Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Org Biomol Chem ; 20(1): 196-207, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34878480

ABSTRACT

Sulfur-containing compounds, such as cyclic compounds with a vinyl sulfane structure, exhibit a wide range of biological activities including anticancer activity. Therefore, the development of efficient strategies to synthesize such compounds is a remarkable achievement. We have developed a unique approach for the rapid and modular preparation of nature-inspired cyclic and acyclic sulfur-containing compounds using thioacrolein, a naturally occurring chemically unstable intermediate. We constructed thiopyranone derivatives through the regioselective sequential double Diels-Alder reaction of thioacrolein produced by allicin, a major component in garlic, and two molecules of silyl enol ether as the diene partner. The cytotoxicity toward cancer stem cells of the thiopyranones was equal to or higher than that of (Z)-ajoene (positive control) derived from garlic, and the thiopyranones had higher chemical stability than (Z)-ajoene.


Subject(s)
Acrolein/pharmacology , Antineoplastic Agents/pharmacology , Garlic/chemistry , Neoplastic Stem Cells/drug effects , Plant Extracts/pharmacology , Sulfur Compounds/pharmacology , Acrolein/chemical synthesis , Acrolein/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Density Functional Theory , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Plant Extracts/chemical synthesis , Plant Extracts/chemistry , Sulfur Compounds/chemical synthesis , Sulfur Compounds/chemistry , Tumor Cells, Cultured
2.
Molecules ; 26(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34684884

ABSTRACT

Cinnamomum verum is widely used in traditional medicines, and the different parts of the plant, such as bark, leaves, and flowers, are used for essential oil production. The present study compared the chemical composition of the essential oil of C. verum extracted from the leaves and flowers. In addition, efficacy of these essential oils against the two common pests Sitophilus oryzae and Callosobruchus maculatus was also evaluated. The results indicated the presence of cinnamaldehyde, eugenol, caryophyllene, and linalool in these essential oils, however, at different concentrations. The leaf essential oil was found to be 10-20% more effective as a fumigant against both the pests. Likewise, the leaf essential oil found to repel these pests even at lower concentrations than that of flower essential oil of C. verum. Besides, these essential oils were also effective in controlling the growth of various gram positive and gram negative microbial pathogens and possibly a safeguard for human health. On contrary, both the essential oils were found to be safe for the application on grains, as indicated by their germination potentials. It was also observed that these essential oils do not cause any significant toxicity to guppy fishes, thus confirming their ecological safety for use as a biopesticide.


Subject(s)
Anti-Bacterial Agents/chemistry , Cinnamomum zeylanicum/chemistry , Flowers/chemistry , Insect Repellents/chemistry , Insecticides/chemistry , Oils, Volatile/chemistry , Plant Leaves/chemistry , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Anti-Bacterial Agents/pharmacology , Insect Repellents/pharmacology , Insecticides/pharmacology , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology
3.
Bol. latinoam. Caribe plantas med. aromát ; 20(4): 339-350, jul. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1349507

ABSTRACT

This study was aimed to explore the comparative efficacy of cinnamon bark extract, cinnamaldehyde and kaempferol against acetaminophen (APAP)-induced oxidative stress. Cinnamon bark extract, cinnamaldehyde and kaempferol were utilized or in-vivo analysis. From the results of in-vitro screening tests, cinnamon ethanolic extract was selected for in-vivo study in mouse model. For this, Balb/c albino mice were treated with cinnamon ethanolic extract (200 mg/kg), cinnamaldehyde (10 mg/kg) and kaempferol (10 mg/kg) orally for 14 days followed by single intraperitoneal administration of APAP during 8 hours. Blood and organ samples were collected for biochemical and histopathological analysis. The results showed that cinnamon bark ethanolic extract, cinnamaldehyde and kaempferol ameliorated APAP-induced oxidative stress and organ toxicity in mice. In conclusion, cinnamaldehyde and kaempferol possess comparable antioxidant potential even at 20-times less dose as compared to cinnamon bark ethanolic extract suggesting therapeutic potential in oxidative stress-related disorders.


Este estudio tuvo como objetivo explorar la eficacia comparativa del extracto de corteza de canela, cinamaldehído y kaempferol contra el estrés oxidativo inducido por acetaminofén (APAP). Se utilizaron extracto de corteza de canela, cinamaldehído y kaempferol para el análisis in vivo. De los resultados de las pruebas de detección in vitro, se seleccionó el extracto etanólico de canela para estudio in vivo en modelo de ratón. Para ello, los ratones albinos Balb/c fueron tratados con extracto etanólico de canela (200 mg/kg), cinamaldehído (10 mg/kg) y kaempferol (10 mg/kg) por vía oral durante 14 días, seguido de la administración intraperitoneal única de APAP durante 8 horas. Se recogieron muestras de sangre y órganos para análisis bioquímicos e histopatológicos. Los resultados mostraron que el extracto etanólico de la corteza de canela, el cinamaldehído y el kaempferol mejoraron el estrés oxidativo inducido por APAP y la toxicidad orgánica en ratones. En conclusión, el cinamaldehído y el kaempferol poseen un potencial antioxidante comparable, incluso a una dosis 20 veces menor en comparación con el extracto etanólico de la corteza de canela, lo que sugiere un potencial terapéutico en los trastornos relacionados con el estrés oxidativo.


Subject(s)
Animals , Mice , Acrolein/analogs & derivatives , Plant Extracts/administration & dosage , Cinnamomum zeylanicum/chemistry , Oxidative Stress/drug effects , Kaempferols/chemistry , Antioxidants/administration & dosage , Acrolein/chemistry , Chromatography, High Pressure Liquid , Disease Models, Animal , Phytochemicals , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Acetaminophen/toxicity , Mice, Inbred BALB C
4.
Food Chem ; 361: 130164, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34062460

ABSTRACT

In physiological and thermally-processed conditions, alanine and serine efficiently eliminate acrolein to generate two main adducts, 2-(5-formyl-3,6-dihydropyridin-1(2H)-yl) propanoic acid and 2-(5-formyl-3,6-dihydropyridin-1(2H)-yl)-3-hydroxypropanoic acid, with amounts of 81.6 ± 4.24 µg/kg and 23.72 ± 0.40 µg/kg in fried potato crisps, respectively. Adduct formation markedly decreased the cytotoxicity of acrolein against Caco-2, GES-1 and HUVEC cells. The cell viability of them remained approximately100% after incubation with 200 µmolL-1 adducts, while the IC50 values for acrolein in the three cells were 66, 54, and 16 µmolL-1 respectively. The adducts express the protective effects by tremendous reduction of cell apoptosis, reactive oxygen species (ROS) production, and DNA damage.


Subject(s)
Acrolein/chemistry , Acrolein/pharmacology , Alanine/chemistry , Serine/chemistry , Solanum tuberosum/chemistry , Apoptosis/drug effects , Caco-2 Cells , Cell Survival/drug effects , DNA Damage , Food-Processing Industry/methods , Humans , Inactivation, Metabolic , Reactive Oxygen Species/metabolism
5.
Int J Biol Macromol ; 184: 739-749, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34174310

ABSTRACT

Polylactic acid (PLA) is a promising food packaging material with biocompatible, nontoxic and biodegradable. In order to reduce the deterioration of aquatic products caused by microorganisms, PLA coaxial nanofiber films with cinnamaldehyde (CMA), tea polyphenol (TP) and its composite as core materials were prepared by using coaxial electrospinning technology. Its microscopic morphology and structure were characterized separately, and its thermal stability, wettability and mechanical properties were determined. The antibacterial activity and antibacterial mechanism of nanofiber films were studied with Shewanella putrefaciens (S. putrefaciens) which is the dominant spoilage of aquatic products as the target of action. The results show that the CMA/TP (m/m = 2:5)-PLA coaxial nanofibers have small diameter, uniform distribution, smooth surface, no pores and fracture. At the same time, the film has strong hydrophobicity, good thermal stability and mechanical properties. Its antibacterial performance is better than that of single-core nanofiber films, which effectively destroys the cell membrane of S. putrefaciens, increases the permeability of cell membrane, and interferes with the synthesis and expression of its protein. The coaxial nanofiber films with CMA, TP and its composite as core material can be used as a fresh-keeping material with antibacterial properties, and has potential application value in the field of food preservation.


Subject(s)
Acrolein/analogs & derivatives , Anti-Bacterial Agents/chemical synthesis , Polyesters/chemistry , Polyphenols/chemical synthesis , Shewanella putrefaciens/drug effects , Tea/chemistry , Acrolein/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Drug Stability , Food Microbiology , Food Packaging , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Nanofibers , Polyphenols/chemistry , Polyphenols/pharmacology
6.
J Chromatogr Sci ; 59(7): 606-617, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33969409

ABSTRACT

OBJECTIVE: Sinomenii Caulis (QingFengTeng) and Ramulus Cinnamomi (GuiZhi) are traditional Chinese drugs that have been used for anti-inflammation. In this study, the team plans to find out the material basis of a Chinese herb combination composed of the two herbs with different ratios. METHODS: The extracts of the herbal compound with various ratios obtained from ethanol extraction were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry to identify the basic chemical compounds. Simultaneously, the contents of the eight main components (sinomenine, magnoflorine, laurifoline, dauricine, coumarin, cinnamyl alcohol, cinnamic acid and cinnamaldehyde) from herb formula were determined by gradient elution by high-performance liquid chromatography. Furthermore, the content of sinomenine and cinnamaldehyde were determined by isocratic elution, respectively. RESULTS: Eighteen compounds in the herb formula were identified by UHPLC-Q-TOF-MS. The components in the GuiZhi are mostly volatile oils and the kinds of compounds isolated from the formula in the ratio of 4:1 were the most. Wherein eight compounds were identified as the main detection targets in the content determination. CONCLUSION: The extraction rate of sinomenine in QingFengTeng was related to the proportion of GuiZhi in the drug pairs. Synchronously, the addition of sinomenine in different proportions also had some influence on the extraction of cinnamaldehyde in GuiZhi. Furthermore, the series of methods was successfully applied to the simultaneous determination of chemical compounds in different samples of QingFengTeng-GuiZhi decoction.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal , Gas Chromatography-Mass Spectrometry/methods , Acrolein/analogs & derivatives , Acrolein/analysis , Acrolein/chemistry , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Morphinans/analysis , Morphinans/chemistry , Oils, Volatile/chemistry
7.
Fish Shellfish Immunol ; 114: 65-81, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33895254

ABSTRACT

This study aimed to investigate the effectiveness of five natural plant extract compounds Curcumin (CUR); Eugenol (EUG), Cinnamaldehyde (CIN), Stigmasterol (ST) and Morin (MOR), on two species of Saprolegnia; Saprolegnia parasitica and S. australis. Selective compounds were screened for the minimum inhibitory concentration, first for anti-oomycetes activity and then mycelium growth inhibition, spore germination inhibition and colonisation test. Nitric oxide production and myeloperoxidase activity of the compounds were tested in head kidney leukocytes of rainbow trout, Oncorhynchus mykiss to assess the immunostimulatory potential. Molecular docking of effective compounds was carried out with effector proteins of S. parasitica to investigate the target binding sites. Among all, CUR could completely inhibit zoospore production and significantly (p ≤ .05) inhibit hyphal growth at 16 mg l-1 against S. parasitica and S. australis. CIN at the concentration of 50 mg l-1 completely inhibited hyphal growth of both Saprolegnia spp., although the zoospore production of S. parasitica and S. australis was reduced at 25 mg l-1 and 10 mg l-1. In the case of EUG, significant inhibition of the hyphal growth and germination of S. parasitica zoospores was observed at 50 mg l-1. ST and MOR did not show antioomycetes activity. The molecular docking results were consistent with in vitro studies, possibly due to the binding with the vital proteins (Plasma membrane ATPase, V-type proton ATPase, TKL protein kinase, Host targeting protein 1) of S. parasitica and ultimately inhibiting their activity. CUR and CIN showed increased nitric oxide production at the highest concentration of 250 and 256 mg l-1 but the value was not significant (p ≤ .05) with control. CUR showed significantly higher peroxidase activity (p ≤ .05) at a concentration of 256 mg l-1 though values were significantly similar with concentration from 16 to 128 mg l-1. The nitric oxide and total peroxidase activity of rainbow trout leukocytes in the case of CIN showed a significant difference only at 250 mg l-1 against the control. The results conclude that CUR, CIN showed the better anti-Saprolegnia activity and could be used as phyto-additives in aquaculture. Among all, the inclusion of CUR as phyto-additives will provide additional immunostimulatory activity.


Subject(s)
Acrolein/analogs & derivatives , Curcumin/pharmacology , Eugenol/pharmacology , Plant Extracts/pharmacology , Saprolegnia/drug effects , Acrolein/administration & dosage , Acrolein/chemistry , Acrolein/pharmacology , Animals , Cell Survival/drug effects , Curcumin/administration & dosage , Curcumin/chemistry , Dose-Response Relationship, Drug , Eugenol/chemistry , Head Kidney/cytology , Leukocytes/drug effects , Leukocytes/immunology , Microbial Sensitivity Tests , Molecular Docking Simulation , Oncorhynchus mykiss , Plant Extracts/chemistry
8.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923441

ABSTRACT

Salmonella typhimurium infection is associated with gastrointestinal disorder and cellular injury in the liver of both humans and animals. Cinnamaldehyde, the main component of essential oil from cinnamon, has been reported to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. However, it remains unknown whether cinnamaldehyde can alleviate Salmonella typhimurium infection-induced liver injury in mice. In the present study, we found that cinnamaldehyde attenuated Salmonella typhimurium-induced body weight loss, the increase of organ (liver and spleen) indexes, hepatocyte apoptosis, and the mortality rate in mice. Further study showed that cinnamaldehyde significantly alleviated Salmonella typhimurium-induced liver injury as shown by activities of alanine transaminase, aspartate transaminase, and myeloperoxidase, as well as malondialdehyde. The increased mRNA level of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ) and chemokines (CCL2 and CCL3) induced by Salmonella typhimurium were significantly abolished by cinnamaldehyde supplementation. These alterations were associated with a regulatory effect of cinnamaldehyde on TLR2, TLR4, and MyD88. 16S rDNA sequence analysis showed that Salmonella typhimurium infection led to upregulation of the abundances of genera Akkermansia, Bacteroides, Alistipes, Muribaculum, and Prevotellaceae UCG-001, and downregulation of the abundances of genera Lactobacillus, Enterorhabdus, and Eggerthellaceae (unclassified). These alterations were reversed by cinnamaldehyde supplementation. In conclusion, cinnamaldehyde attenuated the inflammatory response, oxidative stress, and apoptosis in the liver of Salmonella typhimurium-infected mice. Supplementation of cinnamaldehyde might be a preventive strategy to alleviate liver injury caused by Salmonella typhimurium infection in humans and animals.


Subject(s)
Acrolein/analogs & derivatives , Acrolein/chemistry , Animals , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , DNA, Ribosomal/metabolism , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , In Situ Nick-End Labeling , Inflammation/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/physiology , Salmonella typhimurium/pathogenicity , Signal Transduction/genetics , Signal Transduction/physiology
9.
Food Chem ; 355: 129403, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33773455

ABSTRACT

Lipid peroxidation-derived reactive carbonyl species (RCS) such as acrolein and 4-hydroxynonenal pose health risks. We characterized the RCS-scavenging reactions of tea catechins in an aqueous solution and in baked cake. Acrolein's reaction with each of the major tea catechins (epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate) resulted in the formation of mono-, di-, and tri-acrolein conjugates of each catechin as revealed by our LC-linear ion trap MS analysis. The formation of the acrolein-conjugates of the four catechins was confirmed in the reaction of acrolein with green tea powder (matcha) extract. The addition of matcha tea powder to cake dough significantly suppressed the accumulation of RCS during cake baking. The mono-acrolein conjugates of the four major catechins were detected in the baked cake. The RCS-scavenging capability of tea catechins offers a new functionality of matcha tea powder, and its heat stability demonstrates the usefulness of matcha as a food additive.


Subject(s)
Acrolein/chemistry , Catechin/chemistry , Free Radical Scavengers/chemistry , Tea/chemistry , Acrolein/analysis , Aldehydes/chemistry , Catechin/analogs & derivatives , Catechin/analysis , Chromatography, High Pressure Liquid , Cooking , Hot Temperature , Mass Spectrometry , Plant Extracts/chemistry , Powders/chemistry , Tea/metabolism
10.
Prep Biochem Biotechnol ; 51(9): 833-841, 2021.
Article in English | MEDLINE | ID: mdl-33427036

ABSTRACT

Cinnamaldehyde (CA) is one of the major active pharmaceutical ingredient of cinnamon bark. Hydrodistillation (HD) is usually used in CA extraction, however, the extraction yield is lower. The cell wall is a key factor limiting the extraction of essential oils. In-situ reactive heat breaking cell wall (RHB) could destroy the cell wall, which was conducive to the diffusion of CA. The aim of this work was to examine the effect of RHB pretreatment to HD extraction. Response surface methodology (RSM) was used to optimize RHB pretreatment parameters, and Box-Behnken Design (BBD) method was performed to evaluate the effects of different operating parameters. The maximum yield was increased to 3.31 ± 0.11% (w/w) from 2.08 ± 0.042% (w/w) after RSM optimization. Scanning electron microscopic (SEM) analysis showed that RHB destroyed and disrupted the cell wall of cinnamon bark. The GC analysis demonstrated that the purity of cinnamaldehyde was improved and no new components were presented in the extraction product from the cinnamon via RHB pretreatment. In conclusion, RHB is an effective pretreatment method for the CA extraction, and also may be used in the other herbal medicine extraction.


Subject(s)
Cell Wall/chemistry , Cinnamomum zeylanicum/chemistry , Hot Temperature , Sulfur Oxides/chemistry , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/isolation & purification
11.
J Biochem Mol Toxicol ; 35(4): e22720, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33491302

ABSTRACT

Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the TLR/NF-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored, and potential obstacles/limitations that need to be overcome, for its inclusion in experimental PD therapeutics.


Subject(s)
Acrolein/analogs & derivatives , Cinnamomum zeylanicum/chemistry , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Parkinson Disease, Secondary/drug therapy , Acrolein/chemistry , Acrolein/therapeutic use , Animals , Humans , Mice , Neuroprotective Agents/chemistry , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Parkinson Disease, Secondary/pathology
12.
ACS Appl Mater Interfaces ; 13(4): 4874-4885, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33464809

ABSTRACT

This work is strategically premeditated to study the potential of a herbal medicinal product as a natural bioactive ingredient to generate nanocellulose-based antibacterial architectures. In situ fibrillation of purified cellulose was done in cinnamon extract (ciE) to obtain microfibrillated cellulose (MFC). To this MFC suspension, carboxylated cellulose nanocrystals (cCNCs) were homogeneously mixed and the viscous gel thus obtained was freeze-dried to obtain lightweight and flexible composite aerogel architectures impregnated with ciE, namely, ciMFC/cCNCs. At an optimal concentration of 0.3 wt % cCNCs (i.e., for ciMFC/cCNCs_0.3), an improvement of around 106% in compressive strength and 175% increment in modulus were achieved as compared to pristine MFC architecture. The efficient loading and interaction of ciE components, specifically cinnamaldehyde, with MFC and cCNCs resulted in developing competent antibacterial surfaces with dense and uniform microstructures. Excellent and long-term antimicrobial activity of the optimized architectures (ciMFC/cCNCs_0.3) was confirmed through various antibacterial assays like the zone inhibition method, bacterial growth observation at OD600, minimum inhibitory concentration (MIC, here 1 mg/mL), minimum bactericidal concentration (MBC, here 3-5 mg/mL), and Live/Dead BacLight viability tests. The changes in the bacterial morphology with a disrupted membrane were further confirmed through various imaging techniques like confocal laser scanning microscopy, FESEM, AFM, and 3D digital microscopy. The dry composite architecture showed the persuasive capability of suppressing the growth of airborne bacteria, which in combination with antibacterial efficiency in the wet state is considered as an imperative aspect for a material to act as the novel biomaterial. Furthermore, these architectures demonstrated excellent antibacterial performance under real "in use" contamination prone conditions. Hence, this work provides avenues for the application of crude natural extracts in developing novel forms of advanced functional biomaterials that can be used for assorted biological/healthcare applications such as wound care and antimicrobial filtering units.


Subject(s)
Acrolein/analogs & derivatives , Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Cinnamomum aromaticum/chemistry , Nanogels/chemistry , Plant Extracts/chemistry , Acrolein/chemistry , Acrolein/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Adhesion/drug effects , Bacterial Infections/prevention & control , Humans , Microbial Sensitivity Tests , Plant Extracts/pharmacology
13.
J Agric Food Chem ; 68(49): 14471-14479, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33253558

ABSTRACT

Acrolein (ACR) is found exogenously as a widespread environmental pollutant and endogenously, where it is thought to be involved as a pathogenic factor in the progression of many pathological conditions. Eliminating ACR by dietary-active substances has been found to be one potential strategy to prevent ACR-associated chronic diseases. This study first compared the scavenging ACR efficacy of four purine alkaloids, theophylline (TP), paraxanthine (PXT), theobromine (TB), and caffeine (CAF), and then, TP, CAF, and their metabolites were investigated for their ability to trap ACR in vivo. Our results indicated that TP, which possesses an -NH moiety at the N-7 position, exhibits the best ACR-trapping capacity in vitro, while CAF has a slight ability to trap ACR due to the substitutions by -CH3 at the N-1, N-3, and N-7 positions. After oral administration of TP or CAF, the ACR adducts of TP and the metabolites of TP or CAF (e.g., mono- and di-ACR-TP, mono-ACR-1,3-DMU, and mono-ACR-1-MU) were detected in urinary samples obtained from both TP- and CAF-treated mouse groups by using ultra-performance liquid chromatography-tandem mass spectrometry. The quantification studies demonstrated that TP and its metabolites significantly trapped ACR in a dose-dependent manner in vivo. Furthermore, we also detected those ACR adducts of TP and TP/CAF's metabolites in human urine after four cups of green tea (2 g tea leaf/cup) or two cups of coffee (4 g coffee/cup) were consumed per day. Those results indicated that dietary TP or CAF has the potential capacity to scavenge ACR in vivo.


Subject(s)
Acrolein/metabolism , Caffeine/metabolism , Coffee/metabolism , Tea/metabolism , Theophylline/metabolism , Acrolein/chemistry , Animals , Caffeine/chemistry , Coffee/chemistry , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Female , Humans , Male , Mice , Middle Aged , Tea/chemistry , Theophylline/chemistry
14.
Drug Des Devel Ther ; 14: 4625-4637, 2020.
Article in English | MEDLINE | ID: mdl-33154629

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a primary bone tumor associated with locally aggressive growth and early metastatic potential that typically occurs in children and adolescents. Chinese traditional medicine Cinnamomum cassia Presl has been shown to have significant tumor-killing effect, in which cinnamaldehyde (CA) is the main active ingredient. PURPOSE: To explore the anticancer effect of CA on the osteosarcoma cells and the possible molecular mechanism. METHODS: Crystal violet assay, MTT assay and colony-forming assay were used to confirm the inhibitory role of CA in the proliferation of 143B and MG63 osteosarcoma cells. Hoechst 33258 staining and flow cytometry were used to observe apoptosis. The migration and invasion role of OS cells were evaluated using transwell assays and wound healing assays. Western blotting was used to analyse the protein expression levels. Nude mice were inoculated with 143B cells to establish an orthotopic OS tumor animal model and to investigate the effects of CA on OS tumors. RESULTS: According to crystal violet assay, MTT assay and colony-forming assay, CA significantly inhibited cell proliferation. Hoechst 33258 staining and flow cytometry analysis showed that CA-induced apoptosis in a concentration-dependent manner. In addition, transwell assays and wound healing assays showed that CA inhibited the migration and invasion of osteosarcoma cells. In vivo mouse models, CA inhibited the growth of osteosarcoma. The potential mechanisms could be that CA inhibited the transcriptional activity of Wnt/ß-catenin and PI3K/Akt of the osteosarcoma. CONCLUSION: CA may inhibit the proliferation, migration, invasion and promote apoptosis of OS cells by inhibiting Wnt/ß-catenin and PI3K/Akt signaling pathways. CA may be a potentially effective anti-tumor drug.


Subject(s)
Acrolein/analogs & derivatives , Antineoplastic Agents, Phytogenic/pharmacology , Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Acrolein/chemistry , Acrolein/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Osteosarcoma/metabolism , Osteosarcoma/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Tumor Cells, Cultured , beta Catenin/metabolism
15.
J Agric Food Chem ; 68(36): 9718-9724, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32786830

ABSTRACT

Increasing evidence has identified the unsaturated aldehyde acrolein (ACR) as the potential factor that causes deoxyribonucleic acid cross-linking and the development of chronic diseases. The objective of this study was to investigate the mechanism by which theophylline (TP) scavenges ACR for the first time. TP efficiently scavenged ACR through forming adducts, which was demonstrated in a system in which TP was incubated with ACR at different ratios for different times for liquid chromatography with tandem mass spectrometry. Then, the mono- and di-ACR-TP adducts were purified, and their structures were elucidated by high-resolution mass spectrometry and nuclear magnetic resonance analysis. We found that the ACR residue on mono-ACR-TP further trapped one more ACR and formed di-ACR-TP adducts. Furthermore, mono- and di-ACR-TP had similar time-dependent ACR-scavenging activity to TP. Finally, we demonstrated that green tea, coffee, and cocoa inhibited ACR by trapping ACR to form mono- and di-ACR-TP adducts during the incubation of green tea, coffee, and cocoa with ACR.


Subject(s)
Acrolein/chemistry , Cacao/chemistry , Coffee/chemistry , Free Radical Scavengers/chemistry , Plant Extracts/chemistry , Tea/chemistry , Theophylline/chemistry , Acrolein/adverse effects , Mass Spectrometry
16.
Drug Metab Dispos ; 48(10): 1028-1043, 2020 10.
Article in English | MEDLINE | ID: mdl-32788161

ABSTRACT

Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.


Subject(s)
Acrolein/analogs & derivatives , Cinnamomum zeylanicum/chemistry , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Herb-Drug Interactions , Acrolein/chemistry , Acrolein/pharmacology , Area Under Curve , Cytochrome P-450 CYP2A6/isolation & purification , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 CYP2A6/ultrastructure , Drug Evaluation, Preclinical , Humans , Letrozole/pharmacokinetics , Microsomes, Liver , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Nicotine/pharmacokinetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117463, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31421349

ABSTRACT

Real-time process quality control of ramulus cinnamomi (cassia twig) is still a challenge in pharmaceutical industry. Rapid critical quality attribute (CQA) determination of ramulus cinnamomi is essential for quality control. Microscale thermophoresis (MST) was used to investigate the CQA of ramulus cinnamomi by the interaction with biomacromolecule. There was a good affinity between cinnamaldehyde and human serum albumin (HSA) with Ka as 2.1722×103mol/L. It was an excellent combination of similarity to ibuprofen with same binding force as discovered as hydrogen bond and van der Waals force. Furthermore, regarding cinnamaldehyde as CQA, on-line near-infrared was used to monitor pilot extraction process of ramulus cinnamomi combined with high performance liquid chromatography (HPLC). Quantitative model was established with Rpre2 as 0.9798 and RMSECV as 0.0993, suggesting the NIR model was so robust and accurate for pilot process quality control. This method provided a perfect guideline for rapid CQA determination and real-time process quality control of Chinese materia medica (CMM) based on a vital CQA.


Subject(s)
Acrolein/analogs & derivatives , Spectroscopy, Near-Infrared/methods , Acrolein/analysis , Acrolein/chemistry , Acrolein/metabolism , Acrolein/standards , Humans , Lauraceae , Limit of Detection , Linear Models , Materia Medica/standards , Protein Binding , Quality Control , Reproducibility of Results , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Temperature
18.
Mol Nutr Food Res ; 64(1): e1900274, 2020 01.
Article in English | MEDLINE | ID: mdl-31665823

ABSTRACT

SCOPE: Acrolein (ACR) is a highly toxic unsaturated aldehyde. Humans are both endogenously and exogenously exposed to ACR. Long-term exposure to ACR leads to various chronic diseases. Dietary polyphenols have been reported to be able to attenuate ACR-induced toxicity in vitro via formation of ACR-polyphenol conjugates. However, whether in vitro ACR-trapping abilities of polyphenols can be maintained under in vivo environments is still unknown. METHODS AND RESULTS: Two most commonly consumed dietary polyphenols, (-)-epigallocatechin-3-gallate (EGCG) from tea and genistein from soy, are evaluated for their anti-Acrolein behaviors both in vitro and in mice. Tea EGCG exerts a much higher capacity to capture ACR than soy genistein in vitro. But translation of in vitro anti-ACR activity into in vivo is mainly mediated by bioavailability and biotransformation of individual polyphenols. It is found that 1) both absorbed EGCG and genistein can trap endogenous ACR by forming mono-ACR adducts and eventually be excreted into mouse urine; 2) both absorbed EGCG and genistein can produce active metabolites, methyl-EGCG (MeEGCG) and orobol, to scavenge endogenous ACR; 3) both MeEGCG and non-absorbed EGCG show ability to trap ACR in the gut; 4) considerable amounts of microbial metabolites of genistein display enhanced anti-ACR capacity both in the body and in the gut, compared to genistein; and 5) biotransformation of genistein is able to boost its in vivo anti-ACR capacity, compared to EGCG. CONCLUSION: The findings demonstrate that in vivo anti-ACR ability of dietary polyphenols cannot be reflected solely based on their in vitro ability. The bioavailability and biotransformation of individual polyphenols, and especially the gut microbiome, contribute to in vivo anti-ACR ability of dietary polyphenols.


Subject(s)
Acrolein/chemistry , Acrolein/pharmacokinetics , Genistein/chemistry , Polyphenols/chemistry , Polyphenols/pharmacokinetics , Tea/chemistry , Animals , Biological Availability , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacokinetics , Genistein/metabolism , Genistein/pharmacokinetics , Magnetic Resonance Spectroscopy , Male , Mice , Glycine max/chemistry
19.
Int J Pharm ; 574: 118893, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31765773

ABSTRACT

Combination therapy, a treatment regimen that combines more than two therapeutic agents to diseased tissues has recently gained increasing attentions in anticancer therapy. As cancer cells are more vulnerable to oxidative stress and heat compared to normal cells, we developed hyperthermia- and oxidative stress-inducing maltodextrin (HTOM) nanoparticles as a platform of combinational photothermal/oxidative anticancer therapy. HTOM was designed to incorporate cinnamaldehyde as an oxidative stress inducer through acid-labile acetal linkage and IR780 as a photoabsorber. HTOM nanoparticles could generate excess reactive oxygen species (ROS) to kill cancer cells effectively. When exposed to near infrared (NIR) laser irradiation (808 nm), HTOM nanoparticles also increased temperature to destroy cancer cells. The combination of NIR laser irradiation with HTOM nanoparticles exhibited significantly higher anticancer activity than HTOM nanoparticles alone and NIR lasers irradiation alone. When combined with NIR laser irradiation on the tumor site, intravenously administrated HTOM nanoparticles effectively eradicated tumors in mouse xenograft models. Our strategy for combination of oxidative stress and photothermal heating may offer a new combinational treatment modality for cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Nanoparticles/chemistry , Oxidative Stress/drug effects , Polysaccharides/chemistry , A549 Cells , Acrolein/analogs & derivatives , Acrolein/chemistry , Animals , Cell Line, Tumor , Combined Modality Therapy/methods , Drug Carriers/chemistry , Humans , Hyperthermia, Induced/methods , Mice , Phototherapy/methods , Polysaccharides/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays/methods
20.
Fitoterapia ; 139: 104405, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31707126

ABSTRACT

There is a continuing rise in the occurrence of multidrug-resistant bacterial infections. Antibiotic resistance to currently available antibiotics has become a global health issue leading to an urgent need for alternative antibacterial strategies. There has been a renewed interest in the development of antibacterial agents from natural sources, and trans-cinnamaldehyde is an example of a naturally occurring compound that has received significant attention in recent years. Trans-Cinnamaldehyde has been shown to possess substantial antimicrobial activity, as well as an array of other medicinal properties, and represents an intriguing hit compound from which a number of derivatives have been developed. In some cases, these derivatives have been shown to possess improved activity, not only compared to trans-cinnamaldehyde but also to commonly used antibiotics. Therefore, understanding the antibacterial mechanisms of action that these compounds elicit is imperative in order to facilitate their development and the development of new antibacterial agents that could exploit similar mechanistic approaches. The purpose of this review is to provide an overview of current knowledge on the antibacterial activity and mechanisms of action of cinnamaldehyde and its derivatives, and to highlight significant contributions made in this research area. It is hoped that the findings presented in this work will aid the future development of new antibacterial agents.


Subject(s)
Acrolein/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Quorum Sensing/drug effects , Acrolein/chemistry , Acrolein/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Cinnamomum/chemistry , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Bark/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL