Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
Sci Total Environ ; 922: 171039, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38369143

ABSTRACT

Soil carbon (C), nitrogen (N), and phosphorus (P) cycling, in conjunction with microbial metabolism, varies significantly with salinity in coastal areas. However, microbial metabolism limitation on salinity levels has received limited attention. Based on soil microbial carbon use efficiency and enzymatic stoichiometry, microbial nutrient limitation characteristics of soil microbial communities in different salinity levels (4.45 mS·cm-1 - 17.25 mS·cm-1) in a subtropical mangrove wetland were investigated. Compared to low-salinity levels, the activity of soil C-acquiring enzyme activities, enzymatic C:N ratios and enzymatic C:P ratios decreased with medium salinity levels and high salinity levels. Soil microbial metabolism was primarily constrained by C and N at different salinity levels. Boosted regression tree analysis revealed that abiotic factors had the greatest influence on C and N limitation of microbial metabolism at different salinity levels. This study underscores the significance of salinity in microbial metabolic processes and enhances our understanding of how future salinity changes induced by rising sea levels will affect soil carbon and nutrient cycling in coastal wetlands.


Subject(s)
Soil , Wetlands , Carbon/analysis , Salinity , Soil Microbiology , Nitrogen/analysis , Phosphorus/analysis , Nutrients/analysis
2.
Virology ; 591: 109981, 2024 03.
Article in English | MEDLINE | ID: mdl-38211381

ABSTRACT

In the western United States, curly top disease (CTD) is caused by beet curly top virus (BCTV). In California, CTD causes economic loss to processing tomato production in central and southern areas but, historically, not in the north. Here, we document unusual CTD outbreaks in processing tomato fields in the northern production area in 2021 and 2022, and show that these were caused by the rare spinach curly top strain (BCTV-SpCT). These outbreaks were associated with proximity of fields to foothills and unusually hot, dry, and windy spring weather conditions, possibly by altering migrations of the beet leafhopper (BLH) vector from locations with BCTV-SpCT reservoirs. Support for this hypothesis came from the failure to observe CTD outbreaks and BLH migrations in 2023, when spring weather conditions were cool and wet. Our results show the climate-induced emergence of a rare plant virus strain to cause an economically important disease in a new crop and location.


Subject(s)
Beta vulgaris , Extreme Weather , Geminiviridae , Hemiptera , Solanum lycopersicum , Animals , California/epidemiology , Disease Outbreaks
3.
ACS Appl Bio Mater ; 7(2): 1064-1072, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38286026

ABSTRACT

Virus-like particle (VLP) vaccine is considered to be the most promising candidate alternative to the traditional inactivated vaccine for foot-and-mouth disease (FMD). To elicit a desired immune response, hollow mesoporous silica nanoparticles (HMSNs) have been synthesized and utilized as a nanocarrier for FMD VLP vaccine delivery. The as-prepared HMSNs displayed a relatively small particle size (∼260 nm), large cavity (∼150 nm), and thin wall (∼55 nm). The inherent structural superiorities make them ideal nanocarriers for the FMD VLP vaccine, which exhibited good biocompatibility, great protein-loading capacity, high antibody-response level, and protective efficiency, even comparable to commercial adjuvant ISA 206. All the results suggested that HMSNs may be a valid nanocarrier in VLP-based vaccines.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Nanoparticles , Vaccines , Animals , Silicon Dioxide/chemistry , Foot-and-Mouth Disease/prevention & control , Nanoparticles/chemistry
4.
Heliyon ; 9(11): e22018, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034712

ABSTRACT

Buruli ulcer (BU), a neglected tropical disease (NTD), is an infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. The disease has been documented in many South American, Asian, and Western Pacific countries and is widespread throughout much of Africa, especially in West and Central Africa. In rural areas with scarce medical care, BU is a devastating disease that can leave patients permanently disabled and socially stigmatized. Mycobacterium ulcerans is thought to produce a mycolactone toxin, which results in necrosis of the afflicted tissue and may be involved in the etiology of BU. Initially, patients may notice a painless nodule or plaque on their skin; as the disease progresses, however, it may spread to other parts of the body, including the muscles and bones. Clinical signs, microbial culture, and histological analysis of afflicted tissue all contribute to a diagnosis of BU. Though antibiotic treatment and surgical removal of infected tissue are necessary for BU management, plant-derived medicine could be an alternative in areas with limited access to conventional medicine. Herein we reviewed the geographical distribution, socioeconomic, risk factors, diagnosis, biology and ecology of the pathogen. Complex environmental, socioeconomic, and genetic factors that influence BU are discussed. Further, our review highlights future research areas needed to develop strategies to manage the disease through the use of indigenous African plants.

5.
Diagnostics (Basel) ; 13(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37685370

ABSTRACT

Among infectious diseases, zoonoses are increasing in importance worldwide, especially in the Mediterranean region. We report herein some clinical cases from a third-level hospital in Calabria region (Southern Italy) and provide a narrative review of the most relevant features of these diseases from epidemiological and clinical perspectives. Further, the pathogenic mechanisms involved in zoonotic diseases are reviewed, focusing on the mechanisms used by pathogens to elude the immune system of the host. These topics are of particular concern for individuals with primary or acquired immunodeficiency (e.g., people living with HIV, transplant recipients, patients taking immunosuppressive drugs). From the present review, it appears that diagnostic innovations and the availability of more accurate methods, together with better monitoring of the incidence and prevalence of these infections, are urgently needed to improve interventions for better preparedness and response.

6.
Virus Res ; 336: 199213, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37657509

ABSTRACT

The Orf virus (ORFV) is a promising candidate for vector vaccines as well as for immunomodulatory and oncolytic therapies. However, few publications are available on its infectivity degradation or on suitable additives for prolonging its viral stability. In this study, the non-supplemented ORFV itself showed a very high stability at storage temperatures up to 28 °C, with a linear titer loss of 0.10 log infectious particles per day at 4 °C over a period of five weeks. To prolong this inherent stability, thirty additives, i.e., detergents, sugars, proteins, salts, and buffers as well as amino acids, were tested for their time- and temperature-dependent influence on the ORFV infectivity. A stabilizing effect on the infectivity was identified for the addition of all tested proteins, i.e., gelatine, bovine serum albumin, and recombinant human serum albumin (rHSA), of several sugars, i.e., mannitol, galactose, sucrose, and trehalose, of amino acids, i.e., arginine and proline, of the detergent Pluronic F68, and of the salt Na2SO4. The infectivity preservation was especially pronounced for proteins in liquid and frozen formulations, sugars in frozen state, and arginine und Pluronic in liquid formulations at high storage temperatures (37 °C). The addition of 1% rHSA with and without 5% sucrose was evaluated as a very stable formulation with a high safety profile and economic validity at storage temperatures up to 28 °C. At increased temperatures, the supplementation with 200 mM arginine performed better than with rHSA. In summary, this comprehensive data provides different options for a stable ORFV formulation, considering temperature, storage time, economic aspects, and downstream processing integrity.


Subject(s)
Excipients , Proteins , Humans , Excipients/chemistry , Freeze Drying , Sucrose/chemistry , Sugars , Amino Acids , Arginine/chemistry
7.
Fitoterapia ; 166: 105467, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36893925

ABSTRACT

Active principles extracted from plants, such as essential oils, have been commonly described in the literature as therapeutic targets for numerous pathological conditions. Cannabis sativa, which has an ancient and peculiar history, has been used for various purposes, from recreational to compounds of pharmacotherapeutic and industrial importance, such as pesticides based on this plant. It is a plant that contains approximately 500 described cannabinoid compounds and is the target of in vitro and in vivo studies at different locations. This review clarifies the role of cannabinoid compounds in parasitic infections caused by helminths and protozoa. In addition, this study briefly presented the use of C. sativa constituents in the formulation of pesticides for vector control, as the latter topic is justified by the economic burden faced by several regions where vector-borne diseases are a troubling reality. Studies involving cannabis compounds with pesticidal potential should be encouraged, especially those that evaluate their effectiveness against the different life cycles of insects, seeking to interrupt vector proliferation after egg laying. Actions aimed at the management and cultivation of plant species with ecologically correct pharmacotherapeutic and pesticide potentials are becoming urgent.


Subject(s)
Cannabinoids , Cannabis , Helminths , Animals , Molecular Structure , Plants , Insect Vectors
8.
Am J Bot ; 110(6): e16144, 2023 06.
Article in English | MEDLINE | ID: mdl-36924316

ABSTRACT

The movement of pollen grains from anthers to stigmas, often by insect pollinator vectors, is essential for plant reproduction. However, pollen is also a unique vehicle for viral spread. Pollen-associated plant viruses reside on the outside or inside of pollen grains, infect susceptible individuals through vertical or horizontal infection pathways, and can decrease plant fitness. These viruses are transferred with pollen between plants by pollinator vectors as they forage for floral resources; thus, pollen-associated viral spread is mediated by floral and pollen grain phenotypes and pollinator traits, much like pollination. Most of what is currently known about pollen-associated viruses was discovered through infection and transmission experiments in controlled settings, usually involving one virus and one plant species of agricultural or horticultural interest. In this review, we first provide an updated, comprehensive list of the recognized pollen-associated viruses. Then, we summarize virus, plant, pollinator vector, and landscape traits that can affect pollen-associated virus transmission, infection, and distribution. Next, we highlight the consequences of plant-pollinator-virus interactions that emerge in complex communities of co-flowering plants and pollinator vectors, such as pollen-associated virus spread between plant species and viral jumps from plant to pollinator hosts. We conclude by emphasizing the need for collaborative research that bridges pollen biology, virology, and pollination biology.


Subject(s)
Satellite Viruses , Virome , Plants , Pollen , Pollination , Flowers
9.
Zhen Ci Yan Jiu ; 48(3): 299-304, 2023 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-36951084

ABSTRACT

Conditional gene editing animals and viral vectors have been widely applied in the research fields of biology and medicine. Recently, they are also used as the effective approaches to reveal the underlying mechanism of acupuncture from the nervous system to the specific molecules. In order to further understand the application of conditional gene editing animals and viral vectors, in this article, we analyze their characteristics, advantages and recent development in the field of acupuncture research and discuss their potential roles and prospect in the future.


Subject(s)
Acupuncture Therapy , Acupuncture , Animals , Gene Editing/methods , Genetic Vectors/genetics
10.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674653

ABSTRACT

This study aimed to examine if methanolic extracts of Pulsatilla vulgaris Mill. can inhibit HeLa cell proliferation through the modulation of cancer-related signaling pathways. The cytotoxicity and chemical composition of P. vulgaris leaves and root extracts were also determined. Research showed that root extract of P. vulgaris inhibited 12 signaling pathways in a cervical cancer cell line and the most potent activation inhibition was observed for MYC, Notch, Wnt, E2F, Ets, Stat3, Smad, Hdghog, AP-1, and NF-κB, at a concentration of 40 µg/mL. The methanolic extracts of P. vulgaris enhanced apoptotic death and deregulated cellular proliferation, differentiation, and progression toward the neoplastic phenotype by altering key signaling molecules required for cell cycle progression. This is the first study to report the influence of P. vulgaris on cancer signaling pathways. Additionally, our detailed phytochemical analysis of the methanolic extracts of P. vulgaris gives a conclusion that compounds, which strongly suppressed the growth and proliferation of HeLa cancer cells were mainly triterpenoid saponins accompanied by phenolic acids.


Subject(s)
Neoplasms , Pulsatilla , Humans , HeLa Cells , Genes, Reporter , Signal Transduction , Cell Proliferation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Apoptosis
11.
Comput Struct Biotechnol J ; 20: 2986-3003, 2022.
Article in English | MEDLINE | ID: mdl-35782737

ABSTRACT

Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.

12.
Urban Ecosyst ; 25(6): 1735-1744, 2022.
Article in English | MEDLINE | ID: mdl-35855439

ABSTRACT

The ecology of zoonotic, including vector-borne, diseases in urban social-ecological systems is influenced by complex interactions among human and environmental factors. Several characteristics contribute to the emergence and spread of infectious diseases in urban places, such as high human population densities, favorable habitat for vectors, and humans' close proximity to animals and their pathogens. On the other hand, urban living can contribute to the improvement of public health through better access to health services and creation of ecological and technological infrastructure that reduces disease burdens. Therefore, urbanization creates a disease ecology paradox through the interplay of urban health penalties and advantages for individual and community outcomes. To address this contradiction, we advocate a holistic Urban One Health perspective for managing urban systems, especially their green spaces and animal populations, in ways that more effectively control the spread of zoonotic diseases. This view should be coupled with an Ecology with Cities approach which emphasizes actionable science needed for urban planning, management and policymaking; developing disease and vector surveillance programs using citizen and community science methods; and improving education and communication actions that help diverse stakeholders understand the complexities of urban disease ecology. Such measures will enable scholars from many disciplines to collaborate with professionals, government officials, and others to tackle challenges of the urban disease paradox and create more sustainable, health-promoting environments.

13.
IET Nanobiotechnol ; 16(4): 145-157, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35353449

ABSTRACT

Marine seaweeds are known to have a potential role against microbial and pesticidal activities. Ulva lactuca, a green macroalgae extract analysed through gas chromatography mass spectrometry reveals 31 compounds. Resistance of mosquito vectors to synthetic insecticides remains a major problem. Discovering and applying natural agents to act against disease vectors is challenging. The activities of the extract and nano-fabricated green synthesised silver nanoparticles were checked for use against Aedes aegypti and Culex pipiens. The crude extract and synthesised silver nanoparticles exhibited a notable larvicidal effect, and very effective inhibition of pupal and adult emergence. Inhibition of adult emergence of Ae.aegypti was 97.7% and in Cu.pipiens, it was 93.3%. Our genotypic study of Deoxyribonucleic acid from treated larvae utilising random primers MA-09, MA-12 and MA-26 revealed damaged nucleotide sequences when compared with the controls. The antimicrobial activity of both the extract and green synthesised nanomaterials showed prominent activity against pathogenic drug resistant bacteria. Our results contribute to further development of eco-friendly insecticides with lower cost of preparation. This could further contribute to further research helping future generations to be free from these deadly disease-causing vectors and pathogenic microbes.


Subject(s)
Aedes , Insecticides , Metal Nanoparticles , Silver , Ulva , Aedes/drug effects , Aedes/genetics , Animals , DNA/analysis , Genomics , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects , Metal Nanoparticles/chemistry , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Plant Extracts/chemistry , Silver/chemistry , Silver/pharmacology , Ulva/chemistry
14.
Methods Mol Biol ; 2408: 147-163, 2022.
Article in English | MEDLINE | ID: mdl-35325422

ABSTRACT

Virus-induced gene silencing (VIGS) is a functional genomics tool to transiently downregulate the expression of target gene(s) by exploiting the plant's innate defense mechanism against invading RNA viruses. VIGS is a rapid and efficient approach to analyze the gene function, particularly, in the plants that are not amenable to stable genetic transformation. This strategy has been successfully used to decipher the function of several genes and transcription factors involved in the biosynthesis of specialized metabolites and regulation of specialized metabolism, respectively, in different medicinal and aromatic plants. Here, we describe a detailed Tobacco rattle virus (TRV)-mediated VIGS protocol for silencing of the gene encoding Phytoene desaturase (PDS) in important medicinal plants Catharanthus roseus, Calotropis gigantean, Rauwolfia serpentina, and Ocimum basilicum. Our methods allow the study of gene function within 3-4 weeks after agro-inoculation, and can be an easy and efficient approach for future studies on understanding of the biosynthesis of specialized metabolites in these important medicinal plants.


Subject(s)
Plant Viruses , Plants, Medicinal , Gene Expression Regulation, Plant , Gene Silencing , Genomics , Plant Viruses/genetics , Plants, Medicinal/genetics
15.
Cells ; 11(4)2022 02 18.
Article in English | MEDLINE | ID: mdl-35203368

ABSTRACT

Studies on the ways in which viroids are transmitted are important for understanding their epidemiology and for developing effective control measures for viroid diseases. Viroids may be spread via vegetative propagules, mechanical damage, seed, pollen, or biological vectors. Vegetative propagation is the most prevalent mode of spread at the global, national and local level while further dissemination can readily occur by mechanical transmission through crop handling with viroid-contaminated hands or pruning and harvesting tools. The current knowledge of seed and pollen transmission of viroids in different crops is described. Biological vectors shown to transmit viroids include certain insects, parasitic plants, and goats. Under laboratory conditions, viroids were also shown to replicate in and be transmitted by phytopathogenic ascomycete fungi; therefore, fungi possibly serve as biological vectors of viroids in nature. The term "mycoviroids or fungal viroids" has been introduced in order to denote these viroids. Experimentally, known sequence variants of viroids can be transmitted as recombinant infectious cDNA clones or transcripts. In this review, we endeavor to provide a comprehensive overview of the modes of viroid transmission under both natural and experimental situations. A special focus is the key findings which can be applied to the control of viroid diseases.


Subject(s)
Plant Viruses , Viroids , Plant Diseases , Plant Viruses/genetics , Plants , Pollen , Viroids/genetics
16.
Curr Gene Ther ; 22(5): 368-385, 2022.
Article in English | MEDLINE | ID: mdl-34802404

ABSTRACT

BACKGROUND: Cancer, a malignant tumor, is caused by the failure of the mechanism that controls cell growth and proliferation. Late clinical symptoms often manifest as lumps, pain, ulcers, and bleeding. Systemic symptoms include weight loss, fatigue, and loss of appetite. It is a major disease that threatens human life and health. How to treat cancer is a long-standing problem that needs to be overcome in the history of medicine. METHODS: Traditional tumor treatment methods are poorly targeted, and the side effects of treatment seriously damage the physical and mental health of patients. In recent years, with the advancement of medical science and technology, the research on gene combined with mesenchymal stem cells to treat tumors has been intensified. Mesenchymal stem cells carry genes to target cancer cells, which can achieve better therapeutic effects. DISCUSSION: In this study, we systematically review the cancer treatment evolution from traditional methods to novel approaches that include immunotherapy, nanotherapy, stem cell theapy, and gene therapy. We provide the latest review of the application status, clinical trials, and development prospects of mesenchymal stem cells and gene therapy for cancer, as well as their integration in cancer treatment. Mesenchymal stem cells are effective carriers carrying genes and provide new clinical ideas for tumor treatment. CONCLUSION: This review focuses on the current status, application prospects, and challenges of mesenchymal stem cell combined gene therapy for cancer and provides new ideas for clinical research.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neoplasms , Cell Proliferation , Genetic Therapy/methods , Humans , Immunotherapy , Mesenchymal Stem Cell Transplantation/methods , Neoplasms/genetics , Neoplasms/therapy
17.
Pathogens ; 10(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34832594

ABSTRACT

This concept paper reviews issues pertaining to parasitic and vector-borne infections, of humans, animals, or both, of topical relevance to the African continent as well as to neighbouring and interconnected geographies. This analysis is carried out through the "One Health" lens, being mindful of the central role of agriculture and livestock keeping in Africa's sustainable development. The possible agricultural transformation that the continent may undergo to fulfil the rising demand for animal protein of its growing population, coupled with the ongoing climate changes, may lead to potentially enhanced interactions among humans, domesticated and wild animals, in a fast-changing environment. In this view, tackling parasitic conditions of livestock can prove being multidimensionally beneficial by improving animal health as well as communities' food security, livelihood and public health. Accordingly, the value of applying the One Health approach to drug discovery and development in the fight against parasitic neglected tropical diseases and zoonoses, is also underscored. Overall, this article upholds the adoption of a holistic, global, interdisciplinary, multisectoral, harmonised and forward-looking outlook, encompassing both life and social sciences, when dealing with parasitic conditions of humans and animals, in Africa and beyond, in COVID-19 times and further.

18.
Front Immunol ; 12: 704408, 2021.
Article in English | MEDLINE | ID: mdl-34489954

ABSTRACT

On murine T cells, mono-ADP ribosyltransferase ARTC2.2 catalyzes ADP-ribosylation of various surface proteins when nicotinamide adenine dinucleotide (NAD+) is released into the extracellular compartment. Covalent ADP-ribosylation of the P2X7 receptor by ARTC2.2 thereby represents an additional mechanism of activation, complementary to its triggering by extracellular ATP. P2X7 is a multifaceted receptor that may represents a potential target in inflammatory, and neurodegenerative diseases, as well as in cancer. We present herein an experimental approach using intramuscular injection of recombinant AAV vectors (rAAV) encoding nanobody-based biologics targeting ARTC2.2 or P2X7. We demonstrate the ability of these in vivo generated biologics to potently and durably block P2X7 or ARTC2.2 activities in vivo, or in contrast, to potentiate NAD+- or ATP-induced activation of P2X7. We additionally demonstrate the ability of rAAV-encoded functional heavy chain antibodies to elicit long-term depletion of T cells expressing high levels of ARTC2.2 or P2X7. Our approach of using rAAV to generate functional nanobody-based biologics in vivo appears promising to evaluate the role of ARTC2.2 and P2X7 in murine acute as well as chronic disease models.


Subject(s)
ADP Ribose Transferases , Biological Products/immunology , Dependovirus , Genetic Vectors , Lymphocyte Depletion , Receptors, Purinergic P2X7/immunology , Single-Domain Antibodies , ADP Ribose Transferases/antagonists & inhibitors , ADP Ribose Transferases/immunology , Animals , Mice , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology
19.
Pest Manag Sci ; 77(1): 325-334, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32729190

ABSTRACT

BACKGROUND: The expansion of Aedes aegypti (Diptera: Culicidae) population has increased the number of cases of arboviruses, in part due to the inefficiency and toxicity of the chemical control methods available to control this vector. We synthesized 19 chalcone derivatives and examined their activity against Ae. aegypti larvae in order to select larvicidal compounds that are non-toxic to other organisms. RESULTS: Seven chalcone derivatives (3a, 3e, 3f, 6a, 6c, 6d, and 6f) had lethal concentrations of substituted chalcones capable of killing 50% (LC50 ) values lower than 100 mg mL-1 at 24 h post-treatment, which is the dose that the World Health Organization recommends for the selection of promising larvicides. The type of substituent added to (E)-1,3-diphenylprop-2-en-1-one (3a) markedly affected the larvicidal activity. Addition of chlorine, bromine and methoxy groups to the aromatic rings reduced the larvicidal activity, while replacement of the B-ring (phenyl) by a furan ring significantly increased the larvicidal activity. The furan-chalcone (E)-3-(4-bromophenyl)-1-(furan-2-yl)prop-2-en-1-one (6c) killed Ae. aegypti larvae (LC50 = 6.66 mg mL-1 ; LC90 = 9.97 mg mL-1 ) more effectively than the non-substituted chalcone (3a) (LC50 = 14.43 mg mL-1 ; LC90 = 20.96 mg mL-1 ), and was not toxic to the insect Galleria mellonella, to the protozoan Tetrahymena pyriformis, and to the algae Chorella vulgaris. CONCLUSIONS: The substitution pattern of chalcones influenced their larvicidal activity. In the set of compounds tested, (E)-3-(4-bromophenyl)-1-(furan-2-yl)prop-2-en-1-one (6c) was the most effective larvicide against Ae. aegypti, with no clear signs of toxicity to other animal models. Its mechanism of action and effectiveness under field conditions remain to be determined.


Subject(s)
Aedes , Chalcone , Chalcones , Insecticides , Animals , Chalcones/pharmacology , Insecticides/pharmacology , Larva , Mosquito Vectors , Plant Extracts
20.
Int J Mol Sci ; 21(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066447

ABSTRACT

Conventional anti-cancer therapy involves the use of chemical chemotherapeutics and radiation and are often non-specific in action. The development of drug resistance and the inability of the drug to penetrate the tumor cells has been a major pitfall in current treatment. This has led to the investigation of alternative anti-tumor therapeutics possessing greater specificity and efficacy. There is a significant interest in exploring the use of microbes as potential anti-cancer medicines. The inherent tropism of the bacteria for hypoxic tumor environment and its ability to be genetically engineered as a vector for gene and drug therapy has led to the development of bacteria as a potential weapon against cancer. In this review, we will introduce bacterial anti-cancer therapy with an emphasis on the various mechanisms involved in tumor targeting and tumor suppression. The bacteriotherapy approaches in conjunction with the conventional cancer therapy can be effective in designing novel cancer therapies. We focus on the current progress achieved in bacterial cancer therapies that show potential in advancing existing cancer treatment options and help attain positive clinical outcomes with minimal systemic side-effects.


Subject(s)
Bacteria/pathogenicity , Biological Therapy/methods , Neoplasms/therapy , Animals , Bacteria/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Humans , Neoplasms/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL