ABSTRACT
The trend in bioplastic application has increased over the years where polyhydroxyalkanoates (PHAs) have emerged as a potential candidate with the advantage of being bio-origin, biodegradable, and biocompatible. The present study aims to understand the effect of acetic acid concentration (in combination with sucrose) as a mixture variable and its time of addition (process variable) on PHA production by Cupriavidus necator. The addition of acetic acid at a concentration of 1 g l-1 showed a positive influence on biomass and PHA yield; however, the further increase had a reversal effect. The addition of acetic acid at the time of incubation showed a higher PHA yield, whereas maximum biomass was achieved when acetic acid was added after 48 h. Genetic algorithm (GA) optimized artificial neural network (ANN) was used to model PHA concentration from mixture-process design data. Fitness of the GA-ANN model (R2: 0.935) was superior when compared to the polynomial model (R2: 0.301) from mixture design. Optimization of the ANN model projected 2.691 g l-1 PHA from 7.245 g l-1 acetic acid, 12.756 g l-1 sucrose, and the addition of acetic acid at the time of incubation. Sensitivity analysis indicates the inhibitory effect of all the predictors at higher levels. ANN model can be further used to optimize the variables while extending the bioprocess to fed-batch operation.
Subject(s)
Cupriavidus necator , Polyhydroxyalkanoates , Acetic Acid/pharmacology , Sucrose/pharmacology , Dietary SupplementsABSTRACT
Aedes aegypti is closely related to human behavior that allows its establishment through the accumulation of urban solid waste where it lays resistant eggs. Generally, adulticides and larvicides are applied in excess, without ovicidal alternatives, and some household products can help reduce the abundance of quiescent eggs in breeding sites by affecting the viability of eggs. A community involved in prevention and control is one of the most effective strategies for adequate vector management. In this investigation, new alternative strategies for the control of Ae. aegypti are assessed, valuing in laboratory the eggs' response to diverse household products. Susceptibility to different doses of bleach, oil, salt, sodium bicarbonate, vinegar, coffee, garlic, peroxide, and alcohol was measured, as well as its duration over time. New home products were found as alternative ovicidal method. Bleach and sunflower oil had an ovicidal effect at their maximum doses and at almost all of the evaluation times. In contrast, vinegar and coffee had no ovicidal effect at any time, turning out to be stimulators of hatching in the laboratory. These alternative and complementary applications could optimize the surveillance and control of Ae. aegypti in the area, allowing new approaches to reduce populations by eliminating eggs on human microhabitats.
Subject(s)
Aedes , Dengue , Animals , Humans , Aedes/physiology , Argentina , Acetic Acid/pharmacology , Coffee , Mosquito Vectors , LarvaABSTRACT
The aim of this study was to evaluate the therapeutic effect of active ethanol extract obtained from the leaves of Rubus tereticaulis (RTME) against colitis, and to purify major compounds from this extract by bioassay-directed isolation. Rats with colitis induced via intra-rectal acetic acid administration (5%, v/v) received RTME or sulfasalazine for three consecutive days. On day four, all rats were decapitated, and the colonic tissue samples were collected for macroscopic score, colon weight, reduced glutathione (GSH), myeloperoxidase (MPO), and malondialdehyde (MDA) analyses. The active compounds and chemical composition of RTME were determined by bio-guided isolation and LC-MS/MS, respectively. Compared to the colitis group, the rats treated with RTME displayed significantly lowered macroscopic scores and colon wet weights (p < 0.001). These effects were confirmed biochemically by a decrease in colonic MPO activity (p < 0.001), MDA levels (p < 0.001), and an increase in GSH levels (p < 0.001). Kaempferol-3-O-ß-d-glucuronide (RT1) and quercetin-3-O-ß-d-glucuronide (RT2) were found to be the major compounds of RTME, as evidenced by in vitro anti-inflammatory and antioxidant activity-guided isolation. Their anti-inflammatory/antioxidant activities were also predicted by docking simulations. Additionally, quinic acid, 5-caffeoylquinic acid, quercetin pentoside, quercetin glucoside, quercetin-3-O-ß-d-glucuronide, kaempferol-3-O-ß-d-glucuronide, and kaempferol rutinoside were identified in RTME via using LC-MS/MS. RT2, along with other compounds, may be responsible for the observed protective action of RTME against colitis. This study represents the first report on the beneficial effects of RTME in an experimental model of colitis and highlights the potential future use of RTME as a natural alternative to alleviate colitis.
Subject(s)
Colitis, Ulcerative , Colitis , Rubus , Rats , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Kaempferols/pharmacology , Ethanol/pharmacology , Quercetin/pharmacology , Chromatography, Liquid , Glucuronides , Tandem Mass Spectrometry , Colitis/chemically induced , Colitis/drug therapy , Colon , Antioxidants/pharmacology , Antioxidants/therapeutic use , Acetic Acid/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/adverse effectsABSTRACT
OBJECTIVE: This study aimed to explore whether the liver-targeting enhancing effect of vinegar-baked Radix Bupleuri (VBRB) on rhein was achieved by affecting transporters, metabolism enzymes as well as hepatocyte nuclear factor 1α/4α (HNF1α/HNF4α) in liver injury. METHODS: The effect of VBRB on the efficacy of rhein was performed with the LPS-induced acute liver injury rat model. Aspartate aminotransferase (AST), alanine transaminase (ALT) and superoxide dismutase (SOD) levels were determined and histopathological examination was taken. Drug concentrations in tissues were determined by high performance liquid chromatography (HPLC). The protein expressions of drug transporters, metabolic enzymes and hepatic nuclear factors were determined by Western blotting and ELISA assays. KEY FINDING: VBRB improved the liver protecting effect of rhein, which was consistent with its promoting effect on targeted enrichment of rhein in the liver. VBRB or in combination with rhein inhibited P-glycoprotein (Pgp) and multi-resistance related protein 2 (MRP2), while increased organic anion transporting polypeptide 2 (OATP2), which might be the reason why VBRB promoted liver-targeting effect of rhein. CONCLUSION: VBRB enhances the liver-protecting effect of rhein by down-regulating Pgp, MRP2, and up-regulating OATP2.
Subject(s)
Acetic Acid , Drugs, Chinese Herbal , Rats , Animals , Acetic Acid/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Anthraquinones/pharmacology , Liver , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Membrane Transport Proteins/metabolismABSTRACT
BACKGROUND: There are controversial findings regarding the effect of vinegar on blood pressure based on the evidence accumulated so far. METHODS: A systematic search was conducted through PubMed, Scopus, and ISI Web of Science up to April 2022. We estimated the change in blood pressure for each 30 ml/d increments in vinegar consumption in each trial and then, calculated the mean difference (MD) and 95 %CI using a fixed-effects model. A dose-response meta-analysis of differences in means provided us with the estimation of the dose-dependent effect. The certainty of evidence was rated by the GRADE tool. RESULTS: Each 30 ml/d increment in vinegar consumption reduced SBP by - 3.25 mmHg (95 %CI: - 5.54, - 0.96; I2 = 67.5 %, GRADE = low). Levels of SBP decreased linearly and slightly (Pnonlinearity = 0.69, Pdose-response = 0.02) up to vinegar consumption of 30 ml/d (MD30 ml/d: - 3.36, 95 %CI: - 5.77, - 0.94). Each 30 ml/d increment in vinegar consumption reduced DBP by - 3.33 mmHg (95 %CI: - 4.16, - 2.49; I2 = 57.1 %, GRADE = low). Levels of DBP decreased linearly and slightly (Pnonlinearity = 0.47, Pdose-response = 0.004) up to vinegar consumption of 30 ml/d (MD30 ml/d: - 2.61, 95 %CI: - 4.15, - 1.06) CONCLUSIONS: According to the findings, vinegar significantly reduces systolic and diastolic blood pressure and may be considered an adjunct to hypertension treatment. Thus, clinicians could incorporate vinegar consumption as part of their dietary advice for patients.
Subject(s)
Acetic Acid , Hypertension , Humans , Blood Pressure , Acetic Acid/pharmacology , Randomized Controlled Trials as Topic , Hypertension/drug therapyABSTRACT
Polyphenols in vinegar are benefit to human health. The purpose of this research was to identify the polyphenols-rich vinegar extract (VE) and evaluate the anti-diabetic mechanisms in vivo. The results showed that 29 polyphenols were identified by UPLC-Q/Trap-MS/MS analysis. 4-Hydroxybenzoic acid, ferulic acid, and ethyl ferulate were the main polyphenols. In addition, VE relieved the symptoms of type 2 diabetes mellitus (T2DM) by down-regulating blood glucose and lipemia. VE reduced inflammation by inhibiting TLR4/NF-κB signaling pathway. Furthermore, VE treatment restored gut microbiota dysbiosis (upregulating Bacteroidetes, Lactobacillus, Bifidobacterium, and Bacteroides and downregulating Firmicutes, Proteobacteria, and Enterorhabdus abundances), and increased short chain fatty acids contents in diabetic mice, which participated in anti-diabetic effect of VE by correlation analysis. These findings suggest that VE may be a candidate for T2DM intervention by regulating gut microbiota and inflammation.
Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Acetic Acid/pharmacology , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Inflammation/drug therapy , Liver/metabolism , Mice , Plant Extracts/pharmacology , Polyphenols/pharmacology , Tandem Mass SpectrometryABSTRACT
Mitochondrial function in skeletal muscle, which plays an essential role in oxidative capacity and physical activity, declines with aging. Acetic acid activates AMP-activated protein kinase (AMPK), which plays a key role in the regulation of whole-body energy by phosphorylating key metabolic enzymes in both biosynthetic and oxidative pathways and stimulates gene expression associated with slow-twitch fibers and mitochondria in skeletal muscle cells. In this study, we investigate whether long-term supplementation with acetic acid improves age-related changes in the skeletal muscle of aging rats in association with the activation of AMPK. Male Sprague Dawley (SD) rats were administered acetic acid orally from 37 to 56 weeks of age. Long-term supplementation with acetic acid decreased the expression of atrophy-related genes, such as atrogin-1, muscle RING-finger protein-1 (MuRF1), and transforming growth factor beta (TGF-ß), activated AMPK, and affected the proliferation of mitochondria and type I fiber-related molecules in muscles. The findings suggest that acetic acid exhibits an anti-aging function in the skeletal muscles of aging rats.
Subject(s)
Acetic Acid , Muscle, Skeletal , AMP-Activated Protein Kinases/metabolism , Acetic Acid/metabolism , Acetic Acid/pharmacology , Acetic Acid/therapeutic use , Aging/metabolism , Animals , Dietary Supplements , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-DawleyABSTRACT
Ulcerative colitis (UC) is a chronic autoimmune inflammatory disease associated with extensive mucosal damage. Prodigiosins (PGs) are natural bacterial pigments with well-known antioxidant and immunosuppressive properties. In the current study, we examined the possible protective effect of PGs loaded with selenium nanoparticles (PGs-SeNPs) against acetic acid (AcOH)-induced UC in rats. Thirty-five rats were separated into five equal groups with seven animals/group: control, UC, PGs (300 mg/kg), sodium selenite (Na2SeO3, 2 mg/kg), PGs-SeNPs (0.5 mg/kg), and 5-aminosalicylates (5-ASA, 200 mg/kg). Interestingly, PGs-SeNPs administration lessened colon inflammation and mucosal damage as indicated by inhibiting inflammatory markers upon AcOH injection. Furthermore, PGs-SeNPs improved the colonic antioxidant capacity and prevented oxidative insults as evidenced by the upregulation of Nrf2- and its downstream antioxidants along with the decreased pro-oxidants [reactive oxygen species (ROS), carbonyl protein, malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), and nitric oxide (NO] in the colon tissue. Furthermore, PGs-SeNPs protected intestinal cell loss through blockade apoptotic cascade by decreasing pro-apoptotic proteins [Bcl-2-associated X protein (Bax) and caspase-3] and increasing anti-apoptotic protein, B cell lymphoma 2 (Bcl2). Collectively, PGs-SeNPs could be used as an alternative anti-colitic option due to their strong anti-inflammatory, antioxidant, and anti-apoptotic activities.
Subject(s)
Nanoparticles , Selenium , Acetic Acid/pharmacology , Animals , Antioxidants/pharmacology , Oxidative Stress , Prodigiosin , Rats , Reactive Oxygen Species/pharmacology , Selenium/pharmacologyABSTRACT
The dormancy continuum hypothesis states that in response to stress, cells enter different stages of dormancy ranging from unstressed living cells to cell death, in order to ensure their long-term survival under adverse conditions. Exposure of Listeria monocytogenes cells to sublethal stressors related to food processing may induce sublethal injury and the viable-but-nonculturable (VBNC) state. In this study, exposure to acetic acid (AA), hydrochloric acid (HCl), and two disinfectants, peracetic acid (PAA) and sodium hypochlorite (SH), at 20°C and 4°C was used to evaluate the potential induction of L. monocytogenes strain Scott A into different stages of dormancy. To differentiate the noninjured subpopulation from the total population, tryptic soy agar with 0.6% yeast extract (TSAYE), supplemented or not with 5% NaCl, was used. Sublethally injured and VBNC cells were detected by comparing plate counts obtained with fluorescence microscopy and by using combinations of carboxyfluorescein and propidium iodide (viable/dead cells). Induction of sublethal injury was more intense after PAA treatment. Two subpopulations were detected, with phenotypes of untreated cells and small colony variants (SCVs). SCVs appeared as smaller colonies of various sizes and were first observed after 5 min of exposure to 5 ppm PAA at 20°C. Increasing the stress intensity from 5 to 40 ppm PAA led to earlier detection of SCVs. L. monocytogenes remained culturable after exposure to 20 and 30 ppm PAA for 3 h. At 40 ppm, after 3 h of exposure, the whole population was considered nonculturable, while cells remained metabolically active. These results corroborate the induction of the VBNC state. IMPORTANCE Sublethally injured and VBNC cells may evade detection, resulting in underestimation of a food product's microbial load. Under favorable conditions, cells may regain their growth capacity and acquire new resistant characteristics, posing a major threat for public health. Induction of the VBNC state is crucial for foodborne pathogens, such as L. monocytogenes, the detection of which relies almost exclusively on the use of culture recovery techniques. In the present study, we confirmed that sublethal injury is an initial stage of dormancy in L. monocytogenes that is followed by the VBNC state. Our results showed that PAA induced SCVs (a phenomenon potentially triggered by external factors) and the VBNC state in L. monocytogenes, indicating that tests of lethality based only on culturability may provide false-positive results regarding the effectiveness of an inactivation treatment.
Subject(s)
Acetic Acid/pharmacology , Disinfectants/pharmacology , Hydrochloric Acid/pharmacology , Listeria monocytogenes/growth & development , Peracetic Acid/pharmacology , Sodium Hypochlorite/pharmacology , Food Contamination/analysis , Food Handling , Food Microbiology , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/isolation & purification , Listeriosis/prevention & controlABSTRACT
INTRODUCTION: Acetic acid (AA) has been commonly used in medicine as an antiseptic agent for the past 6000 years. This study evaluated the antibacterial effect of AA during an outbreak in an intensive care unit (ICU) facility in Baja California Sur, México. METHODOLOGY: Thirty-five environmental samples were collected, subsequently, disinfection with AA (4%) was performed, and two days later the same areas were sampled inside the ICU facility. Carbapenem-resistant A. baumannii (CRAB) was detected with loop-mediated isothermal amplification assay (Garciglia-Mercado et al. companion paper), targeting blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like, blaIMP and blaVIM genes. CRAB isolates before and after disinfection were compared by PFGE. RESULTS: Eighteen (54.5%) and five (14.3%) of thirty-five environmental samples were identified as Acinetobacter baumannii before and after disinfection, respectively, showing a significant decrease of 85.7% (p < 0.05) both by Loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). Furthermore, the presence of blaOXA-23-like and blaOXA-58-like genes significantly decreased (p < 0.05) both by LAMP and PCR methods. PFGE genotype showed high similarity among CRAB isolates before and after disinfection, suggesting wide clonal dissemination in the ICU facility. CONCLUSIONS: This study demonstrated the novel application of AA with the LAMP assays developed for detecting CRAB. AA promises to be a cheap and efficacious disinfectant alternative to both developed and especially developing countries, preventing the spread of this organism in the environment and to other susceptible patients in health care settings.
Subject(s)
Acetic Acid/therapeutic use , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects , Acetic Acid/pharmacology , Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/pharmacology , Humans , Intensive Care Units , Mexico , Microbial Sensitivity Tests , Molecular Diagnostic Techniques , Nucleic Acid Amplification TechniquesABSTRACT
Vinegar is good for health. Tetramethylpyrazine (TMP) is the main component of its flavor, quality, and function. We hypothesized that vinegar/TMP pretreatment could induce myocardial protection of "nutritional preconditioning (NPC)" by low-dose, long-term supplementation and alleviate the myocardial injury caused by anoxia/reoxygenation (A/R). To test this hypothesis, TMP content in vinegar was detected by HPLC; A/R injury model was prepared by an isolated mouse heart and rat cardiomyocyte to evaluate the myocardial protection and mechanism of vinegar/TMP pretreatment by many enzymatic or functional, or cellular and molecular biological indexes. Our results showed that vinegar contained TMP, and its content was in direct proportion to storage time. Vinegar/TMP pretreatment could improve hemodynamic parameters, decrease lactate dehydrogenase (LDH) and creatine phosphokinase activities, and reduce infarct size and apoptosis in the isolated hearts of mice with A/R injury. Similarly, vinegar/TMP pretreatment could increase cell viability, decrease LDH activity, and decrease apoptosis against A/R injury of cardiomyocytes. Vinegar/TMP pretreatment could also maintain the mitochondrial function of A/R-injured cardiomyocytes, including improving oxygen consumption rate and extracellular acidification rate, reducing reactive oxygen species generation, mitochondrial membrane potential loss, mitochondrial permeability transition pore openness, and cytochrome c releasing. However, the protective effects of vinegar/TMP pretreatment were accompanied by the downregulation of VDAC1 expression in the myocardium and reversed by pAD/VDAC1, an adenovirus that upregulates VDAC1 expression. In conclusion, this study is the first to demonstrate that vinegar/TMP pretreatment could induce myocardial protection of NPC due to downregulating VDAC1 expression, inhibiting oxidative stress, and preventing mitochondrial dysfunction; that is, VDAC1 is their target, and the mitochondria are their target organelles. TMP is one of the most important myocardial protective substances in vinegar.
Subject(s)
Acetic Acid/therapeutic use , Cardiovascular Diseases/drug therapy , Myocardium/metabolism , Nutrition Assessment , Pyrazines/therapeutic use , Voltage-Dependent Anion Channel 1/metabolism , Acetic Acid/pharmacology , Animals , Humans , Male , Mice , Pyrazines/pharmacology , RatsABSTRACT
Inflammatory bowel disease (IBD) afflicted individual and most medications have side-effects. Crataegus pinnatifida (Hawthorn), which is a safe medicine and food homolog plant, has been reported to prevent colitis in murine. Yet the bioactivity component and the underlying molecular mechanism remain unclear. Here, we established a direct link between colitis induced by dextran sulphate sodium (DSS) in mice and polysaccharide HAW1-2 isolated from hawthorn. Our results showed HAW1-2 restored the pathological lesions in colon and inhibited the expression of inflammatory cytokines including IL-1ß, IL-6 and TNF-α. Meanwhile, IKKα/ß, IκBα, NF-κB and the phosphorylation levels were inhibited significantly. These findings suggested HAW1-2 could alleviate the inflammation of colon. Further, we found the composition of gut microbiota was modified and Bacteroides including Alistipes and Odoribacter were significantly enriched. Besides, we showed Alistipes and Odoribacter were positively co-related with acetic acid and propionic acid while were negatively co-related with inflammatory cytokines. Finally, we demonstrated the anti-inflammation activity of HAW1-2 might be induced by acetic acid. Together, the present data revealed HAW1-2 could directly modify the gut microbiota, especially for Bacteroides, and generate SCFAs to inhibit colitis. It also implies microbiota-directed intervention in IBD patients should be particularly given more attention.
Subject(s)
Colitis/drug therapy , Colitis/microbiology , Crataegus/chemistry , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Polysaccharides/therapeutic use , Acetic Acid/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Bacteroides/drug effects , Bacteroides/growth & development , Cell Line , Colitis/chemically induced , Colitis/pathology , Colon/drug effects , Colon/microbiology , Colon/pathology , Dextran Sulfate , Gastrointestinal Microbiome/drug effects , Inflammation/pathology , Male , Metabolome , Mice, Inbred C57BL , Models, Biological , NF-kappa B/metabolism , Polysaccharides/pharmacology , Rats , Signal Transduction/drug effectsABSTRACT
Taxifolin (3,5,7,3,4-pentahydroxy flavanone or dihydroquercetin, Tax) was identified as a gastroprotective compound and a gastroadhesive formulation was recently developed to prolong its residence time and release in the stomach. So, the gastric healing effectiveness of Tax and gastro-mucoadhesive microparticles containing Tax (MPTax) against the acetic acid induced-gastric ulcer in rats was investigated in this study. Moreover, the interactions between Tax and H+/K+-ATPase were investigated in silico, and its anti- H. pylori activity was determined in vitro. The oral treatment with MPTax (81.37 mg/kg, containing 12.29% of Tax) twice a day for seven days reduced the ulcer area by 63%, compared to vehicle-treated group (Veh: 91.9 ± 10.3 mm2). Tax (10 mg/kg, p.o) reduced the ulcer by 40% but with a p = 0.07 versus Veh group. Histological analysis confirmed these effects. Tax and MPTax increased the gastric mucin amount, reduced the myeloperoxidase activity, and increased the glutathione reduced content at ulcer site. However, only MPTax decreased the lipoperoxide accumulation at ulcer site. Besides, Tax and MPTax normalize the catalase and glutathione S-transferase activity. Tax showed reversible interaction with H+/K+-ATPase in silico and its anti-H. pylori effects was confirmed (MIC = 625 µg/mL). These results suggest that the antiulcer property of Tax involves the strengthening of the gastric protective factors in parallel to its inhibitory interaction with H+/K+-ATPase and H. pylori. Considering that ulcer healing action displayed by Tax was favored by gastroadhesive microparticles, this approach seems to be promising for its oral delivery to treat acid-peptic diseases.
Subject(s)
Adhesives/pharmacology , Helicobacter pylori/drug effects , Proton Pumps/physiology , Quercetin/analogs & derivatives , Stomach/drug effects , Wound Healing/drug effects , Acetic Acid/pharmacology , Animals , Anti-Ulcer Agents/pharmacology , Antioxidants/metabolism , Catalase/metabolism , Computer Simulation , Female , Gastric Mucins/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , H(+)-K(+)-Exchanging ATPase/metabolism , Helicobacter Infections/drug therapy , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Phytotherapy/methods , Plant Extracts/pharmacology , Quercetin/physiology , Rats , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/microbiologyABSTRACT
Previous studies have suggested that vinegar intake can help to reduce body fat and hyperglycemia. Therefore, this study aimed to evaluate the anti-obesity efficacy of vinegar fermented using Cudrania tricuspidata fruits (CTFV) and its main phenolic constituents and to analyze its molecular mechanism and changes in obesity-related metabolizing enzymatic activities. We found that HFD significantly caused hepatic steatosis; increases in body fats, feed efficiency, liver mass, lipids, insulin, oxidative parameters, cardiovascular-associated risk indices, lipase and α-amylase activities, whereas CTFV efficaciously attenuated HFD-induced oxidant stress, fat accumulation, obesity-related enzymatic activity, and the activation or reduction of obesity-related molecular reactions via improving metabolic parameters including phosphorylated insulin receptor substrate 1, protein tyrosine phosphatase 1B, phosphorylated phosphoinositide 3-kinase/protein kinase B, phosphorylated mitogen-activated protein kinases, sterol regulatory element-binding protein 1c, CCAAT/enhancer-binding protein, and fatty acid synthase; and decreases in adiponectin receptor 1, leptin receptor, adenosine monophosphate-activated protein kinase, acetyl-CoA carboxylase, and peroxisome proliferator-activated receptor, subsequently ameliorating HFD-induced obesity. Therefore, CTFV might provide a functional food resource or nutraceutical product for reducing body fat accumulation.
Subject(s)
Acetic Acid/administration & dosage , Acetic Acid/therapeutic use , Diet, High-Fat , Fruit/chemistry , Lipid Metabolism , Moraceae/chemistry , Obesity/drug therapy , Acetic Acid/pharmacology , Animals , Biomarkers/blood , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Fenofibrate/pharmacology , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Mice, Obese , Obesity/blood , Organ Size/drug effects , Oxidative Stress/drug effects , Phosphorylation/drug effects , Polyphenols/pharmacology , Pomegranate/chemistry , Signal Transduction/drug effects , Weight Gain/drug effectsABSTRACT
Obesity is a worldwide epidemic characterized by excessive fat accumulation, associated with multiple comorbidities and complications. Emerging evidence points to gut microbiome as a driving force in the pathogenesis of obesity. Vinegar intake, a traditional remedy source of exogenous acetate, has been shown to improve glycemic control and to have anti-obesity effects. New functional foods may be developed by supplementing traditional food with probiotics. B. coagulans is a suitable choice because of its resistance to high temperatures. To analyze the possible synergic effect of Vinegar and B. coagulans against the metabolic alterations induced by a high fat diet (HFD), we fed twelve-week-old C57BL/6 mice with HFD for 5 weeks after 2 weeks of acclimation on a normal diet. Then, food intake, body weight, blood biochemical parameters, histology and liver inflammatory markers were analyzed. Although vinegar drink, either alone or supplemented with B. coagulans, reduced food intake, attenuated body weight gain and enhanced glucose tolerance, only the supplemented drink improved the lipid serum profile and prevented hepatic HFD-induced overexpression of CD36, IL-1ß, IL-6, LXR and SREBP, thus reducing lipid deposition in the liver. The beneficial properties of the B. coagulans-supplemented vinegar appear to be mediated by a reduction in insulin and leptin circulating levels.
Subject(s)
Acetic Acid/administration & dosage , Acetic Acid/pharmacology , Bacillus coagulans , Diet, High-Fat/adverse effects , Dietary Supplements , Fatty Liver/diet therapy , Fatty Liver/etiology , Functional Food , Insulin Resistance , Liver/metabolism , Malus , Obesity/diet therapy , Obesity/etiology , Probiotics/administration & dosage , Probiotics/pharmacology , Weight Gain/drug effects , Animals , Anti-Obesity Agents , Eating/drug effects , Fatty Liver/prevention & control , Gastrointestinal Microbiome , Lipid Metabolism/drug effects , Male , Mice, Inbred C57BL , Obesity/metabolism , Obesity/microbiologyABSTRACT
Nowadays, new types of vinegar have been developed using various raw materials and biotechnological processes. The fruit of Prunus mume has been extensively distributed in East Asia and used as a folk medication for fatigue. In this study, the Prunus mume vinegar (PV) was produced by a two-step fermentation and was evaluated for its anti-fatigue activity by C2C12 myoblasts and high-intensity exercised rats. The administration of PV significantly improved running endurance and glycogen accumulation in the liver and muscle of PV supplemented rats compared to sedentary and exercised control groups. In addition, PV supplementation elicited lower fatigue-related serum biomarkers, for instance, ammonia, inorganic phosphate, and lactate. PV administered rats exhibited higher lactate dehydrogenase activity and glutathione peroxidase activity, and lower creatine kinase activity and malondialdehyde levels. Furthermore, phenolic compounds in PV were identified using HPLC analysis. The phenolic acids analyzed in PV were protocatechuic acid, syringic acid, chlorogenic acid, and its derivates. These results indicate that the administration of PV with antioxidative property contributes to the improvement of fatigue recovery in exhausted rats. The findings of this study suggest that the PV containing various bioactive constituents can be used as a functional material against fatigue caused by high-intensity exercise.
Subject(s)
Acetic Acid/pharmacology , Physical Conditioning, Animal , Prunus/chemistry , Acetic Acid/chemistry , Amino Acids/chemistry , Animals , Biomarkers , Cell Proliferation/drug effects , Chemical Phenomena , Chromatography, High Pressure Liquid , Dietary Supplements , Fatigue/drug therapy , Fermentation , Glycogen/metabolism , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Male , Malondialdehyde/metabolism , Mice , Myoblasts , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , RatsABSTRACT
Based on the idea of plant metabolomics, ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to compare the chemical composition between 6 batches of fruit vinegar brewed from Choerospondias axillaris fruit peel and 6 batches of apple vinegar purchased from 3 companies. Antioxidant and α-glucosidase inhibition activities were also tested in vitro. A total of 43 compounds were identified by reference substance, liquid chromatography-mass spectrometry(LC-MS/MS) fragmentation information or literature data. A total of 40 compounds were identified in the C. axillaris fruit peel vinegar. A total of 16 compounds were identified in apple vinegar. There were 13 common ingredients including organic acids and esters such as citric acid, 2-isopropyl malic acid, and triethyl citrate. The results of partial leastsquares-discriminant analysis(PLS-DA) indicated that they had 33 significantly different compounds such as proanthocyanidin oligomer, quercetin-3-O-rhamnoside and heptadecanoic acid. The proanthocyanidins and flavonoid glycosides in C. axillaris peel vinegar were more abundant than apple vinegar, so it had better health function than ordinary fruit vinegar. The results showed that C. axillaris fruit peel vinegar had stronger antioxidant and α-glucosidase inhibition activities in vitro. The vinegar brewed from waste C. axillaris fruit peel had more chemical ingredients than the apple vinegar. C. axillaris fruit peel vinegar had better biological activity and health function, so it had good development prospect. This study provided the scientific evidence for exploiting the C. axillaris fruit peel into high value-added products. It also provided ideas for the comprehensive development and utilization of similar Chinese medicine waste.
Subject(s)
Acetic Acid/pharmacology , Anacardiaceae/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Malus/chemistry , Antioxidants , Chromatography, High Pressure Liquid , Fruit/chemistry , Plant Extracts , Tandem Mass Spectrometry , alpha-GlucosidasesABSTRACT
Ginkgo seed coat is rarely used and is typically discarded, due to its offensive odor and its toxicity. Ginkgo vinegar is a fermented product of ginkgo seed coat, and fermentation removes the bad smell and most of the toxicity. Thus, ginkgo vinegar contains very low concentrations of toxic components. The present study examined the anti-obesity effect of ginkgo vinegar in mice fed a high-fat diet and its inhibition of adipogenesis in 3T3-L1 cells. Ginkgo vinegar suppressed high-fat diet-induced body weight gain and reduced the size of fat cells in mice. Ginkgo vinegar suppressed the expression of C/EBPδ and PPARγ, key proteins in adipogenesis, and inhibited lipid accumulation in 3T3-L1 cells that were induced to become adipocytes. These results suggested that ginkgo vinegar inhibited adipocyte differentiation. On the other hand, a corresponding concentration of acetic acid had significantly less effect on lipid accumulation and virtually no effect on adipogenic gene expression. These results suggested that, similar to Ginkgo biloba extract, ginkgo vinegar might prevent and improve adiposity. Therefore, ginkgo seed coat could be a useful material for medicinal ingredients.
Subject(s)
Acetic Acid/pharmacology , Adipocytes/drug effects , Adipogenesis/drug effects , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Ginkgo biloba , Obesity/prevention & control , Plant Extracts/pharmacology , Seeds , 3T3 Cells , Acetic Acid/isolation & purification , Adipocytes/metabolism , Adipogenesis/genetics , Animals , Anti-Obesity Agents/isolation & purification , CCAAT-Enhancer-Binding Protein-delta/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , Disease Models, Animal , Fermentation , Ginkgo biloba/chemistry , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics , Obesity/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Plant Extracts/isolation & purification , Seeds/chemistry , Weight Loss/drug effectsABSTRACT
Based on the idea of plant metabolomics, ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to compare the chemical composition between 6 batches of fruit vinegar brewed from Choerospondias axillaris fruit peel and 6 batches of apple vinegar purchased from 3 companies. Antioxidant and α-glucosidase inhibition activities were also tested in vitro. A total of 43 compounds were identified by reference substance, liquid chromatography-mass spectrometry(LC-MS/MS) fragmentation information or literature data. A total of 40 compounds were identified in the C. axillaris fruit peel vinegar. A total of 16 compounds were identified in apple vinegar. There were 13 common ingredients including organic acids and esters such as citric acid, 2-isopropyl malic acid, and triethyl citrate. The results of partial leastsquares-discriminant analysis(PLS-DA) indicated that they had 33 significantly different compounds such as proanthocyanidin oligomer, quercetin-3-O-rhamnoside and heptadecanoic acid. The proanthocyanidins and flavonoid glycosides in C. axillaris peel vinegar were more abundant than apple vinegar, so it had better health function than ordinary fruit vinegar. The results showed that C. axillaris fruit peel vinegar had stronger antioxidant and α-glucosidase inhibition activities in vitro. The vinegar brewed from waste C. axillaris fruit peel had more chemical ingredients than the apple vinegar. C. axillaris fruit peel vinegar had better biological activity and health function, so it had good development prospect. This study provided the scientific evidence for exploiting the C. axillaris fruit peel into high value-added products. It also provided ideas for the comprehensive development and utilization of similar Chinese medicine waste.
Subject(s)
Acetic Acid/pharmacology , Anacardiaceae/chemistry , Antioxidants , Chromatography, High Pressure Liquid , Fruit/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Malus/chemistry , Plant Extracts , Tandem Mass Spectrometry , alpha-GlucosidasesABSTRACT
Docetaxel-loaded acetic acid conjugated Cordyceps sinensis polysaccharide (DTX-AA-CSP) nanoparticles were prepared through dialysis and their release rates in vitro, particle sizes, zeta potentials, drug loading capacities, and encapsulation efficiencies were characterized for the synthesis of AA-modified CSPs from traditional Chinese medicine Cordyceps sinensis (Berk.) Sacc. Then, the AA-modified CSPs were characterized by 1H-NMR and FT-IR. Furthermore, the biocompatibility of the delivery carrier (AA-CSP nanoparticles) was assessed on human umbilical vein endothelial cells. In vitro antitumor activity studies on DTX-AA-CSP nanoparticles were conducted on the human liver (HepG2) and colon cancer cells (SW480). The DTX-AA-CSP nanoparticles were spherical and had an average size of 98.91±0.29 nm and zeta potential within the −19.75±1.13 mV. The encapsulation efficiency and loading capacity were 80.95%±0.43% and 8.09%±0.04%, respectively. In vitro, DTX from the DTX-AA-CSP nanoparticles exhibited a sustained release, and the anticancer activities of DTX-AA-CSP nanoparticles against SW480 and HepG2 were significantly higher than those of marketed docetaxel injection (Taxotere®) in nearly all the tested concentrations. The AA-CSP nanoparticles showed good biocompatibility. This study provided a promising biocompatible delivery system for carrying antitumor drugs for cancer therapy