Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Sci Food Agric ; 99(3): 1010-1019, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30009532

ABSTRACT

BACKGROUND: Organic acids, sugars and pigments are key components that determine the taste and flavor of plum fruit. However, metabolism of organic acid and sugar is not fully understood during the development of plum fruit cv. 'Furongli'. RESULTS: Mature fruit of 'Furongli' has the highest content of anthocyanins and the lowest content of total phenol compounds and flavonoids. Malate is the predominant organic acid anion in 'Furongli' fruit, followed by citrate and isocitrate. Glucose was the predominant sugar form, followed by fructose and sucrose. Correlation analysis indicated that malate content increased with increasing phosphoenolpyruvate carboxylase (PEPC) activity and decreasing nicotinamide adenine dinucleotide-malate dehydrogenase (NAD-MDH) activity. Citrate and isocitrate content increased with increasing PEPC and aconitase (ACO) activities, respectively. Both acid invertase and neutral invertase had higher activities at the early stage than later stage of fruit development. Fructose content decreased with increasing phosphoglucoisomerase (PGI) activity, whereas glucose content increased with decreasing hexokinase (HK) activity. CONCLUSION: Dynamics in organic acid anions were not solely controlled by a single enzyme but regulated by the integrated activity of enzymes such as nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME), NAD-ME, PEPC, ACO and NADP-isocitrate dehydrogenase. Sugar metabolism enzymes such as PGI, invertase and HK may play vital roles in the regulation of individual sugar metabolic processes. © 2018 Society of Chemical Industry.


Subject(s)
Fruit/metabolism , Prunus domestica/metabolism , Acids, Acyclic/metabolism , Carbohydrate Metabolism , Fruit/enzymology , Fruit/growth & development , Pigments, Biological/analysis , Prunus domestica/enzymology , Prunus domestica/growth & development
2.
J Environ Sci (China) ; 70: 45-53, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30037410

ABSTRACT

A soil-plant biological system was developed from chromium (Cr) polluted soil treated by the compost-phytoremediation method. The transformation and migration of the Cr in this system is comprehensively studied in this research. The results illustrated that the co-composting treatment can reduce the Cr availability from 39% (F1 was about 31% of total, F2 was about 8% of total) to less than 2% by stabilizing the Cr. However, herbaceous plants can accumulate the concentrations of Cr from 113.8 to 265.2mg/kg in the two crops, even though the concentration of soluble Cr in the substrate soil was below 0.1mg/L. Cr can be assimilated and easily transferred in the tissues of plants because the low-molecular-weight organic-acids (LMWOAs) derived from the plant root increase the bioavailability of Cr. The amount of extracted Cr dramatically increased when the organic acids were substituted in this order: citric acid>malic acid>tartaric acid>oxalic acid>acetic acid. On average the maximum (147.4mg/kg) and the minimum (78.75mg/kg) Cr were extracted by 20mmol/L citric acid and acetic acid, respectively. The desorption of Cr in different acid solutions can be predicted by the pseudo second-order kinetics. The exchangeable Cr, carbonate-bound Cr, and residual Cr decreased, while Fe-Mn oxide bound Cr and organic bound Cr increased in the soil solid phase. According to the experimental results, the organic acids will promote the desorption and chelation processes of Cr, leading to the remobilization of Cr in the soil.


Subject(s)
Acids, Acyclic/metabolism , Biodegradation, Environmental , Chromium/metabolism , Composting/methods , Soil Pollutants/metabolism , Chromium/analysis , Chromium/chemistry , Kinetics , Soil , Soil Pollutants/analysis , Soil Pollutants/chemistry
3.
Environ Pollut ; 218: 281-288, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27443952

ABSTRACT

Presence of microorganisms in soils strongly affects mobility of metals. This fact is often excluded when mobile metal fraction in soil is studied using extraction procedures. Thus, the first objective of this paper was to evaluate strain Aspergillus niger's exometabolites contribution on aluminium mobilization. Fungal exudates collected in various time intervals during cultivation were analyzed and used for two-step bio-assisted extraction of alumina and gibbsite. Oxalic, citric and gluconic acids were identified in collected culture media with concentrations up to 68.4, 2.0 and 16.5 mmol L-1, respectively. These exometabolites proved to be the most efficient agents in mobile aluminium fraction extraction with aluminium extraction efficiency reaching almost 2.2%. However, fungal cultivation is time demanding process. Therefore, the second objective was to simplify acquisition of equally efficient extracting agent by chemically mimicking composition of main organic acid components of fungal exudates. This was successfully achieved with organic acids mixture prepared according to medium composition collected on the 12th day of Aspergillus niger cultivation. This mixture extracted similar amounts of aluminium from alumina compared to culture medium. The aluminium extraction efficiency from gibbsite by organic acids mixture was lesser than 0.09% which is most likely because of more rigid mineral structure of gibbsite compared to alumina. The prepared organic acid mixture was then successfully applied for aluminium extraction from soil samples and compared to standard single step extraction techniques. This showed there is at least 2.9 times higher content of mobile aluminium fraction in soils than it was previously considered, if contribution of microbial metabolites is considered in extraction procedures. Thus, our contribution highlights the significance of fungal metabolites in aluminium extraction from environmental samples, but it also simplifies the extraction procedure inspired by bio-assisted extraction of aluminium by common soil fungus A. niger.


Subject(s)
Acids, Acyclic/metabolism , Aluminum Hydroxide/metabolism , Aluminum Oxide/metabolism , Aspergillus niger/metabolism , Aluminum/metabolism , Citric Acid , Minerals/metabolism , Soil
4.
Food Chem ; 145: 984-90, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24128573

ABSTRACT

We investigated the effects of granulation on organic acid metabolism and its relation to mineral elements in 'Guanximiyou' pummelo (Citrus grandis) juice sacs. Granulated juice sacs had decreased concentrations of citrate and isocitrate, thus lowering juice sac acidity. By contrast, malate concentration was higher in granulated juice sacs than in normal ones. The reduction in citrate concentration might be caused by increased degradation, as indicated by enhanced aconitase activity, whilst the increase in malate concentration might be caused by increased biosynthesis, as indicated by enhanced phosphoenolpyruvate carboxylase (PEPC). Real time quantitative reverse transcription PCR (qRT-PCR) analysis showed that the activities of most acid-metabolizing enzymes were regulated at the transcriptional level, whilst post-translational modifications might influence the PEPC activity. Granulation led to increased accumulation of mineral elements (especially phosphorus, magnesium, sulphur, zinc and copper) in juice sacs, which might be involved in the incidence of granulation in pummelo fruits.


Subject(s)
Acids, Acyclic/metabolism , Beverages/analysis , Citrus/chemistry , Food Handling , Fruit/chemistry , Trace Elements/analysis , Acids, Acyclic/analysis , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , China , Citric Acid/analysis , Citric Acid/metabolism , Citrus/enzymology , Citrus/metabolism , Copper/analysis , Enzyme Stability , Fruit/enzymology , Fruit/metabolism , Gene Expression Regulation, Enzymologic , Isocitrates/analysis , Isocitrates/metabolism , Magnesium/analysis , Malates/analysis , Malates/metabolism , Particle Size , Phosphoenolpyruvate Carboxylase/biosynthesis , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Phosphorus/analysis , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Sulfur/analysis , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL