agents/pharmacology , Membrane Proteins
5.
Carbohydr Res ; 536: 109053, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38310807

ABSTRACT

The purity, content, and structure of the polysaccharides prepared from a specific medicinal plant are the fundamental basis to interpret the observed biological activities. An ultrafiltration-based method has been developed for rapid preparation of total and fractional polysaccharides from Radix Astragali in high yield and purity. This method involves extraction of plant material by hot water, treatment with Sevag reagent, and ultrafiltration using molecular weight cutoff concentrators. The prepared polysaccharides were assessed by 1H NMR spectroscopy, providing general purity, fingerprinting, and structural information. This method may be used to efficiently screen polysaccharides in plants.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Protons , Magnetic Resonance Spectroscopy , Polysaccharides
6.
J Sep Sci ; 47(1): e2300722, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234021

ABSTRACT

Meconopsis integrifolia (Maxim.) Franch. is used extensively in traditional Tibetan medicine for its potent anti-inflammatory properties. In this study, six cyclooxygenase-2 (COX-2) inhibitors were purified from M. integrifolia using high-speed counter-current chromatography guided by ultrafiltration liquid chromatography (ultrafiltration-LC). First, ultrafiltration-LC was performed to profile the COX-2 inhibitors in M. integrifolia. The reflux extraction conditions were further optimized using response surface methodology, and the results showed that the targeted COX-2 inhibitors could be well enriched under the optimized extraction conditions. Then the six target COX-2 inhibitors were separated by high-speed countercurrent chromatography with a solvent system composed of ethyl acetate/n-butanol/water (4:1:4, v/v/v. Finally, the six COX-2 inhibitors, including 21.2 mg of 8-hydroxyluteolin 7-sophoroside, 29.6 mg of 8-hydroxyluteolin 7-[6'''-acetylallosyl-(1→2)-glucoside], 42.5 mg of Sinocrassoside D3, 54.1 mg of Hypolaetin 7-[6'''-acetylallosyll-(l→2)-3''-acetylglucoside, 30.6 mg of Hypolaetin 7-[6'''-acetylallosyll-(l→2)-6''-acetylglucoside and 17.8 mg of Hypolaetin were obtained from 500 mg of sample. Their structures were elucidated by 1 H-NMR spectroscopy. This study reveals that ultrafiltration-LC combined with high-speed counter-current chromatography is a robust and efficient strategy for target-guided isolation and purification of bioactive molecules. It also enhances the scientific understanding of the anti-inflammatory properties of M. integrifolia but also paves the way for its further medicinal applications.


Subject(s)
Countercurrent Distribution , Cyclooxygenase 2 Inhibitors , Papaveraceae , Countercurrent Distribution/methods , Cyclooxygenase 2 Inhibitors/pharmacology , Ultrafiltration/methods , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid
7.
Phytochem Anal ; 35(2): 239-253, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37779216

ABSTRACT

INTRODUCTION: Scutellaria baicalensis Georgi, a traditional Chinese medicine, is widely applied to treat various diseases among people, especially in East Asia. However, the specific active compounds in S. baicalensis aqueous extracts (SBAEs) responsible for the hypoglycemic and hypolipidemic properties as well as their potential mechanisms of action remain unclear. OBJECTIVES: This work aimed to explore the potential hypoglycemic and hypolipidemic compounds from SBAE and their potential mechanisms of action. METHODOLOGY: The in vitro inhibitory tests against lipase and α-glucosidase, and the effects of SBAE on glucose consumption and total triglyceride content in HepG2 cells were first performed to evaluate the hypoglycemic and hypolipidemic effects. Then, affinity ultrafiltration liquid chromatography-mass spectrometry (LC-MS) screening strategy with five drug targets, including α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP1B), lipase and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) was developed to screen out the potential active constituents from SBAE, and some representative active compounds were further validated. RESULTS: SBAE displayed noteworthy hypoglycemic and hypolipidemic properties, and 4, 10, 4, 8, and 8 potential bioactive components against α-amylase, α-glucosidase, PTP1B, HMGCR, and lipase were initially screened out, respectively. The interaction network was thus constructed between the potential bioactive compounds screened out and their corresponding drug targets. Among them, baicalein, wogonin, and wogonoside were revealed to possess remarkable hypoglycemic and hypolipidemic effects. CONCLUSION: The potential hypolipidemic and hypoglycemic bioactive compounds in SBAE and their mode of action were initially explored through ligand-target interactions by combining affinity ultrafiltration LC-MS strategy with five drug targets.


Subject(s)
Scutellaria baicalensis , Ultrafiltration , Humans , alpha-Glucosidases , Hypoglycemic Agents/pharmacology , Lipase , alpha-Amylases
8.
Food Chem ; 439: 138161, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38070233

ABSTRACT

In this work, the biological properties of fractionated Riceberry bran protein hydrolysate obtained by ultrafiltration (URBPH) were evaluated and the possibility of using cluster dextrin to produce hydrolysate powder by spray-drying was investigated. Fractionation into peptides < 3 kDa was observed to improve antioxidant activity. URBPH < 3 kDa was then freeze-dried (FD-URBPH) and spray-dried (SD-URBPH) at different inlet air temperatures of 100-160 °C. The water solubility and antioxidant activity of FD-URBPH were higher than those of SD-URBPH. Nevertheless, encapsulation of hydrolysate with 10% cluster dextrin and an inlet temperature of 120 °C was also successful in maintaining protein qualities, which showed high 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic (ABTS•+) scavenging activity (89.14%) and water solubility index (92.49%) and low water activity (aw = 0.53). Moreover, encapsulation preserved the antioxidant activity of peptides during gastrointestinal digestion better than the free form. URBPH and its spray-dried microcapsules could be used as bioactive ingredients in functional drinks or foods.


Subject(s)
Antioxidants , Protein Hydrolysates , Antioxidants/chemistry , Bromelains , Powders , Dextrins , Peptides , Water
9.
Int J Biol Macromol ; 257(Pt 2): 128616, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070815

ABSTRACT

Persimmon tannins, particularly in immature persimmons, haven't yet received corresponding attention to research on therapy of diabetes mellitus in spite of high hypoglycemic activity. To accurately screening key hypoglycemic components, immature persimmon extracts were isolated and identified using enzyme affinity ultrafiltration and HRLC-ESI-MS/MS. Among them, Hederagenin (IC50 = 0.077 ± 0.003 mg/mL), Ursolic acid (IC50 = 0.001 ± 0.000 mg/mL) and Quercetin dehydrate (IC50 = 0.081 ± 0.001 mg/mL) exhibited the strongest inhibitory effect on α-amylase (HSA and PPA) and α-glucosidase, respectively. And their inhibition mechanisms were analyzed using multi-spectral analysis, atomic force microscope and molecular docking, indicating the bonding with starch digestion enzymes through hydrogen bonding and hydrophobic interaction, and generating the enzyme aggregation. In vivo starch-tolerance experiment further verified that these inhibitors could improve postprandial hyperglycemia (17.18 % âˆ¼ 40.29 %), far more than acarbose. Suppressing, Hederagenin and Ursolic acid as triterpenoids appeared amazing potentiality to alleviate postprandial hyperglycemia, which suggested that IPE were comprehensive exploration values on prevention and treatment of hyperglycemia.


Subject(s)
Diospyros , Hyperglycemia , Oleanolic Acid/analogs & derivatives , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Diospyros/chemistry , alpha-Glucosidases , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Docking Simulation , alpha-Amylases , Tandem Mass Spectrometry , Starch , Glycoside Hydrolase Inhibitors/pharmacology
10.
Phytomedicine ; 123: 155257, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103318

ABSTRACT

BACKGROUND: Breast cancer bone metastasis is closely associated with the bone microenvironment. Zuogui Pill (ZGP), a clinically approved formulation in China, effectively regulates the bone microenvironment for the prevention and treatment of osteoporosis. PURPOSE: Few reports have utilized the ZGP for bone metastasis models. This study investigated the intervention and bone-protective properties of ZGP against breast cancer bone metastasis, explored the potential mechanism, and screened for its active compositions by molecules fishing. METHODS: To investigate the intervention efficacy of ZGP and its protein-level mechanism of action, the mouse bone metastasis model and in vitro cell co-culture model were constructed. Affinity ultrafiltration, molecular docking, cellular thermal shift assay and physical scale detection were used to investigate the affinity components of the RANKL protein in ZGP. RESULTS: The administration of ZGP combined with zoledronic acid inhibited the development of tumors and secondary lung metastasis in mice. This translated to a prolonged survival period and enhanced quality of life. ZGP could disrupt the malignant cycle by modulating the Piezo1-Notch-1-GPX4 signaling pathway in the "bone-cancer" communication in the cell co-culture model. Furthermore, 25 chemical components of ZGP were identified, with 10 active compounds exhibiting significant affinity for the RANKL protein. CONCLUSION: The findings of this work highlighted ZGP's potential for intervening in the progression of breast cancer bone metastasis. Thus, this investigation served as an experimental foundation for expanding the application scope of ZGP and for advancing drug development efforts in bone metastasis treatment.


Subject(s)
Bone Neoplasms , Drugs, Chinese Herbal , Hunting , Mice , Animals , Molecular Docking Simulation , Quality of Life , RANK Ligand , Bone Neoplasms/drug therapy , Tumor Microenvironment , Ion Channels
11.
Bioresour Technol ; 394: 130263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159817

ABSTRACT

This research focuses on the integrated recovery of rhamnogalacturonan-I (RG-I) pectin from sugar beet pulp (SBP). First, the extraction of RG-I pectin through sequential ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) was assessed. Optimization using a response surface methodology identified the optimal conditions as initial pH 4, 10 min of UAE, and 157 °C for MAE, achieving a 66.0 % recovery of pectooligosaccharides (POS). Additionally, purification through continuous diafiltration and concentration via ultrafiltration of the POS using membranes with different molecular weight cut-offs (MWCO) was explored. In contrast to previous research using discontinuous diafiltration, the use of continuous diafiltration allowed a decrease in the extract viscosity and obtained higher yields using a higher MWCO membrane. The refined RG-I pectin solids exhibited a high global yield (39-40 g pectin/100 g SBP), and high-methoxyl characteristics, as well as purity levels (70-80 %) similar to commercial prebiotics.


Subject(s)
Beta vulgaris , Rhamnogalacturonans , Microwaves , Pectins , Sugars
12.
Molecules ; 28(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067624

ABSTRACT

The ATP-binding cassette (ABC) transporter ABCG2 is a significant urate transporter with a high capacity, and it plays a crucial role in the development of hyperuricemia and gout. Therefore, it has the potential to be targeted for therapeutic interventions. Cortex Fraxini, a traditional Chinese medicine (TCM), has been found to possess anti-hyperuricemia properties. However, the specific constituents of Cortex Fraxini responsible for this effect are still unknown, particularly the compound that is responsible for reducing uric acid levels in vivo. In this study, we propose a target screening protocol utilizing bio-affinity ultrafiltration mass spectrometry (BA-UF-MS) to expediently ascertain ABCG2 ligands from the plasma of rats administered with Cortex Fraxini. Our screening protocol successfully identified fraxin as a potential ligand that interacts with ABCG2 when it functions as the target protein. Subsequent investigations substantiated fraxin as an activated ligand of ABCG2. These findings imply that fraxin exhibits promise as a drug candidate for the treatment of hyperuricemia. Furthermore, the utilization of BA-UF-MS demonstrates its efficacy as a valuable methodology for identifying hit compounds that exhibit binding affinity towards ABCG2 within TCMs.


Subject(s)
Drugs, Chinese Herbal , Gout , Hyperuricemia , Rats , Animals , Ultrafiltration , Ligands , Drugs, Chinese Herbal/chemistry , ATP-Binding Cassette Transporters , Mass Spectrometry
13.
Mar Drugs ; 21(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37999382

ABSTRACT

Liquid side-streams from food industries can be processed and used in food applications and contribute to reduce the environmental footprint of industries. The goal of this study was to evaluate the effectiveness and applicability of protein and phosphorus separation processes, namely microfiltration, ultrafiltration and flocculation, using protein-rich process waters with low (LS) and high (HS) salt content from the processing of salted cod (Gadus morhua). The application of different flocculants (chitosan lactate and Levasil RD442) were evaluated at different concentrations and maturation periods (0, 1 or 3 h). The results showed that different flocculation treatments resulted in different recoveries of the nutrients from LS and HS. Proteins in LS could be most efficiently recovered by using Levasil RD442 0.25% and no maturation period (51.4%), while phosphorus was most efficiently recovered when using Levasil RD442 1.23% and a maturation period of 1 h (34.7%). For HS, most of its protein was recovered using Levasil RD442 1.23% and a maturation period of 1 h (51.8%), while phosphorus was recovered the most using Levasil 1.23% and no maturation period (47.1%). The salt contents allowed interactions through intermolecular forces with Levasil RD442. The ultrafiltration method was effective on HS since it recovered higher percentages of nutrients in the retentate phase (57% of the protein and 46% of the phosphorus) compared to LS.


Subject(s)
Chitosan , Ultrafiltration , Animals , Ultrafiltration/methods , Sodium Chloride , Phosphorus , Nutrients
14.
Article in English | MEDLINE | ID: mdl-38000290

ABSTRACT

Natural products provide a new opportunity for the discovery of neuraminidase (NA)inhibitors. In this study, an affinity ultrafiltration (AUF) coupled with HPLC-MS/MS method was firstly developed and optimized for screening of NA inhibitors from natural products. The critical factors influencing the interaction of enzyme-ligand (including sample concentration, enzyme concentration, incubation time and temperature, pH of the buffer, and dissociation solvents and time) were investigated and optimized by a one-factor-at-a-time design. The method was then applied to discover NA inhibitory compounds in stems and leaves of Baphicacanthus cusia. As a result, five active alkaloids were screened out and identifiedas 2,4(1H,3H)-quinazolinedione (1), 4(3H)-quinazolinone (2), 2(3H)-benzoxazolone (3), tryptanthrin (4), and indirubin (5) through analysis of their DAD profiles, MS/MS fragments, and comparison with reference substances. These active compounds were further evaluated for their NA inhibitory activity using a fluorescence-based NA inhibition assay. The result from the fluorescent assay revealed that all the five compounds(1-5) showed pronounced NA inhibitory activities with IC50values of 98.98, 64.69, 40.16, 69.44, and 144.73 µM, respectively. Finally, molecular docking of these five alkaloids with NA showed that hydrogen bond and π-cation interactions dominated within the binding sites with binding energies ranging between -5.7 to -7.9 kcal/mol, which was supported by the results of the AUF and the fluorescence-based enzyme assay. The developed AUF method is simple and efficient for screening potential NA inhibitors from stems and leaves of B. cusia.


Subject(s)
Alkaloids , Tandem Mass Spectrometry , Molecular Docking Simulation , Neuraminidase , Ultrafiltration/methods , Enzyme Inhibitors/analysis , Plant Extracts/chemistry , Coloring Agents
15.
Mar Drugs ; 21(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37888437

ABSTRACT

The prevalence of gout and the adverse effects of current synthetic anti-gout drugs call for new natural and effective xanthine oxidase (XOD) inhibitors to target this disease. Based on our previous finding that an edible seaweed Pterocladiella capillacea extract inhibits XOD, XOD-inhibitory and anti-inflammatory activities were used to evaluate the anti-gout potential of different P. capillacea extract fractions. Through affinity ultrafiltration coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS), feature-based molecular networking (FBMN), and database mining of multiple natural products, the extract's bioactive components were traced and annotated. Through molecular docking and ADMET analysis, the possibility and drug-likeness of the annotated XOD inhibitors were predicted. The results showed that fractions F4, F6, F4-2, and F4-3 exhibited strong XOD inhibition activity, among which F4-3 reached an inhibition ratio of 77.96% ± 4.91% to XOD at a concentration of 0.14 mg/mL. In addition, the P. capillacea extract and fractions also displayed anti-inflammatory activity. Affinity ultrafiltration LC-MS/MS analysis and molecular networking showed that out of the 20 annotated compounds, 8 compounds have been previously directly or indirectly reported from seaweeds, and 4 compounds have been reported to exhibit anti-gout activity. Molecular docking and ADMET showed that six seaweed-derived compounds can dock with the XOD activity pocket and follow the Lipinski drug-like rule. These results support the value of further investigating P. capillacea as part of the development of anti-gout drugs or related functional foods.


Subject(s)
Seaweed , Xanthine Oxidase , Chromatography, Liquid/methods , Tandem Mass Spectrometry , Ultrafiltration/methods , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents , Biological Assay
16.
Int J Biol Macromol ; 252: 126490, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37625761

ABSTRACT

Oxalis corniculate L. (O. corniculate) was used to treat diabetes in Chinese folk as a popular tea drink. In this work, 31 compounds from O. corniculate were screened and identified as potential α-Glucosidase inhibitors (α-GIs). Among them, 6 compounds displayed stronger inhibitory activity than acarbose (IC50 = 212.9 ± 5.98 µg/mL). Especially, the most effective compounds quercetin (Qu, IC50 = 4.70 ± 0.40 µg/mL) and luteolin (Lu, IC50 = 15.72 ± 0.75 µg/mL) inhibited α-Glu in competitive and mixed manners, respectively. Moreover, fluorescence quenching, circular dichroism (CD), and molecular docking study revealed that they can arouse the changes in the secondary structure and hydrophobic micro-environment of the enzyme mainly through a hydrophobic binding. Furthermore, it was observed that oral administration of Qu (20 mg/kg) can significantly reduce postprandial blood glucose (PBG) levels in mice vs. the control group. To sum up, the above research confirmed that O. corniculate could prevent and treat postprandial hyperglycemia as a good tea drink, and the plant was an excellent source to obtain natural α-GIs.


Subject(s)
Glycoside Hydrolase Inhibitors , Ultrafiltration , Mice , Animals , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation , Chromatography, High Pressure Liquid , alpha-Glucosidases/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tea
17.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373326

ABSTRACT

The discovery of bioactive compounds from medicinal plants has played a crucial role in drug discovery. In this study, a simple and efficient method utilizing affinity-based ultrafiltration (UF) coupled with high-performance liquid chromatography (HPLC) was developed for the rapid screening and targeted separation of α-glucosidase inhibitors from Siraitia grosvenorii roots. First, an active fraction of S. grosvenorii roots (SGR2) was prepared, and 17 potential α-glucosidase inhibitors were identified based on UF-HPLC analysis. Second, guided by UF-HPLC, a combination of MCI gel CHP-20P column chromatography, high-speed counter-current countercurrent chromatography, and preparative HPLC were conducted to isolate the compounds producing active peaks. Sixteen compounds were successfully isolated from SGR2, including two lignans and fourteen cucurbitane-type triterpenoids. The structures of the novel compounds (4, 6, 7, 8, 9, and 11) were elucidated using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. Finally, the α-glucosidase inhibitory activities of the isolated compounds were verified via enzyme inhibition assays and molecular docking analysis, all of which were found to exhibit certain inhibitory activity. Compound 14 exhibited the strongest inhibitory activity, with an IC50 value of 430.13 ± 13.33 µM, which was superior to that of acarbose (1332.50 ± 58.53 µM). The relationships between the structures of the compounds and their inhibitory activities were also investigated. Molecular docking showed that the highly active inhibitors interacted with α-glucosidase through hydrogen bonds and hydrophobic interactions. Our results demonstrate the beneficial effects of S. grosvenorii roots and their constituents on α-glucosidase inhibition.


Subject(s)
Glycoside Hydrolase Inhibitors , Plant Extracts , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Plant Extracts/chemistry , Ultrafiltration/methods , alpha-Glucosidases , Molecular Docking Simulation , Chromatography, High Pressure Liquid/methods
18.
Molecules ; 28(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241909

ABSTRACT

Polygoni Cuspidati Rhizoma et Radix (PCR), the rhizome and root of Polygonum cuspidatum Sieb. et Zucc., has been used as an herbal medicine for a long time. In this study, the ultrafiltration combined with high performance liquid chromatography (UF-HPLC) method was developed to screen tyrosinase (TYR), α-glucosidase (α-GLU), and xanthine oxidase (XOD) inhibitors from PCR. Firstly, the inhibitory activity of 50% methanol PCR extract on TYR, α-GLU, XOD, and acetylcholinesterase (ACHE) was tested. The extract showed a good inhibition on the enzymes, except for ACHE. Therefore, UF-HPLC experiments were carried out to screen TYR, α-GLU, and XOD inhibitors from PCR extract. Seven potential bioactive components were discovered, including methylgallate (1), 1,6-di-O-galloyl-D-glucose (2), polydatin-4'-O-D-glucoside (3), resveratrol-4'-O-D-glucoside (4), polydatin (5), malonyl glucoside resveratrol (6), and resveratrol-5-O-D-glucoside (7). Most of them were found as enzyme inhibitors from PCR for the first time, except polydatin (5), which had been reported as an α-GLUI in PCR in the literature. Finally, molecular docking analysis was applied to validate the interactions of these seven potential active components with the enzymes. Compounds 1-7 were proven as TYR inhibitors, compounds 2, 4-7 were identified as XOD inhibitors, and compounds 4-6 were confirmed as α-GLU inhibitors. In short, the current study provides a good reference for the screening of enzyme inhibitors through UF-HPLC, and provides scientific data for future studies of PCR.


Subject(s)
Drugs, Chinese Herbal , Rhizome , Rhizome/chemistry , Monophenol Monooxygenase , Drugs, Chinese Herbal/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/analysis , Chromatography, High Pressure Liquid/methods , Xanthine Oxidase , Resveratrol/analysis , Acetylcholinesterase , Molecular Docking Simulation , Ultrafiltration , Glucosides/analysis
19.
Fitoterapia ; 168: 105525, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150329

ABSTRACT

Scutellaria baicalensis Georgi (SBG) has been widely used as medical plant in East Asia with remarkable anti-cancer activity. However, the underlying mechanisms are still confused. In this study, an integrated analysis was conducted to screen topoisomerase I (topo I) inhibitors from flavonoids of SBG and investigate the anti-cancer mechanisms, containing bioaffinity ultrafiltration UPLC-ESI-TripleTOF-MS/MS, molecular docking, and multiple complex networks. The SBG extract exhibited notable cytotoxic activity on Hela cells. Five flavonoids were identified as potential topo I inhibitors, including skullcapflavone II, wogonin, chrysin, oroxylin A, and tenaxin I. Their ESI-MS/MS spectra showed that RDA reaction and neutral molecule loss were the main fragment patterns. Docking results demonstrated that π-π interaction and the formation of hydrogen bond contributed most to their binding with topo I. The selected compounds, related target proteins and pathways were integrated into target-based multiple complex networks, which consisted of three subnetworks. Statistical and topological analysis of these networks revealed a series of characteristics, including scale-free property with power-law degree distribution, Poisson degree distribution, and small-world property. Chrysin, wogonin, and oroxylin A exhibited as main active components with much higher degree values. Chemical carcinogenesis-receptor activation (hsa05207) was considered as critical pathway due to remarkable centrality indexes. Additionally, potential synergistic effect of wogonin and chrysin was observed on the conversion of supercoiled DNA to relaxed forms. These results improved current understanding of flavonoid-rich plants on the treatment of cancer. Moreover, the multi-disciplinary approach provided a new strategy for the research of natural products from medical plants.


Subject(s)
Scutellaria baicalensis , Tandem Mass Spectrometry , Humans , Scutellaria baicalensis/chemistry , Tandem Mass Spectrometry/methods , Molecular Docking Simulation , Topoisomerase I Inhibitors/pharmacology , Ultrafiltration , HeLa Cells , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/chemistry
20.
Bioorg Chem ; 138: 106604, 2023 09.
Article in English | MEDLINE | ID: mdl-37178648

ABSTRACT

Traditional Chinese medicine is the main source of natural products due to its remarkable clinical efficacy. Syringa oblata Lindl (S. oblata) was widely used because of its extensive biological activities. However, to explore the antioxidant components of S. oblata against tyrosinase, the experiments of antioxidation in vitro were employed. At the same time, the determination of TPC was also use to assess the antioxidant ability of CE, MC, EA and WA fractions and the liver protective activity of the EA fraction was evaluated by mice in vivo. Next, UF-LC-MS technology was performed to screen and identify the efficient tyrosinase inhibitors in S. oblata. The results showed that alashinol (G), dihydrocubebin, syripinin E and secoisolariciresinol were characterized as potential tyrosinase ligands and their RBA values were 2.35, 1.97, 1.91 and 1.61, respectively. Moreover, these four ligands can effectively dock with tyrosinase molecules, with binding energies (BEs) ranging from 0.74 to -0.73 kcal/mol. In addition, tyrosinase inhibition experiment was employed to evaluate the tyrosinase inhibition activities of four potential ligands, the result showed that compound 12 (alashinol G, IC50 = 0.91 ± 0.20 mM) showed the strongest activity to tyrosinase, followed by secoisolariciresinol (IC50 = 0.99 ± 0.07 mM), dihydrocubebin (IC50 = 1.04 ± 0.30 mM) and syripinin E (IC50 = 1.28 ± 0.23 mM), respectively. The results demonstrate that S. oblata might have excellent antioxidant activity, and UF-LC-MS technique is a effective means to filter out tyrosinase inhibitors from natural products.


Subject(s)
Antioxidants , Syringa , Animals , Mice , Antioxidants/pharmacology , Monophenol Monooxygenase , Ultrafiltration/methods , Ligands , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL