Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Microbiol Spectr ; 10(1): e0034521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196785

ABSTRACT

Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.


Subject(s)
Arabidopsis/growth & development , Polyphosphates/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Soil Microbiology , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Arabidopsis/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genetic Variation , Indoleacetic Acids/metabolism , Phosphorus/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Phylogeny , Pseudomonas/classification , Pseudomonas/enzymology , Rhizosphere , Siderophores/biosynthesis , Soil/chemistry
2.
Cells ; 10(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-34064643

ABSTRACT

Twenty to thirty percent of the septating mycobacterial cells of the mid-log phase population showed highly deviated asymmetric constriction during division (ACD), while the remaining underwent symmetric constriction during division (SCD). The ACD produced short-sized cells (SCs) and normal/long-sized cells (NCs) as the sister-daughter cells, but with significant differential susceptibility to antibiotic/oxidative/nitrite stress. Here we report that, at 0.2% glycerol, formulated in the Middlebrook 7H9 medium, a significantly high proportion of the cells were divided by SCD. When the glycerol concentration decreased to 0.1% due to cell-growth/division, the ACD proportion gradually increased until the ACD:SCD ratio reached ~50:50. With further decrease in the glycerol levels, the SCD proportion increased with concomitant decrease in the ACD proportion. Maintenance of glycerol at 0.1%, through replenishment, held the ACD:SCD proportion at ~50:50. Transfer of the cells from one culture with a specific glycerol level to the supernatant from another culture, with a different glycerol level, made the cells change the ACD:SCD proportion to that of the culture from which the supernatant was taken. RT-qPCR data showed the possibility of diadenosine tetraphosphate phosphorylase (MSMEG_2932), phosphatidylinositol synthase (MSMEG_2933), and a Nudix family hydrolase (MSMEG_2936) involved in the ACD:SCD proportion-change in response to glycerol levels. We also discussed its physiological significance.


Subject(s)
Glycerol/metabolism , Mycobacterium bovis/metabolism , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/metabolism , Acid Anhydride Hydrolases/metabolism , Antioxidants/metabolism , CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/metabolism , Cell Proliferation , Culture Media , DNA, Complementary/metabolism , Glycerol/chemistry , Humans , Mutation , Oxidative Stress , Pyrophosphatases/metabolism , RNA/metabolism , Tuberculosis , Tuberculosis, Multidrug-Resistant/microbiology , Nudix Hydrolases
3.
Biochem Biophys Res Commun ; 464(2): 629-34, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26168720

ABSTRACT

The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640-1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins.


Subject(s)
Acid Anhydride Hydrolases/metabolism , RNA Caps , RNA, Viral/metabolism , Rinderpest virus/chemistry , Viral Proteins/metabolism , Acid Anhydride Hydrolases/chemistry , Amino Acid Sequence , Molecular Sequence Data , Sequence Homology, Amino Acid , Viral Proteins/chemistry
4.
Mol Endocrinol ; 29(9): 1303-19, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26168034

ABSTRACT

Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.


Subject(s)
Acid Anhydride Hydrolases/genetics , Insulin/metabolism , Obesity/genetics , Pyrophosphatases/genetics , Starvation/genetics , Acid Anhydride Hydrolases/biosynthesis , Acid Anhydride Hydrolases/metabolism , Amygdala/metabolism , Animals , Cell Line, Tumor , Drosophila , Drosophila Proteins/biosynthesis , Gene Knockdown Techniques , HCT116 Cells , HeLa Cells , Humans , Hyperinsulinism/genetics , Hyperphagia/genetics , Hypothalamus/metabolism , Insect Hormones/biosynthesis , Insulin/genetics , Insulin-Secreting Cells/metabolism , Intercellular Signaling Peptides and Proteins/biosynthesis , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Oligopeptides/biosynthesis , Pyrrolidonecarboxylic Acid/analogs & derivatives , RNA, Messenger/biosynthesis , Signal Transduction/genetics , Somatomedins/biosynthesis , Trehalose/blood
5.
BMC Complement Altern Med ; 15: 23, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25880193

ABSTRACT

BACKGROUND: Abnormal Savda Munziq (ASMq) is a herbal preparation used in Traditional Uighur Medicine for the treatment cancer. The polyphenol is main compounds contained in ASMq preparation responsible for anticancer effect of ASMq. METHODS: In this study,Real-time quantitative Polymerase Chain Reaction (RT-PCR) assay, MTT assay and flow cytometry were used to investigate the effect of polyphenol of ASMq on cell viability and the potential of the phenolic rich extracts of ASMq to induce apoptosis in human cervical cancer cells SiHa and its effects on telomerase activity were investigated. Cellular morphological change was observed by phase contrast microscopy. The MTT cell viability data revealed that treatment with phenolic rich extracts at 75 ~ 175 µg/ml significantly inhibited the viability and proliferation of cells, and these effects occurred in a concentration-dependent manner and time dependent manner (P < 0.01). RESULTS: The phenolic rich extracts can induce apoptosis of SiHa cells, can increase the apoptosis rate in a concentration-dependent manner and time dependent manner (P < 0.01). Growth inhibition and apoptosis induction by phenolic rich extracts treatment on SiHa cells was associated with down-regulation of anti-apoptotic Bcl-2 expression and telomerase (P < 0.05) and Survivin expression. In addition, phenolic rich extracts exerted a dose-dependent induction of FHIT expression. CONCLUSION: These results suggest that phenolic rich extracts may have anti-tumor effects in human cervical cancer through cytotoxicity, apoptosis-inducing properties and telomerase activity.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Apoptosis/drug effects , Phytotherapy , Plant Extracts/therapeutic use , Polyphenols/therapeutic use , Telomerase/metabolism , Uterine Cervical Neoplasms/drug therapy , Acid Anhydride Hydrolases/metabolism , Anticarcinogenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Down-Regulation/drug effects , Female , Flow Cytometry , Humans , Inhibitor of Apoptosis Proteins/metabolism , Medicine, Traditional , Neoplasm Proteins/metabolism , Phenols/pharmacology , Phenols/therapeutic use , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Survivin , Uterine Cervical Neoplasms/metabolism
6.
Antimicrob Agents Chemother ; 59(1): 186-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25331707

ABSTRACT

The development of deoxynucleoside triphosphate (dNTP)-based drugs requires a quantitative understanding of any inhibition, activation, or hydrolysis by off-target cellular enzymes. SAMHD1 is a regulatory dNTP-triphosphohydrolase that inhibits HIV-1 replication in human myeloid cells. We describe here an enzyme-coupled assay for quantifying the activation, inhibition, and hydrolysis of dNTPs, nucleotide analogues, and nucleotide analogue inhibitors by triphosphohydrolase enzymes. The assay facilitates mechanistic studies of triphosphohydrolase enzymes and the quantification of off-target effects of nucleotide-based antiviral and chemotherapeutic agents.


Subject(s)
Acid Anhydride Hydrolases/analysis , Biological Assay/methods , Drug Evaluation, Preclinical/methods , Monomeric GTP-Binding Proteins/analysis , Monomeric GTP-Binding Proteins/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Acyclovir/chemistry , Acyclovir/metabolism , Acyclovir/pharmacology , Adenine Nucleotides/chemistry , Adenine Nucleotides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Arabinonucleosides/chemistry , Arabinonucleosides/pharmacology , Catalysis/drug effects , Clofarabine , Deoxyribonucleotides/chemistry , Deoxyribonucleotides/metabolism , Dose-Response Relationship, Drug , Ganciclovir/chemistry , Ganciclovir/pharmacology , HIV-1 , Hydrolysis , SAM Domain and HD Domain-Containing Protein 1
7.
Biotechnol Bioeng ; 111(12): 2421-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24975745

ABSTRACT

Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Bioreactors , Models, Biological , Phosphorus/isolation & purification , Phosphorus/metabolism , Acid Anhydride Hydrolases/analysis , Anaerobiosis , Electric Conductivity , Microbiota , Phosphorus/chemistry , Sewage , Systems Biology
8.
Environ Sci Pollut Res Int ; 21(9): 6034-43, 2014 May.
Article in English | MEDLINE | ID: mdl-24464081

ABSTRACT

Previous researches have demonstrated that biological phosphorus removal (BPR) from wastewater could be driven by the aerobic/extended-idle (A/EI) regime. This study further investigated temperature effects on phosphorus removal performance in six A/EI sequencing batch reactors (SBRs) operated at temperatures ranging from 5 to 30 °C. The results showed that phosphorus removal efficiency increased with temperature increasing from 5 to 20 °C but slightly decreased when temperature continually increased to 30 °C. The highest phosphorus removal rate of 97.1 % was obtained at 20 °C. The biomass cultured at 20 °C contained more polyphosphate accumulating organisms (PAO) and less glycogen accumulating organisms (GAO) than that cultured at any other temperatures investigated. The mechanism studies revealed that temperature affected the transformations of glycogen and polyhydroxyalkanoates, and the activities of exopolyphosphatase and polyphosphate kinase activities. In addition, phosphorus removal performances of the A/EI and traditional anaerobic/oxic (A/O) SBRs were compared at 5 and 20 °C, respectively. The results showed the A/EI regime drove better phosphorus removal than the A/O regime at both 5 and 20 °C, and more PAO and less GAO abundances in the biomass might be the principal reason for the higher BPR in the A/EI SBRs as compared with the A/O SBRs.


Subject(s)
Phosphorus/metabolism , Temperature , Waste Disposal, Fluid/methods , Acid Anhydride Hydrolases/analysis , Acid Anhydride Hydrolases/metabolism , Aerobiosis , Bioreactors/microbiology , Glycogen/analysis , Glycogen/metabolism , Phosphorus/analysis , Polyhydroxyalkanoates/analysis , Polyhydroxyalkanoates/metabolism , Polyphosphates/analysis , Polyphosphates/metabolism , Wastewater/chemistry , Wastewater/microbiology
9.
J Hazard Mater ; 239-240: 88-94, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23021316

ABSTRACT

The effects of AgNPs and Ag+ (0-5 mg/L) on wastewater enhanced biological phosphorus removal (EBPR) were investigated. The phosphorus removal efficiency was maintained at 99% no matter what the concentrations of AgNPs were, but it was decreased to 48.8% at Ag+ of 1 mg/L, and no net phosphorus was removed at Ag+ greater than 2 mg/L in the batch tests. The uptake of wastewater carbon source and the anaerobic and aerobic transformations of phosphorus, polyhydoxyalkanoates and glycogen were inhibited by Ag+ other than AgNPs. Ag+ showed stronger toxicity on polyphosphate accumulating organisms (PAOs) than glycogen accumulating organisms (GAOs). Further investigation revealed that the decrease in anaerobic phosphorus release by Ag+ was caused by the inhibition on the activities of adenylate kinase and expolyphosphatase, whereas the decrease in aerobic phosphorus uptake was due to the suppression in energy generation for phosphorus uptake. However, the presence of either AgNPs or Ag+ did not lead to cell leakage and membrane damage.


Subject(s)
Bacteria/drug effects , Metal Nanoparticles , Phosphorus/metabolism , Silver/pharmacology , Water Pollutants, Chemical/metabolism , Acid Anhydride Hydrolases/metabolism , Adenylate Kinase/metabolism , Bacteria/metabolism , Bacterial Load , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Reactive Oxygen Species/metabolism , Waste Disposal, Fluid , Wastewater/microbiology , Water Purification
10.
Plant Physiol Biochem ; 49(10): 1155-64, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21856164

ABSTRACT

Cereal aleurone cells are specialized endosperm cells that produce enzymes to hydrolyze the starchy endosperm during germination. Aleurone cells can undergo programmed cell death (PCD) when incubated in the presence of gibberellic acid (GA) in contrast to abscisic acid (ABA) which inhibits the process. The progression of PCD in aleurone layer cells of wheat grain is accompanied by an increase in deoxyribonuclease (DNase) activities and the internucleosomal degradation of nuclear DNA. Reactive oxygen species (ROS) are increased during PCD in the aleurone cells owing to the ß-oxidation of triglycerides and inhibition of the antioxidant enzymes possibly leading to extensive oxidative damage to DNA. ROS generate mainly non-bulky DNA base lesions which are removed in the base excision repair (BER) pathway, initiated by the DNA glycosylases. At present, very little is known about oxidative DNA damage repair in cereals. Here, we study DNA repair in the cell-free extracts of wheat aleurone layer incubated or not with phytohormones. We show, for the first time, the presence of 8-oxoguanine-DNA and ethenoadenine-DNA glycosylase activities in wheat aleurone cells. Interestingly, the DNA glycosylase and AP endonuclease activities are strongly induced in the presence of GA. Based on these data we propose that GA in addition to activation of nuclear DNases also induces the DNA repair activities which remove oxidized DNA bases in the BER pathway. Potential roles of the wheat DNA glycosylases in GA-induced oligonucleosomal fragmentation of DNA and metabolic activation of aleurone layer cells via repair of transcribed regions are discussed.


Subject(s)
DNA Repair Enzymes/metabolism , DNA Repair , Deoxyribonucleases/metabolism , Endosperm/enzymology , Triticum/enzymology , Abscisic Acid/pharmacology , Acid Anhydride Hydrolases/metabolism , Cell Death , Cytoplasm/enzymology , DNA Fragmentation , DNA, Plant/genetics , DNA, Plant/isolation & purification , Endosperm/drug effects , Endosperm/genetics , Enzyme Activation , Gibberellins/pharmacology , Glucosephosphate Dehydrogenase/metabolism , Oxidative Stress , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Triticum/drug effects , Triticum/genetics
11.
Comb Chem High Throughput Screen ; 12(3): 258-68, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19275531

ABSTRACT

RNA triphosphatases are attractive and mostly unexplored therapeutic targets for the development of broad spectrum antiprotozoal, antiviral and antifungal agents. The use of malachite green as a readout for phosphatases is well characterized and widely employed. However, the reaction depends on high quantities of inorganic phosphate to be generated, which makes this assay not easily amenable to screening in 1536-well format. The overly long reading times required also prohibit its use to screen large chemical libraries. To overcome these limitations, we sought to develop a fluorescence polarization (FP) -based assay for triphosphatases, compatible with miniaturization and fast readouts. For this purpose, we took advantage of the nucleoside triphosphatase activity of this class of enzyme to successfully adapt the Transcreener ADP assay based on the detection of generated ADP by immunocompetition fluorescence polarization to the RNA triphosphatase TbCet1 in 1536-well format. We also tested the performance of this newly developed assay in a pilot screen of 3,000 compounds and we confirmed the activity of the obtained hits. We present and discuss our findings and their importance for the discovery of novel drugs by high throughput screening.


Subject(s)
Acid Anhydride Hydrolases/drug effects , Antiprotozoal Agents , Drug Evaluation, Preclinical/methods , Fluorescence Polarization/methods , Trypanosoma/enzymology , Acid Anhydride Hydrolases/metabolism , Adenosine Diphosphate/analysis , Animals , Drug Discovery , Small Molecule Libraries
12.
Plant Biol (Stuttg) ; 7(2): 140-7, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15822009

ABSTRACT

Proteins of the 14-3-3 family show a broad range of activities in plants, depending on their localisation in different cellular compartments. Different organelle membranes of pollen grains and pollen tubes of Lilium longiflorum Thunb. were separated simultaneously using optimised discontinuous sucrose density centrifugation. The obtained organelle-enriched fractions were identified as vacuolar, Golgi, endoplasmic reticulum and plasma membranes, according to their marker enzyme activities, and were assayed for membrane-bound 14-3-3 proteins by immunodetection. 14-3-3 proteins were detected in the cytoplasm as well as in all obtained organelle fractions but were also released into the extracellular medium. In pollen grains, much more plasma membrane-bound 14-3-3 proteins were detected than in the PM-enriched fraction of pollen tubes, whereas the level of Golgi- and ER-associated 14-3-3 proteins was similar in pollen grains and tubes. This shift in the localisation of membrane-associated 14-3-3 proteins is probably correlated with a change in the major function of 14-3-3 proteins, e.g., perhaps changing from initiating pollen grain germination by activation of the PM H +-ATPase to recruitment of membrane proteins via the secretory pathway during tube elongation.


Subject(s)
14-3-3 Proteins/analysis , Intracellular Membranes/chemistry , Lilium/chemistry , Plant Proteins/analysis , Pollen/chemistry , 14-3-3 Proteins/physiology , Acid Anhydride Hydrolases/metabolism , Biomarkers , Electron Transport Complex IV/metabolism , Endoplasmic Reticulum/chemistry , Golgi Apparatus/chemistry , Lilium/physiology , Lilium/ultrastructure , Mitochondria/chemistry , NADH Dehydrogenase/metabolism , Plant Proteins/physiology , Pollen/physiology , Pollen/ultrastructure , Protein Binding , Proton-Translocating ATPases/metabolism
13.
Biochem J ; 357(Pt 2): 399-405, 2001 Jul 15.
Article in English | MEDLINE | ID: mdl-11439089

ABSTRACT

Site-directed mutagenesis has been used to characterize the functions of key amino acid residues in the catalytic site of the 'nudix' hydrolase, (asymmetrical) diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) hydrolase (EC 3.6.1.17) from Lupinus angustifolius, the three-dimensional solution structure of which has recently been solved. Residues within the nudix motif, Gly-(Xaa)5-Glu-(Xaa)7-Arg-Glu-Uaa-Xaa-(Glu)2-Xaa-Gly (where Xaa represents unspecified amino acids and Uaa represents the bulky aliphatic amino acids Ile, Leu or Val) conserved in 'nudix enzymes', and residues important for catalysis from elsewhere in the molecule, were mutated and the expressed proteins characterized. The results reveal a high degree of functional conservation between lupin asymmetric Ap4A hydrolase and the 8-oxo-dGTP hydrolase from Escherichia coli. Charged residues in positions equivalent to those that ligate an enzyme-bound metal ion in the E. coli 8-oxo-dGTP hydrolase [Harris, Wu, Massiah and Mildvan (2000) Biochemistry 39, 1655-1674] were shown to contribute to catalysis to similar extents in the lupin enzyme. Mutations E55Q, E59Q and E125Q all reduced kcat markedly, whereas mutations R54Q, E58Q and E122Q had smaller effects. None of the mutations produced a substantial change in the Km)for Ap4A, but several extensively modified the pH-dependence and fluoride-sensitivities of the hydrolase. It was concluded that the precisely positioned glutamate residues Glu-55, Glu-59 and Glu-125 are conserved as functionally significant components of the hydrolytic mechanism in both of these members of the nudix family of hydrolases.


Subject(s)
Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/metabolism , Escherichia coli Proteins , Fabaceae/enzymology , Plants, Medicinal , Amino Acid Sequence , Amino Acid Substitution , Bacterial Proteins/chemistry , Binding Sites , Catalysis , Circular Dichroism , Consensus Sequence , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphoric Monoester Hydrolases/chemistry , Protein Structure, Secondary , Pyrophosphatases , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Biochemistry (Mosc) ; 65(3): 349-54, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10739478

ABSTRACT

The content of inorganic linear polyphosphate (polyP) and the polymeric degree (n) of these compounds were determined in the process of growth of the yeast Saccharomyces cerevisiae VKM Y-1173 in a medium, which contained varying Pi amount with the constant level of all the necessary components. For this purpose, a combination of chemical methods of polyP extraction and 31P-NMR spectroscopy studies of their chain length were used. After 7 h of phosphate starvation, the yeast was shown to use almost completely the phosphate reserve in the form of polyP localized in various cell compartments to support their vitality. The polyP drop was followed by a considerable shortening of the polymer chain length of acid-soluble (polyP1) and two alkali-soluble (polyP3 and polyP4) fractions. Under the same conditions, the content of a salt-soluble fraction (polyP2) decreased almost 20-fold followed by a simultaneous increase of the chain length nearly 2-fold. As a result, fraction chain length ranged up to n = 40-45. Replacement of the yeast cells after phosphate starvation to a complete phosphate- and glucose-containing medium resulted in super-accumulation ("overcompensation") of polyP within 2 h mainly in polyP3 and, to a lesser degree, in polyP1, polyP2, and polyP5 fractions. In polyP4 fraction localized as polyP3 at the cell surface, the polyP super-accumulation was not detected. The increase of polyP amount in the fractions mentioned turned out not to be accompanied by simultaneous elongation of their chain length and occurred at the lowest level that is characteristic of a polymer level for each fraction. Further cultivation of the yeast on the complete medium during 2 h had little or no effect on polyP content in the cells but led to elongation of polyP chain length especially in the polyP3 and polyP4 fractions. A phenomenon of considerable elongation of polyP chain length against the background of their fixed content revealed in the yeast growing on the complete medium suggests that these organisms possess a previously unknown discrete way of polyP biosynthesis, which results first in the formation of comparatively low-molecular-mass chains followed by that of high-molecular-mass polymers.


Subject(s)
Culture Media/metabolism , Phosphates/metabolism , Polyphosphates/metabolism , Saccharomyces cerevisiae/metabolism , Acid Anhydride Hydrolases/metabolism , Culture Media/chemistry , Phosphates/chemistry , Phosphorus/metabolism , Polymers , Polyphosphates/chemistry
15.
EMBO J ; 17(22): 6599-607, 1998 Nov 16.
Article in English | MEDLINE | ID: mdl-9822604

ABSTRACT

Diphosphoinositol pentakisphosphate (PP-InsP5 or 'InsP7') and bisdiphosphoinositol tetrakisphosphate ([PP]2-InsP4 or 'InsP8') are the most highly phosphorylated members of the inositol-based cell signaling family. We have purified a rat hepatic diphosphoinositol polyphosphate phosphohydrolase (DIPP) that cleaves a beta-phosphate from the diphosphate groups in PP-InsP5 (Km = 340 nM) and [PP]2-InsP4 (Km = 34 nM). Inositol hexakisphophate (InsP6) was not a substrate, but it inhibited metabolism of both [PP]2-InsP4 and PP-InsP5 (IC50 = 0.2 and 3 microM, respectively). Microsequencing of DIPP revealed a 'MutT' domain, which in other contexts guards cellular integrity by dephosphorylating 8-oxo-dGTP, which causes AT to CG transversion mutations. The MutT domain also metabolizes some nucleoside phosphates that may play roles in signal transduction. The rat DIPP MutT domain is conserved in a novel recombinant human uterine DIPP. The nucleotide sequence of the human DIPP cDNA was aligned to chromosome 6; the candidate gene contains at least four exons. The dependence of DIPP's catalytic activity upon its MutT domain was confirmed by mutagenesis of a conserved glutamate residue. DIPP's low molecular size, Mg2+ dependency and catalytic preference for phosphoanhydride bonds are also features of other MutT-type proteins. Because overlapping substrate specificity is a feature of this class of proteins, our data provide new directions for future studies of higher inositol phosphates.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Bacterial Proteins/metabolism , Escherichia coli Proteins , Phosphoric Monoester Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary , Gene Expression Regulation, Enzymologic , Humans , Inositol Phosphates/metabolism , Liver/enzymology , Molecular Sequence Data , Mutagenesis, Site-Directed , Pyrophosphatases , Rats , Sequence Homology, Amino Acid , Substrate Specificity
16.
Biochemistry ; 36(48): 14794-8, 1997 Dec 02.
Article in English | MEDLINE | ID: mdl-9398200

ABSTRACT

Standard preparations of Escherichia coli RNA polymerase harbor a 70 kDa protein with NTPase (beta-gamma cleavage) activity that is not a recognized polymerase subunit. The NTPase activity of this component, before and after separation from the polymerase, is strongly dependent on the presence of DNA; single-stranded polydeoxynucleotides are more effective than double-stranded. ATP and GTP are cleaved, the latter much less readily. The NTPase as it occurs with the polymerase displays cleavage preference for NTPs that are not complementary to the DNA, a fact that has led to proposals for involvement of the NTPase in transcriptional error prevention [Volloch, V. Z., Rits, L. & Tumerman, L. (1979) Nucleic Acids Res. 6, 1535-1546; Libby, R. T., Nelson, J. L., Calvo, J. M., & Gallant, J. A. (1989) EMBO J. 8, 3253-3158]. We find, however, that the lesser cleavage in the presence of complementary DNA results from competition for the NTP between the processes of incorporation by the polymerase and of cleavage by the NTPase, operating on the same substrate pool. The greater cleavage with noncomplementary DNA occurs because of the lack of incorporation by the polymerase, which then does not compete with the NTPase for the substrate pool. Thus, these findings indicate that the cleavage preference of the NTPase for noncomplementary NTPs is not part of a mechanism for error prevention during transcription.


Subject(s)
Acid Anhydride Hydrolases/metabolism , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/enzymology , Acid Anhydride Hydrolases/drug effects , Adenosine Triphosphate/metabolism , DNA/pharmacology , DNA, Single-Stranded/pharmacology , DNA-Directed RNA Polymerases/drug effects , Guanosine Triphosphate/metabolism , Nucleoside-Triphosphatase , Substrate Specificity , Transcription, Genetic
17.
Exp Brain Res ; 112(2): 203-12, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8951389

ABSTRACT

Thalamic neuronal degeneration after neocortical lesions involve both anterograde and retrograde components. This study deals with the thalamic microglial response after neocortical aspiration lesions, using fluorogold fluorescent prelabeling, to identify retrogradely degenerating thalamocortical neurons, combined with histochemical or immunohistochemical staining of microglial cells. Adult male Wistar rats were injected with the retrograde fluorescent tracer fluorogold, in the right sensorimotor cortex (forepaw area) in order to retrogradely label thalamic neurons projecting to this area. After 1 week, the fluorogold injection site was removed by aspiration, axotomizing at the same time the thalamic projection neurons now retrogradely labeled with fluorogold. After 3, 7, 14, and 28 days the animals were killed and processed for nucleoside diphosphatase histochemistry or complement type 3 receptor immuno-histochemistry and class I and II major histocompatibility complex immunohistochemistry using OX42, OX18, and OX6 antibodies. The histological analysis showed a prominent and progressive nucleoside diphosphatase-, OX42-, and OX6-positive microglial cell response in the ventrolateral, posterior, and ventrobasal thalamic nuclei with ongoing retrograde and anterograde neuronal degeneration. Initially the reactive microglia had a bushy morphology and were succeeded by ameboid microglia and microglial cluster cells as the reaction progressed. However, in the reticular thalamic nucleus, which suffered exclusively anterograde neuronal degeneration, a different picture was seen with only bushy microglia. The neurons undergoing retrograde degeneration in the ventrolateral, posterior, and ventrobasal thalamic nuclei were retrogradely labeled by the fluorogold tracer. Individual nucleoside diphosphatase-, OX42-, or OX6-positive microglial cells extended long cytoplasmic processes surrounding fluorogold-labeled neurons and had in some cases apparently phagocytized these. Several microglial cells were thus double-labeled with nucleoside diphosphatase or OX42 and fluorogold. In addition, small nucleoside diphosphatase-positive, fluorogold-labeled perivascular cells were observed in the neocortex near the fluorogold-injected and ablated neocortical areas and in the ipsilateral thalamus. This study demonstrates: (1) that the microglial response to thalamic degeneration after neocortical lesion is graded with a limited reaction to the well-known massive anterograde axonal degeneration and a more extended reaction to the axotomy-induced retrograde cell death; and (2) that also perivascular cells and possibly macrophages may contribute to this reaction, as seen by uptake of fluorogold from axotomized neurons in the degenerating thalamic nuclei.


Subject(s)
Microglia/physiology , Motor Cortex/physiology , Nerve Degeneration , Neurons/physiology , Somatosensory Cortex/physiology , Stilbamidines , Thalamus/physiology , Acid Anhydride Hydrolases/metabolism , Animals , Antibodies, Monoclonal , Astrocytes/metabolism , Fluorescent Dyes , Glial Fibrillary Acidic Protein/metabolism , Histocytochemistry , Immunohistochemistry/methods , Male , Microglia/enzymology , Rats , Rats, Wistar , Thalamus/cytology
18.
J Biol Chem ; 271(36): 22139-45, 1996 Sep 06.
Article in English | MEDLINE | ID: mdl-8703025

ABSTRACT

ATP diphosphohydrolase from tegumental membranes of Schistosoma mansoni was solubilized with Triton X-100 plus deoxycholate and separated by preparative nondenaturing polyacrylamide gel electrophoresis. Two isoforms with ATP-hydrolytic activity were identified and excised from nondenaturing gels. For each of the active bands, two protein bands (63 and 55 kDa) were detected with Coomassie Blue staining, following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blots developed with polyclonal anti-potato apyrase antibody revealed a single protein of 63 kDa, either with samples excised from active bands or with total S. mansoni tegument. Anti-potato apyrase antibody immobilized on Sepharose-Protein A depleted over 95% of ATPase and ADPase activities from detergent-solubilized tegument. Confocal laser scanning microscopy showed anti-potato apyrase antibody on the outer surface of S. mansoni tegument. A different antibody against a fusion protein derived from recently cloned Toxoplasma gondii nucleoside triphosphate hydrolase (Bermudes, D., Peck, K. R., Afifi, M. A., Beckers, C. J. M., and Joiner, K. A. (1994) J. Biol. Chem. 269, 29252-29260) revealed the same 63-kDa band in Western blots of S. mansoni tegument. Since anti-potato apyrase antibodies exhibited cross-reactivity with S. mansoni ATP diphosphohydrolase, we decided to gain further information on the primary structure of potato apyrase by sequencing the protein. Three novel peptides were obtained: amino-terminal sequence and two internal sequences from tryptic fragments. Eight sequences recently deposited in the data bank, including that of T. gondii nucleoside triphosphate hydrolase, have considerable homologies to potato apyrase suggesting a new family of nucleoside triphosphatases which contains a conserved motif (I/V)(V/M/I)(I/L/F/C)DAGS(S/T) near the amino-terminal. Antibody cross-reactivities in the present work suggest that conserved epitopes from S. mansoni ATP diphosphohydrolase are present in this family of nucleotide-splitting enzymes.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Apyrase/isolation & purification , Apyrase/metabolism , Schistosoma mansoni/enzymology , Toxoplasma/enzymology , Amino Acid Sequence , Animals , Conserved Sequence , Cross Reactions , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Nucleoside-Triphosphatase , Sequence Homology, Amino Acid , Solanum tuberosum/enzymology
19.
Ann Neurol ; 39(5): 585-91, 1996 May.
Article in English | MEDLINE | ID: mdl-8619543

ABSTRACT

Clinical data suggest that high-dose thiamine (vitamin B1) may have a mild beneficial effect in some patients with Alzheimer's disease (AD). Since this action could be related to a brain thiamine deficiency, we measured directly levels of free (nonphosphorylated) thiamine and its phosphate esters, thiamine monophosphate and thiamine diphosphate (TDP), and activities of three TDP-metabolizing enzymes (thiamine pyrophosphokinase, thiamine diphosphatase, and thiamine triphosphatase) in autopsied cerebral cortex of 18 patients with AD and 20 matched controls. In the AD group, mean levels of free thiamine and its monophosphate ester were normal, whereas levels of TDP were significantly reduced by 18 to 21% in all three cortical brain areas examined. Activities of the TDP-metabolizing enzymes were normal in the AD group, suggesting that decreased TDP is not due to altered levels of these enzymes. The TDP decrease could be explained by a cerebral cortical deficiency in AD of ATP, which is needed for TDP synthesis. Although the magnitude of the TDP reduction is slight, a chronic subclinical TDP deficiency could contribute to impaired brain function in AD and might provide the basis for the modest improvement by thiamine in cognitive status of some patients with AD.


Subject(s)
Alzheimer Disease/enzymology , Brain Chemistry , Cerebral Cortex/enzymology , Thiamine/metabolism , Acid Anhydride Hydrolases/metabolism , Age Factors , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Autopsy , Brain Chemistry/physiology , Case-Control Studies , Cerebral Cortex/drug effects , Humans , Ketoglutarate Dehydrogenase Complex/metabolism , Thiamin Pyrophosphokinase/metabolism , Thiamin-Triphosphatase/metabolism , Thiamine Monophosphate/metabolism , Thiamine Pyrophosphate/metabolism , Thiamine Triphosphate/metabolism , Time Factors
20.
Brain Res ; 631(2): 334-6, 1993 Dec 24.
Article in English | MEDLINE | ID: mdl-8131063

ABSTRACT

Thiamine diphosphatase (TDPase) activity was measured using a colorimetric assay in frontal and temporal cortex obtained at autopsy from eight patients with neuropathologically confirmed Alzheimer's disease (AD) and from an equal number of control patients matched for age and autopsy delay interval, free from neurological or psychiatric disorders. TDPase activities were significantly reduced in frontal cortex (by 28%, P < 0.05) and temporal cortex (by 62%, P < 0.01) of AD patients. These findings add to a growing body of evidence of altered thiamine neurochemistry in AD. Given the previous reports of an association of TDPase with cholinergic nerve terminals, loss of TDPase activities could reflect loss of cholinergic neurons in frontal and temporal cortex in AD.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Alzheimer Disease/enzymology , Frontal Lobe/enzymology , Temporal Lobe/enzymology , Aged , Colorimetry , Female , Histocytochemistry , Humans , Male , Parasympathetic Nervous System/enzymology , Parasympathetic Nervous System/pathology
SELECTION OF CITATIONS
SEARCH DETAIL