Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Pharmacology ; 107(1-2): 1-13, 2022.
Article in English | MEDLINE | ID: mdl-34915505

ABSTRACT

BACKGROUND: The pathobiology of diabetes and associated complications has been widely researched in various countries, but effective prevention and treatment methods are still insufficient. Diabetes is a metabolic disorder of carbohydrates, fats, and proteins caused by an absence of insulin or insulin resistance, which mediates an increase of oxidative stress, release of inflammatory factors, and macro- or micro-circulation dysfunctions, ultimately developing into diverse complications. SUMMARY: In the last decade through pathogenesis research, epigenetics has been found to affect metabolic diseases. Particularly, DNA methylation, histone acetylation, and miRNAs promote or inhibit diabetes and complications by regulating the expression of related factors. Curcumin has a wide range of beneficial pharmacological activities, including anti-inflammatory, anti-oxidation, anticancer, anti-diabetes, anti-rheumatism, and increased immunity. Key Messages: In this review, we discuss the effects of curcumin and analogs on diabetes and associated complications through epigenetics, and we summarize the preclinical and clinical researches for curcumin and its analogs in terms of management of diabetes and associated complications, which may provide an insight into the development of targeted therapy of endocrine diseases.


Subject(s)
Curcumin/pharmacology , Curcumin/therapeutic use , Diabetes Complications/drug therapy , Diabetes Mellitus/drug therapy , Epigenesis, Genetic/drug effects , Acetylation/drug effects , Animals , Curcumin/analogs & derivatives , DNA Methylation/drug effects , Diabetes Complications/genetics , Diabetes Mellitus/genetics , Humans , MicroRNAs/drug effects
2.
Cancer Lett ; 519: 46-62, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34166767

ABSTRACT

Sorafenib and lenvatinib are approved first-line targeted therapies for advanced liver cancer, but most patients develop acquired resistance. Herein, we found that sorafenib induced extensive acetylation changes towards a more energetic metabolic phenotype. Metabolic adaptation was mediated via acetylation of the Lys-491 (K491) residue of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) (PCK2-K491) and Lys-473 (K473) residue of PCK1 (PCK1-K473) by the lysine acetyltransferase 8 (KAT8), resulting in isoenzyme transition from cytoplasmic PCK1 to mitochondrial PCK2. KAT8-catalyzed PCK2 acetylation at K491 impeded lysosomal degradation to increase the level of PCK2 in resistant cells. PCK2 inhibition in sorafenib-resistant cells significantly reversed drug resistance in vitro and in vivo. High levels of PCK2 predicted a shorter progression-free survival time in patients who received sorafenib treatment. Therefore, acetylation-induced isoenzyme transition from PCK1 to PCK2 contributes to resistance to systemic therapeutic drugs in liver cancer. PCK2 may be an emerging target for delaying tumor recurrence.


Subject(s)
Isoenzymes/metabolism , Liver Neoplasms/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Acetylation/drug effects , Adaptation, Physiological/drug effects , Cell Line , Cell Line, Tumor , Cytoplasm/metabolism , HEK293 Cells , Hep G2 Cells , Histone Acetyltransferases/metabolism , Humans , Liver/drug effects , Liver/metabolism , Liver Neoplasms/drug therapy , Neoplasm Recurrence, Local/metabolism , Phenylurea Compounds/pharmacology , Progression-Free Survival , Quinolines/pharmacology , Sorafenib/pharmacology
3.
J Hematol Oncol ; 14(1): 101, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34187548

ABSTRACT

KPT-9274 is a phase 1 first-in-class dual PAK4/NAMPT inhibitor for solid tumor and non-Hodgkin's lymphoma. It demonstrates pre-clinical efficacy toward a broad spectrum of acute myeloid leukemia (AML) subtypes by inhibiting NAMPT-dependent NAD+ production. NAMPT is the rate-limiting enzyme in the salvage metabolic pathway leading to NAD+ generation. Tumor cells which are deficient in de novo pathway enzyme NAPRT1 are addicted to NAMPT. In clinical trials, treatment with NAMPT inhibitors resulted in dose-limiting toxicities. In order to dissect the mechanism of toxicity, mice were treated with KPT-9274 and resulting toxicities were characterized histopathologically and biochemically. KPT-9274 treatment caused gender-dependent stomach and kidney injuries and anemia. Female mice treated with KPT-9274 had EPO deficiency and associated impaired erythropoiesis. KPT-9274 treatment suppressed SIRT3 expression and concomitantly upregulated acetyl-manganese superoxide dismutase (MnSOD) in IMCD3 cells, providing a mechanistic basis for observed kidney toxicity. Importantly, niacin supplementation mitigated KPT-9274-caused kidney injury and EPO deficiency without affecting its efficacy. Altogether, our study delineated the mechanism of KPT-9274-mediated toxicity and sheds light onto developing strategies to improve the tolerability of this important anti-AML inhibitor.


Subject(s)
Acrylamides/adverse effects , Aminopyridines/adverse effects , Anemia/chemically induced , Antineoplastic Agents/adverse effects , Kidney Diseases/chemically induced , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Acetylation/drug effects , Anemia/etiology , Anemia/metabolism , Anemia/pathology , Animals , Erythropoiesis/drug effects , Female , Humans , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice , Nicotinamide Phosphoribosyltransferase/metabolism , Sex Factors , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism
4.
J Med Chem ; 64(9): 5838-5849, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33876629

ABSTRACT

Sirtuins are signaling hubs orchestrating the cellular response to various stressors with roles in all major civilization diseases. Sirtuins remove acyl groups from lysine residues of proteins, thereby controlling their activity, turnover, and localization. The seven human sirtuins, SirT1-7, are closely related in structure, hindering the development of specific inhibitors. Screening 170,000 compounds, we identify and optimize SirT1-specific benzoxazine inhibitors, Sosbo, which rival the efficiency and surpass the selectivity of selisistat (EX527). The compounds inhibit the deacetylation of p53 in cultured cells, demonstrating their ability to permeate biological membranes. Kinetic analysis of inhibition and docking studies reveal that the inhibitors bind to a complex of SirT1 and nicotinamide adenine dinucleotide, similar to selisistat. These new SirT1 inhibitors are valuable alternatives to selisistat in biochemical and cell biological studies. Their greater selectivity may allow the development of better targeted drugs to combat SirT1 activity in diseases such as cancer, Huntington's chorea, or anorexia.


Subject(s)
Benzoxazines/chemistry , Sirtuin 1/antagonists & inhibitors , Acetylation/drug effects , Amides/chemistry , Benzoxazines/metabolism , Benzoxazines/pharmacology , Binding Sites , Carbazoles/chemistry , Carbazoles/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , NAD/chemistry , NAD/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sirtuin 1/genetics , Sirtuin 1/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
5.
Phytomedicine ; 88: 153454, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33663922

ABSTRACT

BACKGROUND: The damage of pancreatic ß cells is a major pathogenesis of the development and progression of type 2 diabetes and there is still no effective therapy to protect pancreatic ß cells clinically. In our previous study, we found that Quzhou Fructus Aurantii (QFA), which is rich in flavanones, had the protective effect of pancreatic ß cells in diabetic mice. However, the underlying mechanism is still unclear. PURPOSE: In the current study, we administered naringenin and hesperetin, two major active components of QFA, to protect pancreatic ß cells and to investigate the underlying molecular mechanism focusing on the epigenetic modifications. METHODS: We used diabetic db/db mouse and INS-1 pancreatic ß cell line as in vivo and in vitro models to investigate the protective effect of naringenin and hesperetin on pancreatic ß cells under high glucose environment and the related mechanism. The phenotypic changes were evaluatedby immunostaining and the measurement of biochemical indexes. The molecular mechanism was explored by biological techniques such as western blotting, qPCR, ChIP-seq and ChIP-qPCR, flow cytometry and lentivirus infection. RESULTS: We found that naringenin and hesperetin had an inhibitory effect on histone acetylation. We showed that naringenin and hesperetin protected pancreatic ß cells in vivo and in vitro, and this effect was independent of their direct antioxidant capacity. The further study found that the inhibition of thioredoxin-interacting protein (Txnip) expression regulated by histone acetylation was critical for the protective role of naringenin and hesperetin. Mechanistically, the histone acetylation inhibition by naringenin and hesperetin was achieved through regulating AMPK-mediated p300 inactivation. CONCLUSION: These findings highlight flavanones and the phytomedicine rich in flavanones as important dietary supplements in protecting pancreatic ß cells in advanced diabetes. In addition, targeting histone acetylation by phytomedicine is a potential strategy to delay the development and progression of diabetes.


Subject(s)
Carrier Proteins/metabolism , Flavanones/pharmacology , Hesperidin/pharmacology , Histone Acetyltransferases/antagonists & inhibitors , Insulin-Secreting Cells/drug effects , Thioredoxins/metabolism , Acetylation/drug effects , Animals , Carrier Proteins/genetics , Citrus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Histone Acetyltransferases/metabolism , Histones/metabolism , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Thioredoxins/genetics
6.
Nutr Res ; 88: 28-33, 2021 04.
Article in English | MEDLINE | ID: mdl-33743322

ABSTRACT

ELOVL fatty acid elongase 6 (ELOVL6) is a long-chain fatty acid elongase, and the hepatic expression of the Elovl6 gene and accumulation of triglycerides (TG) are enhanced by long-term high-fructose intake. Fatty acid synthesis genes, including Elovl6, are regulated by lipogenic transcription factors, sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP). In addition, carbohydrate signals induce the expression of fatty acid synthase not only via these transcription factors but also via histone acetylation. Since a major lipotrope, myo-inositol (MI), can repress short-term high-fructose-induced fatty liver and the expression of fatty acid synthesis genes, we hypothesized that MI might influence SREBP-1c, ChREBP, and histone acetylation of Elovl6 in fatty liver induced by even short-term high-fructose intake. This study aimed to investigate whether dietary supplementation with MI affects Elovl6 expression, SREBP-1 and ChREBP binding, and acetylation of histones H3 and H4 at the Elovl6 promoter in short-term high-fructose diet-induced fatty liver in rats. Rats were fed a control diet, high-fructose diet, or high-fructose diet supplemented with 0.5% MI for 10 days. This study showed that MI supplementation reduced short-term high-fructose diet-induced hepatic expression of the Elovl6 gene, ChREBP binding, but not SREBP-1 binding, and acetylation of histones H3 and H4 at the Elovl6 promoter.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Fatty Acid Elongases/genetics , Fructose/administration & dosage , Histones/metabolism , Inositol/administration & dosage , Liver/metabolism , Acetylation/drug effects , Animals , DNA/metabolism , Diet , Dietary Supplements , Gene Expression/drug effects , Male , Promoter Regions, Genetic , Rats , Rats, Wistar , Sterol Regulatory Element Binding Protein 1/metabolism
7.
J Ethnopharmacol ; 270: 113765, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33418031

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aconite is a processed product of seminal root of perennial herbaceous plant Aconitum Carmichaclii Debx. of Ranunculaceae. It has the effects of warming and tonifying heart yang and restoring yang to save from collapse. Aconitine is the main effective constituent of aconite and used to prevent and treat heart disease. However, how aconitine exerts myocardial protection is still poorly understood. AIM OF THE STUDY: The present study aimed to investigate the effects of aconitine on mitochondrial dysfunction and explore its mechanism of action. MATERIALS AND METHODS: The model of myocardial injury was induced by Angiotensin II (Ang II) (1 × 10-6 mol L-1), and H9c2 cells were incubated with different concentrations of aconitine. The effect of aconitine on mitochondrial was determined by flow cytometry, transmission electron microscopy, luciferase, Seahorse technique and Western blot. The effects of aconitine on sirtuin-3 (Sirt3) activity and Cyclophilin D (CypD) acetylation were detected by immunofluorescence, RT-PCR and co-immunoprecipitation. RESULTS: We demonstrate that aconitine alleviates the energy metabolic dysfunction of H9c2 cells by activating Sirt3 to deacetylate CypD and inhibiting mitochondrial permeability transition pore (mPTP) opening. In cardiomyocytes, aconitine significantly reduced mitochondrial fragmentation, inhibited acetylation of CypD, suppressed the mPTP opening, mitigated mitochondrial OXPHOS disorders, and improved the synthesis ability of ATP. In contrast, Sirt3 deficiency abolished the effects of aconitine on mPTP and OXPHOS, indicating that aconitine improves mitochondrial function by activating Sirt3. CONCLUSIONS: These results showed that aconitine attenuated the energy metabolism disorder by promoting Sirt3 expression and reducing CypD-mediated mPTP excess openness, rescuing mitochondrial function. Improve mitochondrial function may be a therapeutic approach for treating heart disease, which will generate fresh insight into the cardioprotective of aconitine.


Subject(s)
Aconitine/pharmacology , Cardiotonic Agents/pharmacology , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Peptidyl-Prolyl Isomerase F/metabolism , Sirtuins/metabolism , Acetylation/drug effects , Animals , Cell Line , Mitochondria/drug effects , Mitochondria/pathology , Mitochondria/ultrastructure , Mitochondrial Permeability Transition Pore/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/ultrastructure , Oxidative Phosphorylation/drug effects , Rats , Sirtuins/genetics
8.
Acta Pharmacol Sin ; 42(6): 987-997, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33028985

ABSTRACT

Metabolic reprogramming is associated with NLRP3 inflammasome activation in activated macrophages, contributing to inflammatory responses. Tanshinone IIA (Tan-IIA) is a major constituent from Salvia miltiorrhiza Bunge, which exhibits anti-inflammatory activity. In this study, we investigated the effects of Tan-IIA on inflammation in macrophages in focus on its regulation of metabolism and redox state. In lipopolysaccharides (LPS)-stimulated mouse bone marrow-derived macrophages (BMDMs), Tan-IIA (10 µM) significantly decreased succinate-boosted IL-1ß and IL-6 production, accompanied by upregulation of IL-1RA and IL-10 release via inhibiting succinate dehydrogenase (SDH). Tan-IIA concentration dependently inhibited SDH activity with an estimated IC50 of 4.47 µM in LPS-activated BMDMs. Tan-IIA decreased succinate accumulation, suppressed mitochondrial reactive oxygen species production, thus preventing hypoxia-inducible factor-1α (HIF-1α) induction. Consequently, Tan-IIA reduced glycolysis and protected the activity of Sirtuin2 (Sirt2), an NAD+-dependent protein deacetylase, by raising the ratio of NAD+/NADH in activated macrophages. The acetylation of α-tubulin was required for the assembly of NLRP3 inflammasome; Tan-IIA increased the binding of Sirt2 to α-tubulin, and thus reduced the acetylation of α-tubulin, thus impairing this process. Sirt2 knockdown or application of Sirt2 inhibitor AGK-2 (10 µM) neutralized the effects of Tan-IIA, suggesting that Tan-IIA inactivated NLRP3 inflammasome in a manner dependent on Sirt2 regulation. The anti-inflammatory effects of Tan-IIA were observed in mice subjected to LPS challenge: pre-administration of Tan-IIA (20 mg/kg, ip) significantly attenuated LPS-induced acute inflammatory responses, characterized by elevated IL-1ß but reduced IL-10 levels in serum. The peritoneal macrophages isolated from the mice displayed similar metabolic regulation. In conclusion, Tan-IIA reduces HIF-1α induction via SDH inactivation, and preserves Sirt2 activity via downregulation of glycolysis, contributing to suppression of NLRP3 inflammasome activation. This study provides a new insight into the anti-inflammatory action of Tan-IIA from the respect of metabolic and redox regulation.


Subject(s)
Abietanes/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Inflammation/prevention & control , Macrophages/drug effects , Succinate Dehydrogenase/antagonists & inhibitors , Acetylation/drug effects , Animals , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides , Male , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 2/metabolism , Tubulin/metabolism
9.
Brain Res ; 1751: 147191, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33152341

ABSTRACT

The objective of this study was to examine the effect of epigenetic treatment using an histone deacetylases (HDAC) inhibitor in addition to aerobic exercise on the epigenetic markers and neurotrophic gene expressions in the motor cortex, to find a more enriched brain pre-conditioning for motor learning in neurorehabilitation. ICR mice were divided into four groups based on two factors: HDAC inhibition and exercise. Intraperitoneal administration of an HDAC inhibitor (1.2 g/kg sodium butyrate, NaB) and treadmill exercise (approximately at 10 m/min for 60 min) were conducted five days a week for four weeks. NaB administration inhibited total HDAC activity and enhanced acetylation level of histones specifically in histone H4, accompanying the increase of transcription levels of immediate-early genes (IEGs) (c-fos and Arc) and neurotrophins (BDNF and NT-4) crucial for neuroplasticity in the motor cortex. However, exercise enhanced HDAC activity and acetylation level of histone H4 and H3 without the modification of transcription levels. In addition, there were no synergic effects between HDAC inhibition and the exercise regime on the gene expressions. This study showed that HDAC inhibition could present more enriched condition for neuroplasticity to the motor cortex. However, exercise-induced neurotrophic gene expressions could depend on exercise regimen based on the intensity, the term etc. Therefore, this study has a novelty suggesting that pharmacological HDAC inhibition could be an alternative potent approach to present a neuronal platform with enriched neuroplasticity for motor learning and motor recovery, however, an appropriate exercise regimen is expected in this approach.


Subject(s)
Butyric Acid/pharmacology , Neuronal Plasticity/genetics , Physical Conditioning, Animal/physiology , Acetylation/drug effects , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Butyric Acid/metabolism , Cognition/physiology , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/physiology , Female , Gene Expression/genetics , Gene Expression/physiology , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Hippocampus/metabolism , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Histones/metabolism , Male , Mice , Mice, Inbred ICR , Motor Cortex/metabolism , Motor Cortex/physiology , Neuronal Plasticity/physiology , Neurons/metabolism
10.
Stem Cells Dev ; 29(18): 1201-1214, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32689895

ABSTRACT

Microbiota and their metabolites short-chain fatty acids (SCFAs) have important roles in regulating tissue regeneration and mesenchymal stem cell (MSC) differentiation. In this study, we explored the potential effects of SCFAs on murine incisor regeneration and dental MSCs. We observed that SCFA deficiency induced by depletion of microbiota through antibiotic treatment led to lower renewal rate and delayed dentinogenesis in mice incisors. Supplementation with SCFAs in drinking water during antibiotic treatment can rescue the renewal rate and dentinogenesis effectively. In vitro, stimulation with SCFAs could promote differentiation of dental MSCs to odontoblasts. We further found that SCFAs could contribute to dentinogenic differentiation of dental MSCs by increasing bone morphogenetic protein (BMP) signal activation. SCFAs could inhibit deacetylation and increase BMP7 transcription of dental MSCs, which promoted BMP signaling. Our results suggested that SCFAs were required for incisor regeneration as well as differentiation of dental MSCs. Microbiota and their metabolites should be concerned as important factors in the tissue renewal and regeneration.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Dentin/cytology , Fatty Acids, Volatile/pharmacology , Histones/metabolism , Incisor/cytology , Microbiota , Signal Transduction , Acetylation/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Cell Differentiation/drug effects , Fatty Acids, Volatile/blood , Female , Histone Deacetylases/metabolism , Mice, Inbred C57BL , Microbiota/drug effects , Odontoblasts/cytology , Odontoblasts/drug effects , Signal Transduction/drug effects
11.
Int J Biol Macromol ; 164: 826-835, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32707281

ABSTRACT

Glucomannans (GMs) from abundant natural resources have excellent processing properties and plentiful bioactivities. In current study, functional properties of GMs with different structural characteristics, including KGM from konjac, DOP from dendrobium, AGP40, ASP-4N, ASP-6N, & ASP-8N from aloe were determined. Results suggested that molecular weights (Mw) of GMs were positively correlated with their water absorption capacity, fat absorption capacity, and viscosity, while ratio of mannose/glucose showed negative effect. Higher degree of acetylation (DA) mainly corresponded to higher values of solubility and ζ-potential. Then, effects of the six GMs on general health status, serum biochemicals, and intestinal SCFAs production in mice were evaluated in vivo. Analysis of general health status and levels of serum biochemicals revealed that mice with consecutive supplementation of GMs for 14 days performed normally compared with those in control group. Interestingly, the productions of SCFAs (mainly acetate and butyrate) in the cecal and colonic contents were significantly promoted. Generally, higher concentrations of SCFAs were produced when mice were treated with GMs having higher Mw, ratio of glucose, and DA. The current investigation suggested that both functional and intestinal fermentation property of GMs were jointly determined by the monosaccharide composition, molecular weight, and degree of acetylation.


Subject(s)
Aloe/chemistry , Amorphophallus/chemistry , Fatty Acids, Volatile/biosynthesis , Mannans/chemistry , Acetylation/drug effects , Animals , Cecum/drug effects , Cecum/metabolism , Colon/drug effects , Colon/metabolism , Dendrobium/chemistry , Humans , Mannans/classification , Mannans/isolation & purification , Mannans/pharmacology , Mice , Molecular Weight , Water/chemistry
12.
Molecules ; 25(10)2020 May 16.
Article in English | MEDLINE | ID: mdl-32429384

ABSTRACT

Epigallocatechin gallate (EGCG), the main green tea polyphenol, exerts a wide variety of biological actions. Epigenetically, the catechin has been classified as a DNMTs inhibitor, however, its impact on histone modifications and chromatin structure is still poorly understood. The purpose of this study was to find the impact of EGCG on the histone posttranslational modifications machinery and chromatin remodeling in human endothelial cells of both microvascular (HMEC-1) and vein (HUVECs) origin. We analyzed the methylation and acetylation status of histones (Western blotting), as well as assessed the activity (fluorometric assay kit) and gene expression (qPCR) of the enzymes playing a prominent role in shaping the human epigenome. The performed analyses showed that EGCG increases histone acetylation (H3K9/14ac, H3ac), and methylation of both active (H3K4me3) and repressive (H3K9me3) chromatin marks. We also found that the catechin acts as an HDAC inhibitor in cellular and cell-free models. Additionally, we observed that EGCG affects chromatin architecture by reducing the expression of heterochromatin binding proteins: HP1α, HP1γ. Our results indicate that EGCG promotes chromatin relaxation in human endothelial cells and presents a broad epigenetic potential affecting expression and activity of epigenome modulators including HDAC5 and 7, p300, CREBP, LSD1 or KMT2A.


Subject(s)
Catechin/analogs & derivatives , Chromatin/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histones/genetics , Human Umbilical Vein Endothelial Cells/drug effects , Protein Processing, Post-Translational/drug effects , Acetylation/drug effects , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Catechin/isolation & purification , Catechin/pharmacology , Cell Line , Chromatin/chemistry , Chromatin/metabolism , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Epigenesis, Genetic , Histone Deacetylase Inhibitors/isolation & purification , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Methylation/drug effects , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Tea/chemistry , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
14.
Theriogenology ; 149: 139-148, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32272343

ABSTRACT

The oocytes from small antral follicle have low developmental potential to reach blastocyst due to incomplete cytoplasmic maturation during in vitro maturation (IVM). Thus, we developed an in vitro culture system for porcine oocytes derived from small antral follicles with l-ascorbic acid supplement during pre-maturation (pre-IVM) to support their development to blastocyst stage. Besides that, how l-ascorbic acid effect on the developmental competence of porcine oocytes with a special focus on histone modifications will be elucidated. The in vitro culture process consisted of two steps. The first step is 22 h of pre-IVM and the second step is 42 h of IVM. We utilized dibutyryl-cyclicAMP (dbcAMP) with L-ascorbic supplement during pre-IVM. Based on the result of this procedure, we proposed that the best culture condition in which hormone human chorionic gonadotropin (hCG) be added during the last 7 h of pre-IVM and continued culture to complete IVM. We observed that, in this culture system, the meiotic competence of porcine oocytes derived from small follicles was as high as those derived from large follicles after undergoing IVM. In addition, our study suggested that l-ascorbic acid supplementation at 100 µg/mL sharply enhanced the developmental potential of porcine oocytes. Interestingly, oocytes from small antral follicles treated with l-ascorbic acid could obtain the blastocyst quantity and quality as high as that of large antral follicles. The treated groups showed a significantly higher number of blastomeres compared to those in non-treated groups in both small and large follicle groups. Besides that, = The increasing levels of acetylation of histone H3 at lysine 9 (H3K9) and methylation of histone H3 at lysine 4 (H3K4) in blastocyst derived from small and large antral follicle under the present of l-ascrobic acid lead to a significant positive effect on the developmental competence and improvement in quality of porcine embryos.


Subject(s)
In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/growth & development , Ovarian Follicle/cytology , Swine , Acetylation/drug effects , Animals , Ascorbic Acid/administration & dosage , Blastocyst/physiology , Bucladesine/administration & dosage , Chorionic Gonadotropin/administration & dosage , Female , Histones/metabolism , In Vitro Oocyte Maturation Techniques/methods , Meiosis , Methylation/drug effects , Oocytes/drug effects
15.
J Mol Cell Cardiol ; 141: 70-81, 2020 04.
Article in English | MEDLINE | ID: mdl-32209328

ABSTRACT

RATIONALE: The cardiac sodium channel NaV1.5, encoded by SCN5A, produces the rapidly inactivating depolarizing current INa that is responsible for the initiation and propagation of the cardiac action potential. Acquired and inherited dysfunction of NaV1.5 results in either decreased peak INa or increased residual late INa (INa,L), leading to tachy/bradyarrhythmias and sudden cardiac death. Previous studies have shown that increased cellular NAD+ and NAD+/NADH ratio increase INa through suppression of mitochondrial reactive oxygen species and PKC-mediated NaV1.5 phosphorylation. In addition, NAD+-dependent deacetylation of NaV1.5 at K1479 by Sirtuin 1 increases NaV1.5 membrane trafficking and INa. The role of NAD+ precursors in modulating INa remains unknown. OBJECTIVE: To determine whether and by which mechanisms the NAD+ precursors nicotinamide riboside (NR) and nicotinamide (NAM) affect peak INa and INa,Lin vitro and cardiac electrophysiology in vivo. METHODS AND RESULTS: The effects of NAD+ precursors on the NAD+ metabolome and electrophysiology were studied using HEK293 cells expressing wild-type and mutant NaV1.5, rat neonatal cardiomyocytes (RNCMs), and mice. NR increased INa in HEK293 cells expressing NaV1.5 (500 µM: 51 ± 18%, p = .02, 5 mM: 59 ± 22%, p = .03) and RNCMs (500 µM: 60 ± 26%, p = .02, 5 mM: 74 ± 39%, p = .03) while reducing INa,L at the higher concentration (RNCMs, 5 mM: -45 ± 11%, p = .04). NR (5 mM) decreased NaV1.5 K1479 acetylation but increased INa in HEK293 cells expressing a mutant form of NaV1.5 with disruption of the acetylation site (NaV1.5-K1479A). Disruption of the PKC phosphorylation site abolished the effect of NR on INa. Furthermore, NAM (5 mM) had no effect on INa in RNCMs or in HEK293 cells expressing wild-type NaV1.5, but increased INa in HEK293 cells expressing NaV1.5-K1479A. Dietary supplementation with NR for 10-12 weeks decreased QTc in C57BL/6 J mice (0.35% NR: -4.9 ± 2.0%, p = .14; 1.0% NR: -9.5 ± 2.8%, p = .01). CONCLUSIONS: NAD+ precursors differentially regulate NaV1.5 via multiple mechanisms. NR increases INa, decreases INa,L, and warrants further investigation as a potential therapy for arrhythmic disorders caused by NaV1.5 deficiency and/or dysfunction.


Subject(s)
Ion Channel Gating , Myocardium/metabolism , NAD/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Acetylation/drug effects , Animals , Dietary Supplements , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Lysine/metabolism , Metabolome , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Niacinamide/analogs & derivatives , Niacinamide/chemistry , Niacinamide/pharmacology , Phosphorylation/drug effects , Pyridinium Compounds/chemistry , Pyridinium Compounds/pharmacology , Rats, Sprague-Dawley
16.
Biochem Pharmacol ; 177: 113932, 2020 07.
Article in English | MEDLINE | ID: mdl-32222456

ABSTRACT

Histone post-translational modifications (PTMs) have been shown to be highly associated with inflammation response, suggesting a therapeutic significance of pharmacologically editing histone PTMs. Currently reported anti-inflammation small-molecules mainly target histone PTMs writers or erasers for methylation, phosphorylation, and acetylation. Although histone chaperones also appear to be involved in inflammation signaling cascades, whether small-molecules could target histone chaperones to show anti-inflammation effects has still been rarely discovered. In this study, natural product artone was found to show obvious inhibitory effects on microglia-mediated neuroinflammation by directly targeting ASF1a, which is a histone-remodeling chaperone. Mechanism study revealed that artone modulated histone H3 PTMs profile by down-regulating acetylation and trimethylation modification levels at sites K4, K9, K18 and K27. Artone-dependent regulations on PTMs further caused an effective inhibition on transcription factor NF-κB assembling to promoters of pro-inflammatory cytokine genes including Tnf-α, Il-6 and Rgs3, indicating a distinctive anti-neuroinflammation mechanism. Collectively, we reported artone as the first small-molecule targeting histone-remodeling chaperone ASF1a for anti-neuroinflammation. Moreover, these findings broaden our knowledge of histone chaperone as a druggable target protein for neuroinflammation inhibition, and open a new avenue to novel therapy strategy for inflammation-associated neurological disorders.


Subject(s)
Artemisia/chemistry , Cell Cycle Proteins/metabolism , Histone Chaperones/metabolism , Histones/metabolism , Lipopolysaccharides/pharmacology , Microglia/cytology , Microglia/drug effects , Molecular Chaperones/metabolism , Plant Extracts/pharmacology , Protective Agents/pharmacology , Acetylation/drug effects , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Line , Cell Survival/drug effects , Inflammation/metabolism , Methylation/drug effects , Mice , Microglia/metabolism , Molecular Chaperones/antagonists & inhibitors , Protein Processing, Post-Translational/drug effects , Signal Transduction/drug effects
17.
Cell Death Dis ; 11(2): 83, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015327

ABSTRACT

Although dietary α-linolenic acid (ALA) or linolenic acid (LA) intake was reported to be epidemiologically associated with a lower prevalence of hypertension, recent clinical trials have yielded conflicting results. Comparable experimental evidence for the roles of these two different fatty acids is still lacking and the underlying mechanisms need to be further elucidated. Our data showed that ALA but not LA supplementation alleviated systolic blood pressure elevation and improved ACh-induced, endothelium-dependent vasodilation in both spontaneously hypertensive rats (SHRs) and AngII-induced hypertensive mice. In addition, SHRs displayed reduced vascular Sirtuin 3 (SIRT3) expression, subsequent superoxide dismutase 2 (SOD2) hyperacetylation and mitochondrial ROS overproduction, all of which were ameliorated by ALA but not LA supplementation. In primary cultured endothelial cells, ALA treatment directly inhibited SIRT3 reduction, SOD2 hyperacetylation, mitochondrial ROS overproduction and alleviated autophagic flux impairment induced by AngII plus TNFα treatment. However, these beneficial effects of ALA were completely blocked by silencing SIRT3. Restoration of autophagic flux by rapamycin also inhibited mitochondrial ROS overproduction in endothelial cells exposed to AngII plus TNFα. More interestingly, SIRT3 KO mice developed severe hypertension in response to a low dose of AngII infusion, while ALA supplementation lost its anti-hypertensive and endothelium-protective effects on these mice. Our findings suggest that ALA but not LA supplementation improves endothelial dysfunction and diminishes experimental hypertension by rescuing SIRT3 impairment to restore autophagic flux and mitochondrial redox balance in endothelial cells.


Subject(s)
Antihypertensive Agents/metabolism , Autophagy/physiology , Hypertension/metabolism , Sirtuin 3/metabolism , alpha-Linolenic Acid/metabolism , Acetylation/drug effects , Angiotensin II/toxicity , Animals , Antihypertensive Agents/pharmacology , Autophagy/drug effects , Cells, Cultured , Dietary Supplements , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction/drug effects , Rats , Reactive Oxygen Species/metabolism , Sirtuin 3/genetics , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/toxicity , alpha-Linolenic Acid/pharmacology
18.
Prostate ; 80(4): 305-318, 2020 03.
Article in English | MEDLINE | ID: mdl-31905252

ABSTRACT

BACKGROUND: Cardiac glycosides, which inhibit Na+ /K+ -ATPase, display inotropic effects for the treatment of congestive heart failure and cardiac arrhythmia. Recent studies have suggested signaling downstream of Na+ /K+ -ATPase action in the regulation of cell proliferation and apoptosis and have revealed the anticancer activity of cardiac glycosides. The study aims to characterize the anticancer potential of ascleposide, a natural cardenolide, and to uncover its primary target and underlying mechanism against human castration-resistant prostate cancer (CRPC). METHODS: Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay, carboxyfluorescein succinimidyl ester staining assay and clonogenic examination. Flow cytometric analysis was used to detect the distribution of cell cycle phase, mitochondrial membrane potential, intracellular Na+ and Ca2+ levels, and reactive oxygen species production. Protein expression was examined using Western blot analysis. Endocytosis of Na+ /K+ -ATPase was determined using confocal immunofluorescence microscopic examination. RESULTS: Ascleposide induced an increase of intracellular Na+ and a potent antiproliferative effect. It also induced a decrease of G1 phase distribution while an increase in both G2/M and apoptotic sub-G1 phases, and downregulated several cell cycle regulator proteins, including cyclins, Cdk, p21, and p27 Cip/Kip proteins, Rb and c-Myc. Ascleposide decreased the expression of antiapoptotic Bcl-2 members (eg, Bcl-2 and Mcl-1) but upregulated proapoptotic member (eg, Bak), leading to a significant loss of mitochondrial membrane potential and activation of both caspase-9 and caspase-3. Ascleposide also dramatically induced tubulin acetylation, leading to inhibition of the catalytic activity of Na+ /K+ -ATPase. Notably, extracellular high K+ (16 mM) significantly blunted ascleposide-mediated effects. Furthermore, ascleposide induced a p38 MAPK-dependent endocytosis of Na+ /K+ -ATPase and downregulated the protein expression of Na+ /K+ -ATPase α1 subunit. CONCLUSION: Ascleposide displays antiproliferative and apoptotic activities dependent on the inhibition of Na+ /K+ -ATPase pumping activity through p38 MAPK-mediated endocytosis of Na+ /K+ -ATPase and downregulation of α1 subunit, which in turn cause tubulin acetylation and cell cycle arrest. Cell apoptosis is ultimately triggered by the activation of caspase cascade attributed to mitochondrial damage through the downregulation of Bcl-2 and Mcl-1 protein expressions while upregulation of Bak protein levels. The data also suggest the potential of ascleposide in anti-CRPC development.


Subject(s)
Cardenolides/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Tubulin/metabolism , Acetylation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation , Humans , Male , Malvaceae/chemistry , PC-3 Cells , Plant Extracts/pharmacology , Prostatic Neoplasms, Castration-Resistant/pathology , Signal Transduction/drug effects
19.
Cell Mol Gastroenterol Hepatol ; 9(4): 569-585, 2020.
Article in English | MEDLINE | ID: mdl-31654770

ABSTRACT

Ethanol-mediated down-regulation of carnitine palmitoyltransferase-1 (CPT-1A) gene expression plays a major role in the development of hepatic steatosis; however, the underlying mechanisms are not completely elucidated. Tributyrin, a butyrate prodrug that can inhibit histone deacetylase (HDAC) activity, attenuates hepatic steatosis and injury. The present study examined the beneficial effect of tributyrin/butyrate in attenuating ethanol-induced pathogenic epigenetic mechanisms affecting CPT-1A promoter-histone modifications and gene expression and hepatic steatosis/injury. METHODS: Mice were fed a liquid Lieber-DeCarli diet (Research Diet Inc, New Brunswick, NJ) with or without ethanol for 4 weeks. In a subset of mice, tributyrin (2 g/kg) was administered orally by gavage. Primary rat hepatocytes were treated with 50 mmol/L ethanol and/or 2 mmol/L butyrate. Gene expression and epigenetic modifications at the CPT-1A promoter were analyzed by chromatin immunoprecipitation analysis. RESULTS: In vivo, ethanol induced hepatic CPT-1A promoter histone H3K9 deacetylation, which is indicative of a repressive chromatin state, and decreased CPT-1A gene expression. Our data identified HDAC1 as the predominant HDAC causing CPT-1A promoter histone H3K9 deacetylation and epigenetic down-regulation of gene expression. Significantly, Specificity Protein 1 (SP1) and Hepatocyte Nuclear Factor 4 Alpha (HNF4α) participated in the recruitment of HDAC1 to the proximal and distal regions of CPT-1A promoter, respectively, and mediated transcriptional repression. Importantly, butyrate, a dietary HDAC inhibitor, attenuated ethanol-induced recruitment of HDAC1 and facilitated p300-HAT binding by enabling SP1/p300 interaction at the proximal region and HNF4α/peroxisomal proliferator-activated receptor-γ coactivator-1α/p300 interactions at the distal region, leading to promoter histone acetylation and enhanced CPT-1A transcription. CONCLUSIONS: This study identifies HDAC1-mediated repressive epigenetic mechanisms that underlie an ethanol-mediated decrease in CPT-1A expression. Importantly, tributyrin/butyrate inhibits HDAC1, rescues CPT-1A expression, and attenuates ethanol-mediated hepatic steatosis and injury, suggesting its potential use in therapeutic strategies for alcoholic liver disease.


Subject(s)
Carnitine O-Palmitoyltransferase/genetics , Chemical and Drug Induced Liver Injury/drug therapy , Fatty Liver, Alcoholic/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Triglycerides/pharmacology , Acetylation/drug effects , Administration, Oral , Animals , Cells, Cultured , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Epigenetic Repression/drug effects , Ethanol/toxicity , Fatty Liver, Alcoholic/diagnosis , Fatty Liver, Alcoholic/pathology , Hepatocytes , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Humans , Liver/cytology , Liver/drug effects , Liver/pathology , Liver Function Tests , Male , Mice , Primary Cell Culture , Promoter Regions, Genetic/genetics , Triglycerides/therapeutic use
20.
Biosci Rep ; 39(12)2019 12 20.
Article in English | MEDLINE | ID: mdl-31778153

ABSTRACT

Mitochondrial dysfunction plays a vital role in the progression of left ventricular hypertrophy (LVH). Previous studies have confirmed that the disorder of SIRT1/PGC-1α deacetylation pathway aggravated mitochondrial dysfunction. HuoXue QianYang QuTan Recipe (HQQR) is a commonly used prescription that has shown therapeutic effects on obesity hypertension and its complications. However, the potential mechanisms are still unclear. In the present study, obesity hypertension (OBH) was established in rats and we investigated the efficacy and mechanisms of HQQR on LVH. Rats were divided into the five groups: (1) WKY-ND group, (2) SHR-ND group, (3) OBH-HF group, (4) OBH-HF/V group and (5) OBH-HF/H group. We evaluated body weight, Lee index and blood pressure (BP) before and every 2 weeks after treatment. After 10 weeks of treatment, we mainly detected glycolipid metabolic index, the severity of LVH, mitochondrial function along with SIRT1/PGC-1α deacetylation pathway. Our results showed that HQQR significantly lowered body weight, Lee index, BP and improved the disorder of glycolipid metabolism in OBH rats. Importantly, we uncovered HQQR could alleviate mitochondrial dysfunction in OBH rats by regulating SIRT1/PGC-1α deacetylation pathway. These changes could be associated with the inhibition of LVH.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hypertension , Hypertrophy, Left Ventricular , Mitochondria, Heart/metabolism , Obesity , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/drug effects , Sirtuin 1/metabolism , Acetylation/drug effects , Animals , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/pathology , Hypertrophy, Left Ventricular/drug therapy , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Male , Mitochondria, Heart/pathology , Obesity/drug therapy , Obesity/metabolism , Obesity/pathology , Rats , Rats, Inbred SHR , Rats, Inbred WKY
SELECTION OF CITATIONS
SEARCH DETAIL