Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 434
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 341(6): 683-701, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38594790

ABSTRACT

Nanotechnology has been used to apply nanoparticle essential elements to enhance the ability of animals to absorb these elements and consequently improve their reproductive performance. High concentrations of nanoparticles (NPs) can directly harm a range of aquatic life forms, ultimately contributing to a decline in biodiversity. Helisoma duryi snails are a good model for studying the toxicological effects of bulk zinc oxide (ZnO-BPs) and nano zinc oxide (ZnO-NPs) on freshwater gastropods. This study aimed to compare the toxic effects of ZnO-BPs and ZnO-NPs on H. duryi snails and explore how waterborne and dietary exposure influenced the reproductive performance of this snail. ZnO-BPs and ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder (XRD). This study revealed that the size of ZnO-BPs and ZnO-NPs were 154 nm and 11-31 nm, respectively. The results showed that exposure of adult snails to sub-lethal concentrations of both ZnO forms (bulk and nano) for 24 h/week for 4 weeks markedly changed their reproductive performance in a concentration-dependent manner, where fecundity was negatively affected by high concentrations. It was concluded that dietary exposure to the lowest tested concentration of ZnO-NPs (1 ppm) has a positive effect as the number of eggs and egg masses/snails increased and the incubation period decreased. Also, poly-vitelline eggs (The formation of twins) were observed. ZnO-NPs at low concentrations positively affect the reproductive performance of snails, especially after dietary exposure. The results revealed that 1 ppm ZnO-NPs could be supplementary provided to snails to improve their fertility, reduce the developmental time course, increase hatchability percentage, and produce poly-vitelline eggs.


Subject(s)
Reproduction , Snails , Zinc Oxide , Animals , Zinc Oxide/administration & dosage , Zinc Oxide/toxicity , Snails/drug effects , Snails/physiology , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Female , Metal Nanoparticles/toxicity
2.
Article in English | MEDLINE | ID: mdl-38593271

ABSTRACT

Conventional transistors have long emphasized signal modulation and amplification, often sidelining polarity considerations. However, the recent emergence of negative differential transconductance, characterized by a drain current decline during gate voltage sweeping, has illuminated an unconventional path in transistor technology. This phenomenon promises to simplify the implementation of ternary logic circuits and enhance energy efficiency, especially in multivalued logic applications. Our research has culminated in the development of a sophisticated mixed transconductance transistor (M-T device) founded on a precise Te and IGZO heterojunction. The M-T device exhibits a sequence of intriguing phenomena, zero differential transconductance (ZDT), positive differential transconductance (PDT), and negative differential transconductance (NDT) contingent on applied gate voltage. We clarify its operation using a three-segment equivalent circuit model and validate its viability with IGZO TFT, Te TFT, and Te/IGZO TFT components. In a concluding demonstration, the M-T device interconnected with Te TFT achieves a ternary inverter with an intermediate logic state. Remarkably, this configuration seamlessly transitions into a binary inverter when it is exposed to light.

3.
Mol Biol Rep ; 51(1): 423, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489102

ABSTRACT

BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties. METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity. RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells. CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.


Subject(s)
Anti-Infective Agents , Benzothiazoles , Carcinoma, Squamous Cell , Curcumin , Metal Nanoparticles , Mouth Neoplasms , Sulfonic Acids , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Curcumin/pharmacology , Metal Nanoparticles/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Carcinoma, Squamous Cell/drug therapy , Mouth Neoplasms/drug therapy , Biofilms , Plant Extracts/chemistry , Microbial Sensitivity Tests
4.
Front Bioeng Biotechnol ; 12: 1326143, 2024.
Article in English | MEDLINE | ID: mdl-38464542

ABSTRACT

Introduction: The development of an effective extender is important for semen preservation and the artificial insemination (AI) industry. This study demonstrates the beneficial effect of zinc oxide nanoparticles (ZnO-NPs) as an additive to semen extenders to improve semen quality, fertility, and antibacterial activity during liquid preservation in a boar model. Methods: Initially, to find out the safe concentration of ZnO-NPs in sperm cells, a wide range of ZnO-NP concentrations (0, 5, 10, 50, 100, 500, and 1,000 µM) were co-incubated with sperm at 37°C for a cytotoxic study. These NP concentrations were compared to their salt control zinc acetate (ZA) at the same concentrations and to a control group. The effect of the different concentrations of ZnO-NPs on sperm motility, membrane integrity, mitochondrial membrane potential (MMP), and apoptosis was assessed. Accordingly, the non-toxic dose was selected and supplemented in MODENA extender to determine its beneficial effect on the boar semen parameters mentioned and the lipid peroxidation (LPO) levels during liquid preservation at 16°C for 6 days. The non-cytotoxic dosage was subsequently chosen for AI, fertility investigations, and the evaluation of the antibacterial efficacy of ZnO-NPs during preservation hours. An antibacterial study of ZnO-NPs and its salt control at doses of 10 µM and 50 µM was carried out by the colony forming unit (CFU) method. Results and discussion: The cytotoxic study revealed that 5, 10, and 50 µM of ZnO-NPs are safe. Consequently, semen preserved in the MODENA extender, incorporating the non-toxic dose, exhibited 10 and 50 µM ZnO-NPs as the optimal concentrations for beneficial outcomes during liquid preservation at 16°C. ZnO-NPs of 10 µM concentration resulted in a significantly (p < 0.05) improved conception rate of 86.95% compared to the control of 73.13%. ZnO-NPs of 10 and 50 µM concentrations exhibit potent antimicrobial action by reducing the number of colonies formed with days of preservation in comparison to the negative control. The investigation concluded that the incorporation of 10 µM ZnO-NPs led to enhancements in sperm motility, membrane integrity, and MMP, attributed to a reduction in the malondialdehyde (MDA) levels. This improvement was accompanied by a concurrent increase in fertility rates, including farrowing rate and litter size, during the liquid preservation process. Furthermore, ZnO-NPs exhibited an antimicrobial effect, resulting in decreased bacterial growth while preserving boar semen at 16°C for 6 days. These findings suggest that ZnO-NPs could serve as a viable alternative to antibiotics, potentially mitigating antibiotic resistance concerns within the food chain.

5.
Cureus ; 16(2): e53671, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38455834

ABSTRACT

Introduction Nanotechnology holds considerable importance in biomedical and dental applications. Nanoparticles synthesized using green synthesis methods with herbal formulations offer various benefits to humans. Zinc oxide nanoparticles (ZnONPs), being semiconductors, exhibit potent antibacterial properties. Notably, treatments utilizing lemongrass and mint ensure potentially lower toxicity and antibacterial qualities for oral infections. The goal of the study is to prepare a mouthwash mediated by ZnONPs and assess its cytotoxic potential and antibacterial efficacy. Materials and methods A lemongrass and mint formulation was used in the synthesis of ZnONPs, and the mouthwash was prepared using the synthesized nanoparticles. The produced ZnONPs were tested for their antimicrobial activity using agar well diffusion technique against oral pathogens, and the ZnONPs-mediated mouthwash was evaluated for its cytotoxic effect using the brine shrimp lethality assay and compared to commercial mouthwash.  Results The green-synthesized ZnONPs were initially confirmed using a UV-visible spectrophotometer and exhibited a maximum peak at 362 nm. The antimicrobial activity was tested for the synthesized ZnONPs against oral pathogens, which showed a maximum zone of inhibition of 22 mm in Enterococcus faecalis and 23 mm in Candida albicans, as estimated by the agar well diffusion technique. Additionally, ZnONPs-based herbal mouthwash demonstrated lower cytotoxicity than the commercial mouthwash in the brine shrimp lethality assay. Conclusion In the current study, lemongrass and mint-mediated ZnONPs demonstrated an effective antibacterial activity against E. faecalis and antifungal activity against C. albicans. Furthermore, the cytotoxic effect tested using the brine shrimp lethality assay for ZnONPs-mediated mouthwash demonstrated lower toxicity as compared to the commercial mouthwash. This suggests that the green-synthesized ZnONPs-based mouthwash could be used as an alternative to synthetic mouthwash.

6.
Cureus ; 16(2): e53562, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38445144

ABSTRACT

Background This study deals with the antimicrobial efficacy of zinc oxide nanoparticles (ZnONPs) synthesized through green methods employing extracts from Ocimum tenuiflorum and Ocimum gratissimum and assessed for their antimicrobial properties against a range of oral pathogens. Methods Zinc oxide nanoparticles (ZnONPs) were synthesized using extracts from Ocimum tenuiflorum and Ocimum gratissimum through a green synthesis approach. Antimicrobial activity was determined using the agar-well diffusion assay to evaluate the consistency of inhibition zones against oral pathogens. Variations in sensitivity were assessed through the time-kill curve assay, quantifying the response of oral pathogens to zinc oxide nanoparticles (ZnONPs) exposure over time. Results The agar-well diffusion assay revealed uniform 9-mm zones of inhibition against all oral pathogens, signifying consistent antimicrobial activity of zinc oxide nanoparticles (ZnONPs). In the time-kill curve assay, Candida albicans exhibited the highest sensitivity, followed by Streptococcus mutans and Staphylococcus aureus. Enterococcus faecalis and Lactobacillus species displayed lower sensitivity, suggesting potential selectivity. Discussion The observed variation in sensitivity implies the potential selectivity of zinc oxide nanoparticles (ZnONPs) against specific oral pathogens, which may have significant implications for oral health applications. These findings underscore the versatility of green-synthesized zinc oxide nanoparticles (ZnONPs) as promising antimicrobial agents, particularly for oral health applications. Conclusion This study provides promising results for the antimicrobial potential of zinc oxide nanoparticles (ZnONPs) synthesized using Ocimum tenuiflorum and Ocimum gratissimum. The consistent antimicrobial activity and variations in sensitivity among oral pathogens highlight their promising utility in oral health care.

7.
Environ Sci Pollut Res Int ; 31(13): 19123-19147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379040

ABSTRACT

The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Metal Nanoparticles , Metals, Heavy , Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/chemistry , Ecosystem , Nanoparticles/chemistry , Coloring Agents/chemistry , Plant Extracts/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents
8.
Pharmaceutics ; 16(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399337

ABSTRACT

Phototherapies, such as photothermal therapy (PTT) and photodynamic therapy (PDT), combined with novel all-in-one light-responsive nanocomposites have recently emerged as new therapeutic modalities for the treatment of cancer. Herein, we developed novel all-in-one triphenylphosphonium-functionalized gold nanorod/zinc oxide core-shell nanocomposites (CTPP-GNR@ZnO) for mitochondrial-targeted PTT/PDT owing to their good biocompatibility, tunable and high optical absorption, photothermal conversion efficiency, highest reactive oxygen species (ROS) generation, and high mitochondrial-targeting capability. Under laser irradiation of 780 nm, the CTPP-GNR@ZnO core-shell nanocomposites effectively produced heat in addition to generating ROS to induce cell death, implying a synergistic effect of mild PTT and PDT in combating cancer. Notably, the in vitro PTT/PDT effect of CTPP-GNR@ZnO core-shell nanocomposites exhibited effective cell ablation (95%) and induced significant intracellular ROS after the 780 nm laser irradiation for 50 min, indicating that CTPP in CTPP-GNR@ZnO core-shell nanocomposites can specifically target the mitochondria of CT-26 cells, as well as generate heat and ROS to completely kill cancer cells. Overall, this light-responsive nanocomposite-based phototherapy provides a new approach for cancer synergistic therapy.

9.
Bioorg Chem ; 145: 107225, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402797

ABSTRACT

The study presents a significant advancement in drug delivery and therapeutic efficacy through the successful synthesis of Gliricidia sepium(Jacq.) Kunth. ex. Walp., stem zinc oxide nanoparticles(GSS ZnONPs). The phenolic compounds present in Gliricidia sepium stem (GSS) particularly vanillic acid, apegnin-7-O-glucoside, syringic acid, and p-coumaric acid which were identified by HPLC. These compounds shown antioxidant and anti-inflammatory properties. GSS ZnONPs demonstrate pronounced gastroprotective effects against ethanol-induced gastritis, evidenced by the reduction in gastric lesions and mucosal injury upon its treatment. Histopathological evaluation and immunohistochemical analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) expression further validate these results, revealing the amelioration of ethanol-induced gastritis and improved gastric tissue condition due to their treatment. Noteworthy is the dose-dependent response of GSS ZnONPs, showcasing their efficacy even at lower doses against ethanol-induced gastritis which is confirmed by different biomarkers. These findings have substantial implications for mitigating dosage-related adverse effects while preserving therapeutic benefits, offering a more favorable treatment approach. This study aims to investigate the potential gastroprotective activity of GSS ZnONPs against gastritis.


Subject(s)
Gastritis , Stomach Ulcer , Zinc Oxide , Rats , Animals , Ethanol , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gastritis/chemically induced , Gastritis/drug therapy , Anti-Inflammatory Agents/therapeutic use , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology
10.
ACS Nano ; 18(6): 5180-5195, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38299982

ABSTRACT

Fungal infection possesses the characteristics of high invasion depth and easy formation of a biofilm under the skin, which greatly hinders the treatment process. Here, traditional Chinese medicine moxa is carbonized and modified with zinc oxide (ZnO) nanosheets to synthesize carbonized moxa@ZnO (CMZ) with the dual response properties of yellow light (YL) and ultrasound (US) for synergistic antifungal therapy. CMZ with narrow bandgap can respond to long-wavelength YL that is highly safe and helpful for skin repair. Simultaneously, CMZ with a piezoelectric effect can further enhance the photocatalytic efficiency under the stimulation of US with high tissue penetration. Gene mechanism investigation indicates that when exposed to US and YL irradiation, CMZ-based therapy can adjust the expression of genes associated with fungal virulence, metabolic activity, mycelial growth and biofilm development, thus efficaciously eradicating planktonic Candida albicans (C. albicans) and mature biofilm. Importantly, despite the 1.00 cm thick tissue barrier, CMZ can rapidly eliminate 99.9% of C. albicans within 4 min, showing a satisfactory deep fungicidal efficacy. The in vivo therapeutic effect of this strategy is demonstrated in both open wound and deep cutaneous infection tests, speaking of dramatically better efficacy than the traditional fungicide ketoconazole (KTZ).


Subject(s)
Mycoses , Zinc Oxide , Antifungal Agents/pharmacology , Zinc Oxide/pharmacology , Ketoconazole , Candida albicans , Biofilms , Microbial Sensitivity Tests
11.
Nanotechnology ; 35(20)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38330456

ABSTRACT

This study evaluated the efficacy of phytogenic silver and zinc nanoparticles in improving heat resilience in various wheat varieties. The silver and zinc nanoparticles were synthesized using plant leaf extract and characterized using various techniques. Four wheat varieties (DBW187, Black Wheat, DBW 50, and PBW 621) were subjected to field trials. The random block design was used, and nanoparticles in different concentrations were applied at various growth stages and morphologically, and yield parameters were recorded. UV-vis spectroscopy spectral analysis showed peaks for Ag nanoparticles at 420 nm wavelength and Zn nanoparticles at 240 and 350 nm wavelength, depicting the preliminary confirmation of nanoparticle synthesis. Electron microscopic analysis (TEM and SEM) provided morphological insights and confirmed synthesis of fine-sized particle mostly in a range between 10 and 60 nm. Energy dispersive x-ray analysis confirmed the elemental composition of the synthesized nanoparticles, with Ag and Zn elements detected in their respective samples. It also confirmed the oxide nature of synthesized ZnNPs. Dynamic light scattering analysis provided size distribution profiles, indicating average sizes of approximately 61.8 nm for Ag nanoparticles and 46.5 nm for Zn nanoparticles. The concentrations of Ag and Zn nanoparticles in the samples were found to be 196.3 ppm and 115.14 ppm, respectively, through atomic absorption spectroscopic analysis. Fourier transform infrared spectroscopy analysis revealed characteristic functional groups present in the nanoparticles. The results of field experiments established that Ag nanoparticles at 75 ppm concentration exhibited the most significant enhancements in plant growth. Conversely, Zn nanoparticles at a 100 ppm concentration demonstrated the most substantial improvements in the growth and yield of heat-stressed wheat varieties. The study concludes that optimized concentrations of silver and zinc nanoparticles can effectively improve heat stress resilience in wheat. These findings are promising to enhance abiotic stress resilience in crops.


Subject(s)
Metal Nanoparticles , Nanoparticles , Resilience, Psychological , Metal Nanoparticles/chemistry , Silver/pharmacology , Silver/chemistry , Triticum , Zinc , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents
12.
Biol Trace Elem Res ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416342

ABSTRACT

The harmful impact of waterborne copper (Cu) as a common abiotic stressor in aquatic environments has gained much more interest. The present study aimed to investigate the utilization of zinc oxide nanoparticles (ZnONPs) dietary supplementation to mitigate the chronic toxicity of Cu in African catfish (Clarias gariepinus). Two hundred and forty fish (92.94 ± 0.13 g) were assigned into six groups for 60 days. Control (C), ZnONPs20, and ZnONPs30 groups were fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs without Cu exposure. Cu, Cu + ZnONPs20, and Cu + ZnONPs30 groups were exposed to Cu at a dose of 10 mg L-1 and fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs, respectively. The results revealed that the Cu-exposed fish experienced abnormal clinical signs and behavioral changes. The growth indices and acetylcholine esterase activity were significantly decreased (P < 0.05) in the Cu group. Meanwhile, hepatorenal and serum stress indices (P < 0.05) were significantly elevated with chronic Cu exposure. In addition, a higher expression of stress (P < 0.05) (heat shock protein 60 and hypoxia-inducible factor-1 alpha) and apoptotic-related genes (C/EBP homologous protein, caspase-3, and Bcl-2 Associated X-protein) with down-regulation (P < 0.05) of the anti-apoptotic-related genes (B-cell lymphoma 2 and proliferating cell nuclear antigen) was noticed in the Cu-exposed fish. Histopathological alterations in the gills, liver, kidney, and spleen were markedly reported in the Cu-exposed group. The dietary supplementation with ZnONPs significantly alleviated the negative impacts of chronic waterborne-Cu exposure on growth performance, physiological changes, gene expression, and tissue architecture, especially at 30 mg kg-1 diet level. In particular, the inclusion of ZnONPs at the 30 mg kg-1 diet level produced better outcomes than the 20 mg kg-1 diet. Overall, ZnONPs could be added as a feed supplement in the C. gariepinus diet to boost the fish's health and productivity and alleviate the stress condition brought on by Cu exposure.

13.
Cureus ; 16(1): e52995, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38406168

ABSTRACT

Background The aim of this study was to evaluate and compare the anti-inflammatory properties of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) that were synthesized utilizing African tulsi and black tulsi herbal formulations. The anti-inflammatory activity was assessed by the utilization of bovine serum albumin (BSA) denaturation and egg albumin denaturation tests. In addition, a membrane stabilization experiment was performed to evaluate their efficacy as anti-inflammatory drugs. Methods This study was conducted at Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. AgNPs and ZnONPs were synthesized using Ocimum tenuiflorum (African tulsi) and Ocimum gratissimum (black tulsi) extracts. The BSA denaturation assay involved mixing serum albumin with different nanoparticle concentrations (10-50 µg/mL) and measuring absorbance at 660 nm. The egg albumin denaturation assay followed a similar procedure. The membrane stabilization assay utilized red blood cells and spectrophotometric measurements at 540 nm. Results In the BSA denaturation assay, AgNPs and ZnONPs showed concentration-dependent inhibition of protein denaturation. While these nanoparticles exhibited anti-inflammatory potential, diclofenac sodium consistently displayed slightly stronger inhibition. In the egg albumin denaturation assay, AgNPs and ZnONPs inhibited protein denaturation at various concentrations. Their anti-inflammatory effects were comparable to the standard drug, diclofenac sodium. In the membrane stabilization assay, both nanoparticle types demonstrated concentration-dependent membrane stabilization effects. Diclofenac sodium exhibited slightly stronger membrane stabilization. Conclusions AgNPs and ZnONPs synthesized using Ocimum tenuiflorum and Ocimum gratissimum (African tulsi and black tulsi) possess anti-inflammatory potential, as demonstrated by their inhibition of protein denaturation and membrane stabilization. While these nanoparticles show promise as anti-inflammatory agents, further research is needed to explore their clinical applications and safety profiles.

14.
Sci Rep ; 14(1): 4147, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378738

ABSTRACT

The current study aimed to find an effective, simple, ecological, and nontoxic method for bacterial green synthesis of zinc oxide nanoparticles (ZnONPs) using the bacterial strain Priestia megaterium BASMA 2022 (OP572246). The biosynthesis was confirmed by the change in color of the cell-free supernatant added to the zinc nitrate from yellow to pale brown. The Priestia megaterium zinc oxide nanoparticles (Pm/ZnONPs) were characterized using UV-Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and zeta potential. The Pm/ZnONPs characterization showed that they have a size ranging between 5.77 and 13.9 nm with a semi-sphere shape that is coated with a protein-carbohydrate complex. An EDX analysis of the Pm/ZnONPs revealed the presence of the shield matrix, which was composed of carbon, nitrogen, oxygen, chlorine, potassium, sodium, aluminum, sulfur, and zinc. The results of the FTIR analysis showed that the reduction and stabilization of the zinc salt solution were caused by the presence of O-H alcohols and phenols, O=C=O stretching of carbon dioxide, N=C=S stretching of isothiocyanate, and N-H bending of amine functional groups. The produced ZnONPs had good stability with a charge of - 16.2 mV, as evidenced by zeta potential analysis. The MTT assay revealed IC50 values of 8.42% and 200%, respectively, for the human A375 skin melanoma and human bone marrow 2M-302 cell lines. These findings revealed that the obtained Pm/ZnONPs have the biocompatibility to be applied in the pharmaceutical and biomedical sectors.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Cell Line , Plant Extracts/chemistry , Bacteria , Zinc , Anti-Bacterial Agents/chemistry
15.
Animals (Basel) ; 14(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338166

ABSTRACT

The aim of this experiment is to evaluate the effects of adding porous zinc oxide, plant polyphenols, and their combination to diets without antibiotics and high-dose zinc oxide on the growth performance, diarrhea incidence, intestinal morphology, and microbial diversity of weaned piglets. A total of 150 Duroc × Landrace × Large White weaned piglets were allocated to one of five diets in a randomized complete block design with six replicates and five piglets per replicate. The experimental period was 42 d, divided into two feeding stages: pre-starter (0-14 d) and starter (14-42 d). In the pre-starter stage, the negative control group (NC) was fed a basal diet, the positive control group (PC) was fed a basal diet with 2000 mg/kg of zinc oxide, the porous zinc oxide group (PZ) was fed a basal diet with 500 mg/kg of porous zinc oxide, the plant polyphenol group (PP) was fed a basal diet with 1500 mg/kg of plant polyphenols, and the combination group (PZ + PP) was fed a basal diet with 500 mg/kg of porous zinc oxide and 1500 mg/kg of plant polyphenols. In the starter stage, the NC, PC, and PZ groups were fed a basal diet, while the PP and PZ + PP groups were fed a basal diet with 1000 mg/kg of plant polyphenols. The results showed that, (1) compared with the PZ group, adding plant polyphenols to the diet showed a trend of increasing the ADFI of weaned piglets from 14 to 28 d (p = 0.099). From days 28 to 42 and days 0 to 42, porous zinc oxide and the combination of porous zinc oxide and plant polyphenols added to the control diet improved the FCR to the level observed in pigs fed the PC diet. (2) Dietary PZ + PP tended to increase the jejunal villus height (VH) of weaned piglets (p = 0.055), and significantly increased the villus-height-to-crypt-depth ratio compared to the NC group (p < 0.05). (3) Compared with the NC group, PZ supplementation decreased the relative abundance of Firmicutes and increased the relative abundance of Bacteroidetes, and the relative abundance of Lactobacillus in the PZ and PZ + PP groups were both increased. In conclusion, porous zinc oxide and plant polyphenols may have synergistic effects in modulating intestinal health in weaned piglets and be a potential alternative to high-dose zinc oxide.

16.
Micromachines (Basel) ; 15(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38258241

ABSTRACT

The purpose of this study is to explore the possibility of using graphene-zinc oxide-hydroxyapatite (GO/ZnO/nHAp) composite microspheres as bone regeneration materials by making use of the complementary advantages of nanocomposites, so as to provide reference for the clinical application of preventing and solving bacterial infection after implantation of synthetic materials. Firstly, GO/ZnO composites and hydroxyapatite nanoparticles were synthesized using the hydrothermal method, and then GO/ZnO/nHAp composite microspheres were prepared via high-temperature sintering. The graphene-zinc oxide-calcium phosphate composite microspheres were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), energy dispersion spectroscopy (EDS), water contact angle measurement, degradation and pH determination, and differential thermal analysis (DiamondTG/DTA). The biocompatibility, osteogenic activity, and antibacterial activity of GO/ZnO/nHAp composite microspheres were further studied. The results of the cell experiment and antibacterial experiment showed that 0.5% and 1% GO-ZnO-nHAp composite microspheres not only had good biocompatibility and osteogenic ability but also inhibited Escherichia coli and Staphylococcus aureus by more than 45% and 70%. Therefore, GO/ZnO/nHAp composite microspheres have good physical and chemical properties and show good osteogenic induction and antibacterial activity, and this material has the possibility of being used as a bone regeneration material.

17.
Food Chem ; 442: 138384, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38219567

ABSTRACT

A nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip was constructed for the detection of ochratoxin A. The hybrid chains formed by aptamer and complementary chains labeled with fluorescent groups and fluorescent burst groups were used as recognition molecules, and the detection of toxins was accomplished on the chip by the principle of fluorescence signal burst and recovery. The modified QuEChERS method was used for sample pretreatment and the performance of the method was evaluated. The results showed that the linear range was 0.02 âˆ¼ 200 ng/kg with the detection limit of 0.0196 ng/kg under the optimal detection conditions. The method was applied to different cereals with the recoveries of 90.30 âˆ¼ 111.69 %. The developed microarray chip has the advantages of being cost-effective, easy to prepare, sensitive and specific, and can provide a new method for the detection of other toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nucleic Acids , Ochratoxins , Zinc Oxide , Silicon , Edible Grain/chemistry , Porosity , Zinc , Limit of Detection , Aptamers, Nucleotide/genetics , Ochratoxins/analysis , Silicon Dioxide , Organic Chemicals , Biosensing Techniques/methods
18.
Biomed Mater ; 19(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38215483

ABSTRACT

With the rise in microbial resistance to traditional antibiotics and disinfectants, there is a pressing need for the development of novel and effective antibacterial agents. Two major approaches being adopted worldwide to overcome antimicrobial resistance are the use of plant leaf extracts and metallic nanoparticles (NPs). However, there are no reports on the antibacterial potential of NPs coated with plant extracts, which may lead to novel ways of treating infections. This study presents an innovative approach to engineer antibacterial NPs by leveraging the inherent antibacterial properties of zinc oxide NPs (ZnO NPs) in combination withAzadirachta indica(AI) leaf extract, resulting in enhanced antibacterial efficacy. ZnO NPs were synthesised by the precipitation method and subsequently coated withAIleaf extract to produce ZnO-AInanocore-shell structures. The structural and morphological characteristics of the bare and leaf extract coated ZnO NPs were analysed by x-ray diffraction and field emission scanning electron microscopy, respectively. The presence of anAIleaf extract coating on ZnO NPs and subsequent formation of ZnO-AInanocore-shell structures was verified through Fourier transform infrared spectroscopy and photoluminescence techniques. The antibacterial efficacy of both ZnO NPs and ZnO-AInanocore-shell particles was evaluated against methicillin-resistantStaphylococcus aureususing a zone of inhibition assay. The results showed an NP concentration-dependent increase in the diameter of the inhibition zone, with ZnO-AInanocore-shell particles exhibiting superior antibacterial properties, owing to the combined effect of ZnO NPs and the poly phenols present inAIleaf extract. These findings suggest that ZnO-AInanocore-shell structures hold promise for the development of novel antibacterial creams and hydrogels for various biomedical applications.


Subject(s)
Azadirachta , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Zinc Oxide , Methicillin , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests
19.
Heliyon ; 10(1): e24076, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234900

ABSTRACT

In recent decades, the biosynthesis of nanoparticles using biological agents, such as plant extracts, has grown in popularity due to their environmental and economic benefits. Therefore, this study investigated into utilizing ethanol crude extract sourced from mangosteen peel for the synthesis of zinc oxide nanoparticles (ZnO NPs) and assessing their efficacy against the rice blight pathogen (Xanthomonas oryzae pv. oryzae) through antibacterial evaluations. Additionally, the effects of the synthesized ZnO NPs on rice plant growth was investigated. The X-ray diffraction analysis revealed the production of wurtzite ZnO NPs under specific synthesis conditions, exhibiting a crystallite size of 38.71 nm (or 387.122 Å) without any contamination. Analysis of the ultraviolet-visible optical absorption spectrum indicated a characteristic absorption peak at 363 nm, suggesting a calculated band gap energy of 2.88 eV for the ZnO NPs. Furthermore, Fourier transform infrared spectroscopy analysis confirmed the presence of active compounds functional groups from mangosteen peel in the synthesized ZnO NPs. These biosynthesized ZnO NPs demonstrated significant inhibition of X. oryzae pv. oryzae growth, exhibiting an in vitro 50 % inhibitory concentration (IC50) value of 1.895 mg/mL and a minimum inhibitory concentration (MIC) value of 4 mg/mL. The ZnO NPs treatments at two-fold IC50 values significantly enhanced root length, dry biomass, and chlorophyll a content in rice plants. Consequently, the results demonstrated the potential application of biosynthesized ZnO NPs from mangosteen peel extract in green agriculture, as an alternative to excessive antibiotic use, for combating bacterial plant diseases, and for enhancing plant growth.

20.
Int Wound J ; 21(1): e14413, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37722846

ABSTRACT

This study aimed to produce zinc oxide nanoparticles with Calendula officinalis flower extract (Co-ZnO NPs) using the green synthesis method. In addition, the antioxidant and wound healing potential of synthesized ZnO NPs were evaluated. The absorbance band at 355 nm, which is typical for ZnO NPs, was determined from the UV-Vis absorbance spectrum. The energy-dispersive X-ray spectroscopy (EDS) measurements revealed a high zinc content of 42.90%. The x-ray diffractometer data showed Co-ZnO NPs with an average crystallite size of 17.66 nm. The Co-ZnO NPs did not have apparent cytotoxicity up to 10 µg/mL (IC50 25.96 µg/mL). C. officinalis ZnO NPs showed partial cell migration and percent wound closure (69.1%) compared with control (64.8%). In addition, antioxidant activities of Co-ZnO NPs with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2 diphenyl-1 picrylhydrazil (DPPH) were evaluated and radical scavenging activity of 33.49% and 46.63%, respectively, was determined. These results suggest that C. officinalis extract is an effective reducing agent for the green synthesis of ZnO NPs with significant antioxidant and wound healing potential.


Subject(s)
Calendula , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Zinc Oxide/chemistry , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Anti-Bacterial Agents , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL