Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Fitoterapia ; 172: 105721, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931718

ABSTRACT

Five new biflavonoids, diphybiflavonoids A - E (1-5), were isolated from the roots and rhizomes of Diphylleia sinensis. Their structures were elucidated by extensive spectroscopic data, including UV, IR, HR-ESI-MS and 2D NMR. Their absolute configurations were determined by ECD spectra. All isolated compounds were evaluated for acetylcholinesterase (AChE) inhibitory activity. Compounds 1-4 exhibited the potent AChE inhibitory activities with IC50 values of 1.62, 2.10, 2.08, and 5.15 µM, respectively. The preliminary structure-activity relationship study indicated that the connection mode (C2-O-C4'''/C3-O-C3''' or C2-O-C3'''/C3-O-C4''') of biflavonoid subunits, and 3-hydroxy group of flavonol subunit were important structural factors for AChE inhibitory activity. Biflavonoids, containing a C2-O-C4'''/C3-O-C3''' or C2-O-C3'''/C3-O-C4''' linkage, can be a potentially useful platform for development of cholinesterase inhibitors.


Subject(s)
Berberidaceae , Biflavonoids , Biflavonoids/pharmacology , Molecular Structure , Acetylcholinesterase/analysis , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Plant Roots/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry
2.
Nat Prod Res ; 38(6): 994-1001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37157866

ABSTRACT

Phytochemical study on the rhizomes of Kaempferia parviflora led to the isolation of twenty-three compounds including six phenolic glycosides (1-6), thirteen flavones (7-19), and five phenolic compounds (20-23). Of these, the new compounds were determined to be 2,4-dihydroxy-6-methoxyacetophenone-2-ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside (1), 2-hydroxy-4-propionyl-phenyl O-ß-D-glucopyranoside (2), and 4-hydroxy-3,5-dimethoxyacetophenone 8-O-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranoside (3) and named as kaempanosides A-C, respectively. Their chemical structures were established based on HR-ESI-MS, 1D and 2D NMR spectra. All compounds 1-23 exhibited acetylcholinesterase inhibitory activity with IC50 values ranging from 57.76 to 253.31 µM.


Subject(s)
Flavones , Zingiberaceae , Acetylcholinesterase/analysis , Rhizome/chemistry , Flavones/pharmacology , Plant Extracts/chemistry , Glycosides/chemistry , Zingiberaceae/chemistry
3.
Malar J ; 22(1): 368, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041142

ABSTRACT

BACKGROUND: Anopheles pharoensis has a major role in transmitting several human diseases, especially malaria, in Egypt?. Controlling Anopheles is considered as an effective strategy to eliminate the spread of malaria worldwide. Galaxaura rugosa is a species of red algae found in tropical to subtropical marine environments. The presence of G. rugosa is indicative of the ecosystem's overall health. The current work aims to investigate UPLC/ESI/MS profile of G. rugosa methanol and petroleum ether extracts and its activity against An. pharoensis and non-target organisms, Danio rerio and Daphnia magna. METHODS: Galaxaura rugosa specimens have been identified using DNA barcoding for the COI gene and verified as G. rugosa. The UPLC/ESI/MS profiling of G. rugosa collected from Egypt was described. The larvicidal and repellent activities of G. rugosa methanol and petroleum ether extracts against An. pharoensis were evaluated, as well as the toxicity of tested extracts on non-target organisms, Dan. rerio and Dap. magna. RESULTS: The UPLC/ESI/MS analysis of methanol and petroleum ether extracts led to the tentative identification of 57 compounds belonging to different phytochemical classes, including flavonoids, tannins, phenolic acids, phenyl propanoids. Larval mortality was recorded at 93.33% and 90.67% at 80 and 35 ppm of methanol and petroleum ether extracts, respectively, while pupal mortality recorded 44.44 and 22.48% at 35 and 30 ppm, respectively. Larval duration was recorded at 5.31 and 5.64 days by methanol and petroleum ether extracts at 80 and 35 ppm, respectively. A decrease in acetylcholinesterase (AChE) level and a promotion in Glutathione-S-transferase (GST) level of An. pharoensis 3rd instar larvae were recorded by tested extracts. The petroleum ether extract was more effective against An. pharoensis starved females than methanol extract. Also, tested extracts recorded LC50 of 1988.8, 1365.1, and 11.65, 14.36 µg/mL against Dan. rerio, and Dap. magna, respectively. CONCLUSIONS: Using red algae derivatives in An. pharoensis control could reduce costs and environmental impact and be harmless to humans and other non-target organisms.


Subject(s)
Anopheles , Culex , Insecticides , Malaria , Rhodophyta , Animals , Humans , Zebrafish , Daphnia , Environmental Biomarkers , Mosquito Vectors , Methanol/analysis , Methanol/pharmacology , Acetylcholinesterase/analysis , Ecosystem , Plant Extracts/pharmacology , Solvents/analysis , Solvents/pharmacology , Larva , Insecticides/pharmacology , Plant Leaves/chemistry
4.
Microsc Res Tech ; 86(10): 1363-1377, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37119431

ABSTRACT

Fabrication, characterization and evaluation of the larvicidal potential of novel silk protein (sericin)-based silver nanoparticles (Se-AgNPs) were the prime motives of the designed study. Furthermore, investigation of the sericin as natural reducing or stabilizing agent was another objective behind this study. Se-AgNPs were synthesized using sonication and heat. Fabricated Se-AgNPs were characterized using particle size analyzer, UV spectrophotometry, FTIR and SEM which confirmed the fabrication of the Se-AgNPs. Size of sonication-mediated Se-AgNPs was smaller (7.49 nm) than heat-assisted Se-AgNPs (53.6 nm). Being smallest in size, sonication-assisted Se-AgNPs revealed the significantly highest (F4,10 = 39.20, p = .00) larvicidal activity against fourth instar lab and field larvae (F4,10 = 1864, p = .00) of dengue vector (Aedes aegypti) followed by heat-assisted Se-AgNPs and positive control (temephos). Non-significant larvicidal activity was showed by silver (without sericin) which made the temperature stability of silver, debatable. Furthermore, findings of biochemical assays (glutathione-S transferase, esterase, and acetylcholinesterase) showed the levels of resistance in field strain larvae. Aforementioned findings of the study suggests the sonication as the best method for synthesis of Se-AgNPs while the larvicidal activity is inversely proportional to the size of Se-AgNPs, i.e., smallest the size, highest the larvicidal activity. Conclusively, status of the sericin as a natural reducing/stabilizing agent has been endorsed by the findings of this study. RESEARCH HIGHLIGHTS: Incorporation of biocompatible and inexpensive sericin as a capping/reducing agent for synthesis of Se-AgNPs. A novel sonication method was used for the fabrication of Se-AgNPs which were thoroughly characterized by particle size analyzer, UV-visible spectrophotometry, SEM and FTIR. Analysis of enzymatic (GSTs, ESTs) levels in field and lab strains of Aedes aegypti larvae for evaluation of insecticides resistance.


Subject(s)
Aedes , Dengue , Insecticides , Metal Nanoparticles , Sericins , Animals , Metal Nanoparticles/chemistry , Silver/pharmacology , Silver/chemistry , Sericins/pharmacology , Hot Temperature , Acetylcholinesterase/analysis , Acetylcholinesterase/metabolism , Excipients/analysis , Excipients/metabolism , Sonication , Plant Extracts/chemistry , Mosquito Vectors , Larva , Dengue/prevention & control , Dengue/metabolism , Plant Leaves/chemistry
5.
J Tradit Chin Med ; 43(2): 252-264, 2023 04.
Article in English | MEDLINE | ID: mdl-36994513

ABSTRACT

OBJECTIVE: To characterize the chemical profile of methanolic crude extract and its fractions (Ethyl acetate, n-butanol and aqueous) using liquid chromatography-mass spectrometry (LC-MS) analysis, to evaluate their biological and pharmacological properties: antioxidant (1, 1-diphenyl-2-pycrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic) (ABTS), galvinoxyle free radical scavenging, reducing power, phenanthroline and ß carotene-linoleic acid bleaching assays), enzymes inhibitory ability against several enzymes [acetyl-cholinesterase (AChE), buthyrylcholinesterase (BChE), urease and tyrosinase]. METHODS: Secondary metabolites were extracted from Tamarix africana air-dried powdered leaves by maceration, the crude extract was fractionated using different solvents with different polarities (Ethyl acetate, n-butanol and aqueous). The amount of polyphenols, flavonoids and tannins (hydrolysable and condensed) were determined using colorimetric assays. A variety of biochemical tests were carried out to assess antioxidant and oxygen radical scavenging properties using DPPH, ABTS, galvinoxyle free radical scavenging, reducing power, phenanthroline and ß carotene-linoleic acid bleaching methods. Neuroprotective effect was examined against acetylcholinesterase and buthy-rylcholinesterase enzymes. The anti-urease and anti-tyrosinase activities were performed against urease and tyrosinase enzymes respectively. The extract's components were identified using LC-MS and compared to reference substances. RESULTS: The results indicated that Tamarix africana extracts presented a powerful antioxidant activity in all assays and exhibited a potent inhibitory effect against AChE and BChE as well as urease and tyrosinase enzymes. LC-MS analysis identified amount of eight phenolic compounds were revealed in this analysis; Apigenin, Diosmin, Quercetin, Quercetine-3-glycoside, Apigenin 7-O glycoside, Rutin, Neohesperidin and Wogonin in methanolic extract and its different fractions of Tamarix africana from leaves. CONCLUSIONS: Based on these findings, it is reasonable to assume that Tamarix africana could be considered as a potential candidate for pharmaceutical, cosmetics, and food industries to create innovative health-promoting drugs.


Subject(s)
Antioxidants , Monophenol Monooxygenase , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Monophenol Monooxygenase/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Acetylcholinesterase/analysis , Acetylcholinesterase/metabolism , Urease/analysis , Urease/metabolism , 1-Butanol/analysis , Apigenin/analysis , Linoleic Acid/analysis , Phenanthrolines/analysis , beta Carotene/analysis , Plant Leaves/chemistry , Flavonoids/pharmacology , Free Radicals , Glycosides/analysis
6.
Plant Foods Hum Nutr ; 77(4): 545-551, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36040657

ABSTRACT

The current study reports for the first time the nutritional, fruit volatiles, phytochemical, and biological characteristics of Ferocactus herrerae J. G. Ortega fruits. The nutritional analysis revealed that carbohydrate (20.6%) was the most abundant nutrient followed by dietary fibers (11.8%), lipids (0.9%), and proteins (0.8%). It was rich in vitamins, minerals, essential, and non-essential amino acids. Gas chromatography-mass spectrometry (GC-MS) analysis of the headspace-extracted volatiles showed that 3-methyl octadecane (35.72 ± 2.38%) was the major constituent detected. Spectrophotometric determination of total phenolic and flavonoid contents of the fruit methanolic extract (ME) showed high total phenolic [9.17 ± 0.87 mg/g gallic acid equivalent (GAE)] and flavonoid [4.99 ± 0.23 mg/g quercetin equivalent (QE)] contents. The ME was analyzed using high-performance liquid chromatography with ultraviolet (HPLC-UV), which allowed for both qualitative and quantitative estimation of 16 phenolic compounds. Caffeic acid was the major phenolic acid identified [45.03 ± 0.45 mg/100 g dried powdered fruits (DW)] while quercitrin (52.65 ± 0.31 mg/100 g DW), was the major flavonoid detected. In-vitro assessment of the antioxidant capacities of the ME revealed pronounced activity using three comparative methods; 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (132.06 ± 2.1 µM Trolox equivalent (TE) /g), 2,2'-azino-di(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), (241.1 ± 5.03 uM TE/g), and ferric reducing antioxidant power (FRAP) (258.9 ± 1.75 uM TE/g). Besides, remarkable anti-inflammatory [COX-1 (IC50 = 20.2 ± 1.1 µg/mL) and COX-2 (IC50 = 9.8 ± 0.64 µg/mL)] and acetylcholinesterase inhibitory (IC50 = 1.01 ± 0.39 mg/mL) activities were observed. Finally, our results revealed that these fruits could be used effectively as functional foods and nutraceuticals suggesting an increase in their propagation.


Subject(s)
Antioxidants , Fruit , Fruit/chemistry , Antioxidants/analysis , Acetylcholinesterase/analysis , Quercetin/analysis , Cyclooxygenase 2/analysis , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Phenols/analysis , Flavonoids/pharmacology , Flavonoids/analysis , Gallic Acid/analysis , Caffeic Acids/analysis , Sulfonic Acids/analysis , Vitamins/analysis , Dietary Fiber/analysis , Carbohydrates/analysis , Amino Acids/analysis , Lipids/analysis
7.
PeerJ ; 10: e12722, 2022.
Article in English | MEDLINE | ID: mdl-35036098

ABSTRACT

Bee pollen (BP) is full of nutrients and phytochemicals, and so it is widely used as a health food and alternative medicine. Its composition and bioactivity mainly depend on the floral pollens. In this work, BP collected by Apis mellifera with different monoculture flowering crops (BP1-6) were used. The types of floral pollen in each BP were initially identified by morphology, and subsequently confirmed using molecular phylogenetic analysis. Data from both approaches were consistent and revealed each BP to be monofloral and derived from the flowers of Camellia sinensis L., Helianthus annuus L., Mimosa diplotricha, Nelumbo nucifera, Xyris complanata, and Ageratum conyzoides for BP1 to BP6, respectively. The crude extracts of all six BPs were prepared by sequential partition with methanol, dichloromethane (DCM), and hexane. The crude extracts were then tested for the in vitro (i) α-amylase inhibitory, (ii) acetylcholinesterase inhibitory (AChEI), and (iii) porcine pancreatic lipase inhibitory (PPLI) activities in terms of the percentage enzyme inhibition and half maximum inhibitory concentration (IC50). The DCM partitioned extract of X. complanata BP (DCMXBP) had the highest active α-amylase inhibitory activity with an IC50 value of 1,792.48 ± 50.56 µg/mL. The DCM partitioned extracts of C. sinensis L. BP (DCMCBP) and M. diplotricha BP (DCMMBP) had the highest PPLI activities with an IC50 value of 458.5 ± 13.4 and 500.8 ± 24.8 µg/mL, respectively), while no crude extract showed any marked AChEI activity. Here, the in vitro PPLI activity was focused on. Unlike C. sinensis L. BP, there has been no previous report of M. diplotricha BP having PPLI activity. Hence, DCMMBP was further fractionated by silica gel 60 column chromatography, pooling fractions with the same thin layer chromatography profile. The pooled fraction of DCMMBP2-1 was found to be the most active (IC50 of 52.6 ± 3.5 µg/mL), while nuclear magnetic resonance analysis revealed the presence of unsaturated free fatty acids. Gas chromatography with flame-ionization detection analysis revealed the major fatty acids included one saturated acid (palmitic acid) and two polyunsaturated acids (linoleic and linolenic acids). In contrast, the pooled fraction of DCMMBP2-2 was inactive but pure, and was identified as naringenin, which has previously been reported to be present in M. pigra L. Thus, it can be concluded that naringenin was compound marker for Mimosa BP. The fatty acids in BP are nutritional and pose potent PPLI activity.


Subject(s)
Acetylcholinesterase , Fatty Acids , Bees , Animals , Swine , Fatty Acids/analysis , Acetylcholinesterase/analysis , Phylogeny , Pollen/chemistry , Lipase/analysis , alpha-Amylases/analysis
8.
Nat Prod Res ; 36(7): 1883-1888, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32820642

ABSTRACT

The supercritical fluid extraction (SFE) of volatile and fixed oil from milled parsley (Petroselinum crispum L.) seeds, using CO2 as solvent, is presented in this study. Extraction experiments were carried out in two steps: at pressures of (90 or 300) bar and temperature of 40 °C. The first extraction step, performed at 90 bar, produced a volatile fraction mainly formed by apiole (82.1%) and myristicin (11.4%). The volatile oil yield was 2.6% by weight of the charge. The second extraction step, carried out at 300 bar produced a fixed oil at a yield of 0.4% by weight. The most represented fatty acids in P. crispum fixed oil were 18:1 n-12 (49.9%), 18:2 n-6 (18.2%), 18:1 n-9 (11.8%), and 16:0 (7.4%). In particular, the unsaturated fatty acids 18:1 n-12 and 18:1 n-9 averaged 182.2 mg/g and 92.1 mg/g of oil extract, respectively. The quality of the oils extracted by SFE, in terms of its chemical composition, was compared to the oils obtained by hydrodistillation (HD) in a Clevenger apparatus and by solvent extraction (SE) using n-hexane in a Soxhlet apparatus. The antioxidant properties were determined by means of the ABTS assay. The results indicated that the fixed oil possessed low antioxidant activity (EC50 = 0.4 mg/mL) and the volatile oil had no antioxidant activity. The total phenolic content, expressed as concentration of gallic acid (gallic acid equivalent, GAE), of the fixed oil was 1.5 mg/g. The fixed oil found to have inhibitory effects against α-glucosidase, the volatile oil is active on acetylcholinesterase (AChE), tyrosinase, and α-glucosidase. Both samples have weak inhibitory activity on α-amylase and no activity on butyrylcholinesterase (BChE).


Subject(s)
Chromatography, Supercritical Fluid , Oils, Volatile , Acetylcholinesterase/analysis , Butyrylcholinesterase/analysis , Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid/methods , Oils, Volatile/chemistry , Petroselinum , Plant Oils/chemistry , Seeds/chemistry
9.
Pharm Biol ; 59(1): 444-456, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33930998

ABSTRACT

CONTEXT: Bryophyllum pinnatum (Lam.) Oken (Crassulaceae) is used traditionally to treat many ailments. OBJECTIVES: This study characterizes the constituents of B. pinnatum flavonoid-rich fraction (BPFRF) and investigates their antioxidant and anticholinesterase activity using in vitro and in silico approaches. MATERIALS AND METHODS: Methanol extract of B. pinnatum leaves was partitioned to yield the ethyl acetate fraction. BPFRF was isolated from the ethyl acetate fraction and purified. The constituent flavonoids were structurally characterized using UPLC-PDA-MS2. Antioxidant activity (DPPH), Fe2+-induced lipid peroxidation (LP) and anticholinesterase activity (Ellman's method) of the BPFRF and standards (ascorbic acid and rivastigmine) across a concentration range of 3.125-100 µg/mL were evaluated in vitro for 4 months. Molecular docking was performed to give insight into the binding potentials of BPFRF constituents against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). RESULTS: UPLC-PDA-MS2 analysis of BPFRF identified carlinoside, quercetin (most dominant), luteolin, isorhamnetin, luteolin-7-glucoside. Carlinoside was first reported in this plant. BPFRF significantly inhibited DPPH radical (IC50 = 7.382 ± 0.79 µg/mL) and LP (IC50 = 7.182 ± 0.60 µg/mL) better than quercetin and ascorbic acid. Also, BPFRF exhibited potent inhibition against AChE and BuChE with IC50 values of 22.283 ± 0.27 µg/mL and 33.437 ± 1.46 µg/mL, respectively compared to quercetin and rivastigmine. Docking studies revealed that luteolin-7-glucoside, carlinoside and quercetin interact effectively with crucial amino acid residues of AChE and BuChE through hydrogen bonds. DISCUSSION AND CONCLUSIONS: BPFRF possesses an excellent natural source of cholinesterase inhibitor and antioxidant. The material could be further explored for the potential treatment of oxidative damage and cholinergic dysfunction in Alzheimer's disease.


Subject(s)
Antioxidants/analysis , Cholinesterase Inhibitors/analysis , Flavonoids/analysis , Kalanchoe , Plant Extracts/analysis , Tandem Mass Spectrometry/methods , Acetylcholinesterase/analysis , Antioxidants/chemistry , Butyrylcholinesterase/analysis , Cholinesterase Inhibitors/chemistry , Chromatography, High Pressure Liquid/methods , Computer Simulation , Crystallography, X-Ray/methods , DNA Fingerprinting/methods , Dose-Response Relationship, Drug , Flavonoids/chemistry , Humans , Plant Extracts/chemistry , Protein Structure, Secondary , Spectrometry, Mass, Electrospray Ionization/methods
10.
Nat Prod Res ; 35(15): 2608-2611, 2021 Aug.
Article in English | MEDLINE | ID: mdl-31680559

ABSTRACT

Eugenia genus is known for its phenolic metabolites, which may influence the progression of the Alzheimer Disease. This study aimed to evaluate the anticholinesterase effects of six Eugenia species from Brazil. Leaves and stems were submitted to maceration (methanol) and partitioned with dichloromethane and ethyl acetate (EtOAc). Samples were screened (200 µg mL-1) for the inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). HPLC-ESI-MS/MS analysis allowed the identification of twenty-eight phenolic compounds. Regarding the enzymatic activity, EtOAc fraction of E. mattosii exhibited the best results. Chemical and pharmacological aspects of seasonal E. mattosii extracts were evaluated. The extract from leaves collected in the winter was the most effective for AChE, and the extract from leaves collected in the spring was the most effective for BuChE. Correlating the enzymatic results with the chemical data, it was possible to associate these effects to isoquercitrin, quercetin, catechin, epicatechin, procatecuic acid and myricitrin content.


Subject(s)
Acetylcholinesterase/chemistry , Antioxidants/chemistry , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Chromatography, High Pressure Liquid/methods , Eugenia , Phenols/chemistry , Plant Extracts/pharmacology , Acetylcholinesterase/analysis , Antioxidants/pharmacology , Brazil , Butyrylcholinesterase/analysis , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/chemistry , Phenols/analysis , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods
11.
Mol Biol Rep ; 47(8): 5985-5996, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32780254

ABSTRACT

The aim of this study was to investigate the combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by CPF. 64 adult male albino rats were randomly selected and devided into eight groups of eight including: control, exercise (EXE), chlorpyrifos (CPF), Control + Oil (Co + Oil), Control + DMSO (Co + DMSO), chlorpyrifos + eugenol (CPF + Sup), chlorpyrifos + exercise (CPF + Exe) and, chlorpyrifos + exercise + eugenol (CPF + Exe + Eu). Four experimental groups received intraperitoneal injection (5 days a week) of 3.0 mg/kg body weight CPF in DMSO for 6 consecutive weeks. The exercise groups performed aerobic 5 days per week over 4 weeks. Eugenol were administered by gavage. Finally, the animals were sacrificed using CO2 gas (a half of the rats were anesthetized with ketamine and xylazine and then perfused) to evaluate hippocampus histology and parameters. The results of this study showed that CPF injection significantly decreased BDNF, AChE and ATP in CA1 area of the hippocampus (p ˂ 0.05). Also, CA1 apoptosis by tunnel assay, it was found that CPF receiving groups with different dosage, showed a significant increase compared to other groups, which was confirmed by increasing cytochrome C and procaspase-3 in CPF groups (p ˂ 0.05). The result of this study show that 4 weeks of exercise training and eugenol supplementation does not improve the destructive effects of CPF in CA1 area of the hippocampus. As a result, it is recommended that future studies longer periods for treatment with exercise and eugenol supplementation.


Subject(s)
Apoptosis/drug effects , Chlorpyrifos/toxicity , Eugenol/therapeutic use , Exercise Therapy , Hippocampus/drug effects , Organophosphate Poisoning/therapy , Physical Conditioning, Animal , Acetylcholinesterase/analysis , Adenosine Triphosphate/analysis , Animals , Avoidance Learning/drug effects , Brain-Derived Neurotrophic Factor/analysis , Caspase 3/analysis , Combined Modality Therapy , Cytochromes c/analysis , Disease Models, Animal , Eugenol/administration & dosage , Hippocampus/enzymology , Hippocampus/pathology , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/pathology , Memory Disorders/therapy , Nerve Tissue Proteins/analysis , Organophosphate Poisoning/drug therapy , Random Allocation , Rats , Rats, Wistar
12.
Anal Biochem ; 607: 113835, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32739347

ABSTRACT

A reversible fluorescence probe for acetylcholinesterase activity detection was developed based on water soluble perylene derivative, N,N'-di(2-aspartic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP). Based on the photo-induced electron transfer (PET), PASP fluorescence in aqueous is quenched after combining with copper ions (Cu2+). Acetylcholinesterase (AChE) is well known to catalyze the hydrolysis of acetylcholine (ATCh) to produce thiocholine, whose affinity is strong enough to capture Cu2+ by thiol (-SH) group from the complex PASP-Cu, resulting in the fluorescence signal of PASP recovers up to 90%. This optical switch is highly sensitive depended on the coordination and dissociation between PASP and Cu2+. We proposed its application for AChE activity detection, as well as its inhibitor screening. According to the change of fluorescence intensity, quantifying the detection limit of AChE was 1.78 mU·mL-1. Classical inhibitors, tacrine and organophosphate pesticide diazinon, were further evaluated for drug screening. The IC50 value of tacrine was calculated to be 0.43 µM, and the detection limit of diazinon was 0.22 µM. Both of these performances were much better than previous results, revealing our probe is sensitive and reversible for screening applications.


Subject(s)
Acetylcholinesterase/analysis , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Diazinon/chemistry , Diazinon/metabolism , Fluorescent Dyes/chemistry , Perylene/chemistry , Tacrine/chemistry , Tacrine/metabolism , Binding, Competitive , Cholinesterase Inhibitors/pharmacology , Diazinon/pharmacology , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Spectrometry, Fluorescence , Substrate Specificity , Tacrine/pharmacology
13.
Vet Parasitol ; 267: 54-59, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30878086

ABSTRACT

Plant essential oils and its chemical compositions are commonly applied in medicinal and other industries due to their broad advanced pharmacological activities. In the present study, we systematically evaluated the acaricidal activities of twelve compounds of essential oils against Psoroptes cuniculi in vitro and in vivo. In addition, to support the clinic uses, their toxicities against immortalized human keratinocytes (HaCaT) and human liver cells (HL-7702) and skin irritation were studied for evaluating the liver and skin safety. The possible mechanism of action of certain chemical were investigated by determining the inhibitory activities against cytochrome P450 (P450) acetylcholinesterase (AChE) and glutathione-S-transferase (GST). Among all tested compounds, eugenol exhibited the best acaricidal activity with LC50 value of 56.61 µg/ml in vitro. Meanwhile, after the treatment of eugenol for five times within 10 days, the P. cuniculi were eliminated in the naturally infested rabbits, no skin irritation was found in rabbits treated by eugenol. Moreover, eugenol presented no or weak cytotoxicity against HaCaT cells and HL-7702 cells with IC50 values of greater than 100 µg/ml. Furthermore, the moderate inhibitory activities of eugenol against mites P450 and AChE were demonstrated. Above results indicated that eugenol presented the promising acaricidal activity against P. cuniculi in vitro and in vivo, is safe for both humans and animals at the given doses. This work lays the foundation for the development of eugenol as an environmentally friendly acaricide agent.


Subject(s)
Acaricides/pharmacology , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Psoroptidae/drug effects , Acaricides/adverse effects , Acetylcholinesterase/analysis , Animals , Cell Line , Eugenol/pharmacology , Glutathione Transferase/analysis , Humans , Inhibitory Concentration 50 , Keratinocytes/drug effects , Liver/cytology , Liver/drug effects , Mite Infestations/drug therapy , Oils, Volatile/adverse effects , Plant Extracts/adverse effects , Rabbits
14.
J Oleo Sci ; 67(7): 801-812, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29877220

ABSTRACT

Seeds oils of Phalaris canariensis extracted by ultrasonication and cold maceration were evaluated for their physical characteristics, total phenol contents, fatty acid and sterol compositions as well as for their antioxidant, antibacterial and acetylcholinesterase activities. The physicochemical properties of ultrasonication and cold maceration oils respectively were: acid values (4.00 and 3.25) mg KOH/g, peroxide values (5.53 and 4.41) meq O2 Kg-1, iodine values (88.83 and 95.17) g/100 g of oil, saponification values (119.21 and 98.17) mg KOH/g, phenolic content (36.40 and 53.00) mg GAE/g extract, chlorophylls (0.52 and 0.60) mg/kg oil and carotenoids contents (1.92 and 1.88) mg/kg oil. Gas chromatography analysis revealed that linoleic (52.03 and 52.2%), oleic (31.75 and 31.84%) and palmitic (11.09 and 11.34 %) acids were the major fatty acids in the two oils. Specific extinctions at 232 nm (K232) and 270 nm (K270) were (0.58 and 0.44) and (0.42 and 0.33), respectively. The DSC melting curve showed that their melting points and melting enthalpies were (-28.05°C and 76.8 J/g) and (-27.47°C and 62.3 J/g), respectively. On the other hand, the evaluation of their DPPH radical scavenging, total antioxidant capacity, antibacterial and acetylcholinesterase activities showed interesting results. Thus, Phalaris canariensis seeds oils could deserve further consideration and investigation as a potentially new multi-purpose product for agro-food, medicinal and cosmetic uses.


Subject(s)
Fatty Acids, Omega-6/analysis , Linoleic Acid/analysis , Oleic Acid/analysis , Palmitic Acid/analysis , Phalaris/chemistry , Plant Oils/chemistry , Plant Oils/isolation & purification , Seeds/chemistry , Acetylcholinesterase/analysis , Acetylcholinesterase/isolation & purification , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/isolation & purification , Antioxidants/analysis , Antioxidants/isolation & purification , Chemical Phenomena , Chromatography, Gas , Fatty Acids, Omega-6/isolation & purification , Linoleic Acid/isolation & purification , Oleic Acid/isolation & purification , Palmitic Acid/isolation & purification , Phenols/analysis , Phenols/isolation & purification , Phytosterols/analysis , Phytosterols/isolation & purification
15.
BMC Complement Altern Med ; 18(1): 136, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29716575

ABSTRACT

BACKGROUND: Terminalia chebula Retz. (Combretaceae) is a traditional herbal medicine that is widely used in the treatment of diabetes, immunodeficiency diseases, and stomach ulcer in Asia. However, the anti-amnesic effect of T. chebula has not yet been investigated. The present study was designed to determine whether T. chebula extract (TCE) alleviates amnesia induced by scopolamine in mice. We also investigated possible mechanisms associated with cholinergic system and anti-oxidant effects. METHODS: TCE (100 or 200 mg/kg) was orally administered to mice for fourteen days (days 1-14), and scopolamine was intraperitoneally injected to induce memory impairment for seven days (days 8-14). Learning and memory status were evaluated using the Morris water maze. Hippocampal levels of acetylcholine (ACh), acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) were measured ex vivo. Levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) in the hippocampus were also examined. RESULTS: In the Morris water maze task, TCE treatment reversed scopolamine-induced learning and memory deficits in acquisition and retention. TCE reduced hippocampal AChE activities and increased ChAT and ACh levels in the scopolamine-induced model. Moreover, TCE treatment suppressed scopolamine-induced oxidative damage by ameliorating the increased levels of ROS, NO, and MDA. CONCLUSION: These findings suggest that TCE exerts potent anti-amnesic effects via cholinergic modulation and anti-oxidant activity, thus providing evidence for its potential as a cognitive enhancer for amnesia.


Subject(s)
Amnesia/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Scopolamine/adverse effects , Terminalia/chemistry , Acetylcholine/analysis , Acetylcholine/metabolism , Acetylcholinesterase/analysis , Acetylcholinesterase/metabolism , Amnesia/chemically induced , Amnesia/prevention & control , Animals , Hippocampus/drug effects , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL
16.
An. acad. bras. ciênc ; 89(2): 1133-1141, Apr.-June 2017. graf
Article in English | LILACS | ID: biblio-886699

ABSTRACT

ABSTRACT Studies have shown that schizophrenic patients seem to have nutritional deficiencies. Ascorbic acid (AA) has an important antioxidant effect and neuromodulatory properties. The aim of this study was to evaluate the effects of AA on locomotor activity and the acetylcholinesterase activity (AChE) in an animal model of schizophrenia (SZ). Rats were supplemented with AA (0.1, 1, or 10 mg/kg), or water for 14 days (gavage). Between the 9th and 15th days, the animals received Ketamine (Ket) (25 mg/kg) or saline (i.p). After the last administration (30 min) rats were subjected to the behavioral test. Brain structures were dissected for biochemical analysis. There was a significant increase in the locomotor activity in Ket treated. AA prevented the hyperlocomotion induced by ket. Ket also showed an increase of AChE activity within the prefrontal cortex and striatum prevented by AA. Our data indicates an effect for AA in preventing alterations induced by Ket in an animal model of SZ, suggesting that it may be an adjuvant approach for the development of new therapeutic strategies within this psychiatric disorder.


Subject(s)
Animals , Male , Acetylcholinesterase/analysis , Acetylcholinesterase/drug effects , Ascorbic Acid/pharmacology , Schizophrenia/enzymology , Locomotion/drug effects , Antioxidants/pharmacology , Acetylcholinesterase/physiology , Schizophrenia/prevention & control , Excitatory Amino Acid Antagonists , Dietary Supplements , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/enzymology , Ketamine , Locomotion/physiology
17.
An Acad Bras Cienc ; 89(2): 1133-1141, 2017.
Article in English | MEDLINE | ID: mdl-28513779

ABSTRACT

Studies have shown that schizophrenic patients seem to have nutritional deficiencies. Ascorbic acid (AA) has an important antioxidant effect and neuromodulatory properties. The aim of this study was to evaluate the effects of AA on locomotor activity and the acetylcholinesterase activity (AChE) in an animal model of schizophrenia (SZ). Rats were supplemented with AA (0.1, 1, or 10 mg/kg), or water for 14 days (gavage). Between the 9th and 15th days, the animals received Ketamine (Ket) (25 mg/kg) or saline (i.p). After the last administration (30 min) rats were subjected to the behavioral test. Brain structures were dissected for biochemical analysis. There was a significant increase in the locomotor activity in Ket treated. AA prevented the hyperlocomotion induced by ket. Ket also showed an increase of AChE activity within the prefrontal cortex and striatum prevented by AA. Our data indicates an effect for AA in preventing alterations induced by Ket in an animal model of SZ, suggesting that it may be an adjuvant approach for the development of new therapeutic strategies within this psychiatric disorder.


Subject(s)
Acetylcholinesterase/analysis , Acetylcholinesterase/drug effects , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Locomotion/drug effects , Schizophrenia/enzymology , Schizophrenia/prevention & control , Acetylcholinesterase/physiology , Animals , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Dietary Supplements , Disease Models, Animal , Excitatory Amino Acid Antagonists , Hippocampus/drug effects , Hippocampus/enzymology , Ketamine , Locomotion/physiology , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/enzymology , Rats, Wistar , Reference Values , Reproducibility of Results , Schizophrenia/chemically induced , Schizophrenia/physiopathology
18.
BMC Complement Altern Med ; 17(1): 151, 2017 Mar 11.
Article in English | MEDLINE | ID: mdl-28284186

ABSTRACT

BACKGROUND: Hawthorn fruit (HF) is a well-known traditional medicine in China with the effects of improving digestion and regulating qi-flowing for removing blood stasis. Modern pharmacological experiments showed that HF extract has various pharmaceutical properties and flavonoids are considered as the main bioactive compounds. In this paper, Diaion HP-20 adsorption chromatography was used to enrich flavonoids in PHF, and the phytochemical composition of EPHF was analyzed by high performance liquid chromatography (HPLC) and liquid chromatography tandem mass spectrometry (LC-MS). In addition, EPHF's antioxidant capacity, acetylcholinesterase (AChE) inhibitory activity and cytotoxic activity were evaluated. METHODS: EPHF was obtained by Diaion HP-20 adsorption chromatography. Phytochemical composition of EPHF was analyzed qualitatively and quantitatively using HPLC and LC-MS. Radical scavenging capacity of EPHF was estimated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay and oxygen radical absorbance capacity (ORAC) assay. The AChE inhibitory activity of EPHF was evaluated by Ellman method. Cytotoxic activity of EPHF was assessed by means of MTT assay. RESULTS: Eight kinds of components were identified, in which ideain with the value of 179.4 mg/g was identified to be present in the highest level in EPHF, followed by (-)-epicatechin, chlorogenic acid, cyanidin 3-arabinoside, hyperoside and isoquercitrin at the concentrations of 40.9, 10.0, 1.4, 0.4 and 0.2 mg/g, respectively. The contents of these compounds in EPHF were much higher than those in PHF and HF. In addition, EPHF exhibited strong antioxidant and AChE inhibitory activity (ORAC value: 11.65 ± 2.37 µM Trolox equivalents (TE)/mg, DPPH IC50 value: 6.72 µg/mL, anti-AChE activity IC50 value: 11.72 µg/mL) compared with PHF and HF. Moreover, EPHF exhibited high levels of cytotoxicity on MCF-7 and SKOV-3 human tumour cell lines in a dose-dependent manner with the IC50 of 2.76 and 80.11 µg/mL, respectively. CONCLUSIONS: Macroporous resin is useful for the extraction and separation of the total flavonoids from PHF. The contents of flavonoids especially anthocyanin in EPHF were increased significantly compared with the PHF, and EPHF exhibited strong antioxidant, AChE inhibitory activity and cytotoxicity on human tumour cells.


Subject(s)
Acetylcholinesterase/drug effects , Antioxidants/chemistry , Cell Proliferation/drug effects , Crataegus/chemistry , Plant Extracts/chemistry , Acetylcholinesterase/analysis , Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Fruit/chemistry , Humans , MCF-7 Cells , Plant Extracts/pharmacology
19.
Food Funct ; 8(2): 881-887, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-27921109

ABSTRACT

The underutilized Kenyan variety of Dolichos lablab bean seeds serve as a good source of natural antioxidants, which can probably be effective in reducing the risk of occurrence of several diseases. This study was undertaken for the first time to address the limited knowledge regarding the antioxidant activities of lablab beans. Moreover, their DNA damage inhibitory activity, bovine serum albumin (BSA) damage inhibitory activity, and the inhibition of acetylcholinesterase and porcine α-amylase were also investigated. The antioxidant capacity of Dolichos lablab bean seeds extracted with methanol, water or methanol/water combination was evaluated by the ferric-reducing antioxidant power (FRAP) assay, free radical-scavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO) radical-scavenging assay, and 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Results reported in the present study indicate that water, methanol and water/methanol extracts of lablab bean flour exhibited good antioxidant activity by effectively scavenging various free radicals, such as DPPH, NO, and ABTS radicals. The extracts also exhibited protective effects against DNA and BSA damage and inhibitory effects on porcine α-amylase. Findings of this study suggest that extracts from the lablab bean flour would have potential application in food supplements, and pharmaceutical and cosmetic industries.


Subject(s)
Cholinesterase Inhibitors/analysis , DNA Damage/drug effects , Dolichos/chemistry , Free Radical Scavengers/analysis , Plant Extracts/analysis , alpha-Amylases/antagonists & inhibitors , Acetylcholinesterase/analysis , Animals , Cattle , DNA/genetics , Serum Albumin, Bovine/toxicity , Swine , alpha-Amylases/analysis
20.
Neuromolecular Med ; 19(1): 101-112, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27553015

ABSTRACT

Diabetes is associated with behavioural and neurochemical alterations. In this manuscript, we are reporting the beneficial effects of parthenolide, an NF-κB inhibitor on behavioural and neurochemical deficits in type 2 diabetic rat model. Diabetes was induced by high-fat diet followed by low dose of streptozotocin (35 mg/kg). Elevated plus maze, open-field, MWM and passive avoidance test paradigm were used to assess behavioural and cognitive deficits. Three-week treatment of parthenolide (0.25 and 0.50 mg/kg; i.p.) attenuated diabetes-induced alteration in cognitive function in Morris water maze and passive avoidance test. Anxiety-like behaviour was also reduced by parthenolide treatment. Moreover, TNF-α and IL-6 levels were significantly decreased in cortex and hippocampus of parthenolide-treated rats. Three-week parthenolide treatment also toned down the alteration of GABA and glutamate homoeostasis. Results of this study corroborate the involvement of neuroinflammation in the development of behavioural and neurochemical deficits in diabetic animals and point towards the therapeutic potential of parthenolide in diabetes-induced alteration of learning, memory and anxiety behaviour.


Subject(s)
Behavior, Animal/drug effects , Brain Chemistry/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , NF-kappa B/antagonists & inhibitors , Neurotransmitter Agents/metabolism , Sesquiterpenes/therapeutic use , Acetylcholinesterase/analysis , Animals , Avoidance Learning/drug effects , Blood Glucose/analysis , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/psychology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/psychology , Diet, High-Fat/adverse effects , Exploratory Behavior/drug effects , Glycated Hemoglobin/analysis , Hypoglycemic Agents/pharmacology , Insulin/blood , Interleukin-6/analysis , Maze Learning/drug effects , Neurotransmitter Agents/analysis , Rats , Rats, Sprague-Dawley , Sesquiterpenes/pharmacology , Streptozocin , Tumor Necrosis Factor-alpha/analysis
SELECTION OF CITATIONS
SEARCH DETAIL