Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 21(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575645

ABSTRACT

Increasing multidrug resistance has led to renewed interest in phage-based therapy. A combination of the bacteriophages and antibiotics presents a promising approach enhancing the phage therapy effectiveness. First, phage candidates for therapy should be deeply characterized. Here we characterize the bacteriophage vB_AbaP_AGC01 that poses antibacterial activity against clinical Acinetobacter baumannii strains. Moreover, besides genomic and phenotypic analysis our study aims to analyze phage-antibiotic combination effectiveness with the use of ex vivo and in vivo models. The phage AGC01 efficiently adsorbs to A. baumannii cells and possesses a bacteriolytic lifecycle resulting in high production of progeny phages (317 ± 20 PFU × cell-1). The broad host range (50.27%, 93 out of 185 strains) against A. baumannii isolates and the inability of AGC01 to infect other bacterial species show its high specificity. Genomic analysis revealed a high similarity of the AGC01 genome sequence with that of the Friunavirus genus from a subfamily of Autographivirinae. The AGC01 is able to significantly reduce the A. baumannii cell count in a human heat-inactivated plasma blood model (HIP-B), both alone and in combination with antibiotics (gentamicin (GEN), ciprofloxacin (CIP), and meropenem (MER)). The synergistic action was observed when a combination of phage treatment with CIP or MER was used. The antimicrobial activity of AGC01 and phage-antibiotic combinations was confirmed using an in vivo larva model. This study shows the greatest increase in survival of G. mellonella larvae when the combination of phage (MOI = 1) and MER was used, which increased larval survival from 35% to 77%. Hence, AGC01 represents a novel candidate for phage therapy. Additionally, our study suggests that phages and antibiotics can act synergistically for greater antimicrobial effect when used as combination therapy.


Subject(s)
Acinetobacter Infections/therapy , Acinetobacter baumannii/virology , Anti-Bacterial Agents/therapeutic use , Bacteriophages/physiology , Lepidoptera/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Animals , Anti-Bacterial Agents/pharmacology , Bacteriolysis , Bacteriophages/classification , Bacteriophages/genetics , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Combined Modality Therapy , Disease Models, Animal , Genome, Viral , Hot Temperature , Humans , Meropenem/pharmacology , Meropenem/therapeutic use , Phage Therapy , Phenotype , Species Specificity , Whole Genome Sequencing
2.
Future Microbiol ; 11: 631-41, 2016 05.
Article in English | MEDLINE | ID: mdl-26925593

ABSTRACT

AIM: With the emergence of drug-resistant bacteria, finding alternative agents to treat antibiotic-resistant bacterial infections is imperative. MATERIALS & METHODS: A mouse pneumonia model was developed by combining cyclophosphamide pretreatment and Acinetobacter baumannii challenge, and a lytic bacteriophage was evaluated for its therapeutic efficacy in this model by examining the survival rate, bacterial load in the lung and lung pathology. RESULTS: Intranasal instillation with bacteriophage rescued 100% of mice following lethal challenge with A. baumannii. Phage treatment reduced bacterial load in the lung. Microcomputed tomography indicated a reduction in lung inflammation in mice given phage. CONCLUSION: This research demonstrates that intranasal application of bacteriophage is viable, and could provide complete protection from pneumonia caused by A. baumannii.


Subject(s)
Acinetobacter Infections/therapy , Acinetobacter baumannii/virology , Biological Therapy , Pneumonia/therapy , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/physiology , Animals , Anti-Bacterial Agents/administration & dosage , Bacterial Load , Bacteriophages , Combined Modality Therapy , Cyclophosphamide/administration & dosage , Disease Models, Animal , Female , Humans , Lung/microbiology , Mice , Mice, Inbred BALB C , Pneumonia/drug therapy , Pneumonia/microbiology
3.
PLoS One ; 7(10): e46537, 2012.
Article in English | MEDLINE | ID: mdl-23071586

ABSTRACT

AIMS: To isolate phages against extensively drug resistant Acinetobacter baumannii (XDRAB) and characterize the highest lytic capability phage as a model to evaluate the potential on phage therapy. METHODS AND RESULTS: Eight phages were isolated from hospital sewage and showed narrow host spectrum. Phage φkm18p was able to effectively lyse the most XDRAB. It has a dsDNA genome of 45 kb in size and hexagonal head of about 59 nm in diameter and no tail. Bacterial population decreased quickly from 10(8) CFU ml(-1) to 10(3) CFU ml(-1) in 30 min by φkm18p. The 185 kDa lysis protein encoded by φkm18p genome was detected when the extracted protein did not boil before SDS-PAGE; it showed that the lysis protein is a complex rather than a monomer. Phage φkm18p improved human lung epithelial cells survival rates when they were incubated with A. baumannii. Combination of phages (φkm18p, φTZ1 and φ314) as a cocktail could lyse all genotype-varying XDRAB isolates. CONCLUSION: Infections with XDRAB are extremely difficult to treat and development of a phage cocktails therapy could be a therapeutic alternative in the future. Phage φkm18p is a good candidate for inclusion in phage cocktails.


Subject(s)
Acinetobacter baumannii/virology , Bacteriolysis , Bacteriophages/physiology , Drug Resistance, Bacterial , Acinetobacter Infections/microbiology , Acinetobacter Infections/therapy , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/physiology , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Biological Therapy , Cell Line , Cell Survival , DNA, Viral/genetics , Endopeptidases/metabolism , Genome, Viral , Humans , Restriction Mapping , Sewage/virology , Viral Proteins/metabolism , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL