Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 107: 154469, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36202056

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE: This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS: Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1ß and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS: HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1ß in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION: HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.


Subject(s)
Acute Lung Injury , Berberine , Acid Ceramidase/pharmacology , Acid Ceramidase/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Amino Acids , Animals , Berberine/pharmacology , Drugs, Chinese Herbal , Eosine Yellowish-(YS)/adverse effects , Hematoxylin/pharmacology , Hematoxylin/therapeutic use , Inflammasomes , Interleukin-6/pharmacology , Lipopolysaccharides/pharmacology , Lung , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Sphingolipids/adverse effects , Tumor Necrosis Factor-alpha/pharmacology
2.
Biochim Biophys Acta ; 1862(9): 1459-71, 2016 09.
Article in English | MEDLINE | ID: mdl-27155573

ABSTRACT

Ceramides are a diverse group of sphingolipids that play important roles in many biological processes. Acid ceramidase (AC) is one key enzyme that regulates ceramide metabolism. Early research on AC focused on the fact that it is the enzyme deficient in the rare genetic disorder, Farber Lipogranulomatosis. Recent research has revealed that deficiency of the same enzyme is responsible for a rare form of spinal muscular atrophy associated with myoclonic epilepsy (SMA-PME). Due to their diverse role in biology, accumulation of ceramides also has been implicated in the pathobiology of many other common diseases, including infectious lung diseases, diabetes, cancers and others. This has revealed the potential of AC as a therapy for many of these diseases. This review will focus on the biology of AC and the potential role of this enzyme in the treatment of human disease.


Subject(s)
Acid Ceramidase/therapeutic use , Ceramides/metabolism , Enzyme Replacement Therapy , Farber Lipogranulomatosis/drug therapy , Farber Lipogranulomatosis/metabolism , Acid Ceramidase/genetics , Animals , Arthritis/drug therapy , Arthritis/metabolism , Bacterial Infections/drug therapy , Bacterial Infections/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Disease Models, Animal , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/metabolism , Farber Lipogranulomatosis/genetics , Humans , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Mice , Mice, Knockout , Muscular Atrophy, Spinal/complications , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/metabolism , Sphingolipidoses/drug therapy , Sphingolipidoses/genetics , Sphingolipidoses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL