Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Medicine (Baltimore) ; 103(15): e37829, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608062

ABSTRACT

In this paper, our objective was to investigate the potential mechanisms of Actinidia chinensis Planch (ACP) for breast cancer treatment with the application of network pharmacology, molecular docking, and molecular dynamics. "Mihoutaogen" was used as a key word to query the Traditional Chinese Medicine Systems Pharmacology database for putative ingredients of ACP and its related targets. DrugBank, GeneCards, Online Mendelian Inheritance in Man, and therapeutic target databases were used to search for genes associated with "breast cancer." Using Cytoscape 3.9.0 we then constructed the protein-protein interaction and drug-ingredient-target-disease networks. An enrichment analysis of Kyoto encyclopedia of genes and genomes pathway and gene ontology were performed to exploration of the signaling pathways associated with ACP for breast cancer treatment. Discovery Studio software was applied to molecular docking. Finally, the ligand-receptor complex was subjected to a 50-ns molecular dynamics simulation using the Desmond_2020.4 tools. Six main active ingredients and 176 targets of ACP and 2243 targets of breast cancer were screened. There were 118 intersections of targets for both active ingredients and diseases. Tumor protein P53 (TP53), AKT serine/threonine kinase 1 (AKT1), estrogen receptor 1 (ESR1), Erb-B2 receptor tyrosine kinase 2 (ERBB2), epidermal growth factor receptor (EGFR), Jun Proto-Oncogene (JUN), and Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) selected as the most important genes were used for verification by molecular docking and molecular dynamics simulation. The primary active compounds of ACP against breast cancer were predicted preliminarily, and its mechanism was studied, thereby providing a theoretical basis for future clinical studies.


Subject(s)
Actinidia , Breast Neoplasms , Humans , Female , Network Pharmacology , Breast Neoplasms/drug therapy , Molecular Docking Simulation , Databases, Genetic
2.
J Med Food ; 27(5): 419-427, 2024 May.
Article in English | MEDLINE | ID: mdl-38656897

ABSTRACT

The primary inflammatory process in atherosclerosis, a major contributor to cardiovascular disease, begins with monocyte adhering to vascular endothelial cells. Actinidia arguta (kiwiberry) is an edible fruit that contains various bioactive components. While A. arguta extract (AAE) has been recognized for its anti-inflammatory characteristics, its specific inhibitory effect on early atherogenic events has not been clarified. We used tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs) for an in vitro model. AAE effectively hindered the attachment of THP-1 monocytes and reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. Transcriptome analysis revealed that AAE treatment upregulated phosphatase and tensin homolog (PTEN), subsequently inhibiting phosphorylation of AKT and glycogen synthase kinase 3ß (GSK3ß) in HUVECs. AAE further hindered phosphorylation of AKT downstream of the nuclear factor kappa B (NF-κB) signaling pathway, leading to suppression of target gene expression. Oral administration of AAE suppressed TNF-α-stimulated VCAM-1 expression, monocyte-derived macrophage infiltration, and proinflammatory cytokine expression in C57BL/6 mouse aortas. Myo-inositol, identified as the major compound in AAE, played a key role in suppressing THP-1 monocyte adhesion in HUVECs. These findings suggest that AAE could serve as a nutraceutical for preventing atherosclerosis by inhibiting its initial pathogenesis.


Subject(s)
Actinidia , Cell Adhesion , Glycogen Synthase Kinase 3 beta , Human Umbilical Vein Endothelial Cells , Inositol , Monocytes , NF-kappa B , PTEN Phosphohydrolase , Plant Extracts , Proto-Oncogene Proteins c-akt , Signal Transduction , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Humans , NF-kappa B/metabolism , NF-kappa B/genetics , Monocytes/drug effects , Monocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Actinidia/chemistry , Animals , Plant Extracts/pharmacology , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Adhesion/drug effects , Mice , Inositol/pharmacology , Inositol/analogs & derivatives , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Male
3.
J Pharm Biomed Anal ; 244: 116105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38552420

ABSTRACT

BACKGROUND: Actinidia arguta leaves (AAL) are traditionally consumed as a vegetable and as tea in folk China and Korea. Previous studies have reported the anti-diabetic effect of AAL, but its bioactive components and mechanism of action are still unclear. AIM OF THE STUDY: This study aims to identify the hypoglycemic active components of AAL by combining serum pharmacochemistry and network pharmacology and to elucidate its possible mechanism of action. METHODS: Firstly, the effective components in mice serum samples were characterized by UPLC-Q/TOF-MSE. Furthermore, based on these active ingredients, network pharmacology analysis was performed to establish an "H-C-T-P-D" interaction network and reveal possible biological mechanisms. Finally, the affinity between serum AAL components and the main proteins in the important pathways above was investigated through molecular docking analysis. RESULTS: Serum pharmacochemistry analysis showed that 69 compounds in the serum samples were identified, including 23 prototypes and 46 metabolites. The metabolic reactions mainly included deglycosylation, dehydration, hydrogenation, methylation, acetylation, glucuronidation, and sulfation. Network pharmacology analysis showed that the key components quercetin, pinoresinol diglucoside, and 5-O-trans-p-coumaroyl quinic acid butyl ester mainly acted on the core targets PTGS2, HRAS, RELA, PRKCA, and BCL2 targets and through the PI3K-Akt signaling pathway, endocrine resistance, and MAPK signaling pathway to exert a hypoglycemic effect. Likewise, molecular docking results showed that the three potential active ingredients had good binding effects on the five key targets. CONCLUSION: This study provides a basis for elucidating the pharmacodynamic substance basis of AA against T2DM and further exploring the mechanism of action.


Subject(s)
Actinidia , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Molecular Docking Simulation , Network Pharmacology , Plant Extracts , Plant Leaves , Actinidia/chemistry , Plant Leaves/chemistry , Animals , Mice , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Chromatography, High Pressure Liquid/methods , Signal Transduction/drug effects
4.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338784

ABSTRACT

Kiwiberry (Actinidia arguta) is a perennial fruit tree belonging to the family Actinidiaceae. Kiwiberries are known to have an extremely high concentration of sugars, phenolics, flavonoids, and vitamin C, and possess delicious taste and health-promoting properties. Numerous studies have focused on kiwiberry fruits, demonstrating that they possess a higher phytochemical content and greater antioxidant activities than other berry fruits. The purpose of this study was to compare the phytochemical content and antioxidant potential of leaf, stem, root, and fruit extracts from twelve kiwiberry cultivars grown in Wonju, Korea, characterized by a Dwa climate (Köppen climate classification). In most kiwiberry cultivars, the total phenolic (TPC) and total flavonoid (TFC) phytochemical content was significantly higher in leaf and stem tissues, while the roots exhibited higher antioxidant activity. In fruit tissues, the TPC and TFC were higher in unripe and ripe kiwiberry fruits, respectively, and antioxidant activity was generally higher in unripe than ripe fruit across most of the cultivars. Based on our results, among the 12 kiwiberry cultivars, cv. Daebo and cv. Saehan have a significantly higher phytochemical content and antioxidant activity in all of the tissue types, thus having potential as a functional food and natural antioxidant.


Subject(s)
Actinidia , Antioxidants , Antioxidants/chemistry , Plant Extracts/chemistry , Ascorbic Acid/analysis , Phenols/analysis , Fruit/chemistry , Flavonoids/analysis , Phytochemicals/chemistry
5.
J Food Sci ; 89(4): 2001-2016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369949

ABSTRACT

Kiwifruit ripening and senescence after harvesting are closely related to its economic value. Transcriptome analysis and biochemical parameters were used to investigate the differences in gene expression levels and the potential regulation of cell wall metabolism in kiwifruit treated with ozone, thereby regulating fruit softening and prolonging postharvest life. Compared to the control group, the activities of the cell wall modification enzyme were lower under ozone treatment, the content of polysaccharide in the cell wall of primary pectin and cellulose was higher, and the content of soluble pectin was lower. Meanwhile, ozone treatment delayed the degradation of the cell wall mesosphere during storage. A total of 20 pectinesterase (PE)-related genes were identified by sequencing analysis. The data analysis and quantitative polymerase chain reaction results confirmed that cell wall modifying enzyme genes played an important role in softening and senescence after harvesting, which may reduce or induce the expression of certain genes affecting cell wall metabolism. Ozone treatment not only regulates active genes such as xyloglucan endo glycosyltransferase/hydrolase, cellulose synthase, polygalacturonase, and PE to maintain the quality of fruit after harvest but also acts synergically with cell wall modifying enzymes to inhibit the degradation of cell wall, resulting in changes in the ultrastructure of cell wall, thereby reducing the hardness of kiwifruit. In addition, according to the results of cis-acting elements, cell wall degradation is also related to downstream hormone signaling, especially PE-related genes. These results provide a theoretical basis for studying the mechanism of firmness and cell wall metabolism difference of kiwifruit and also lay a good foundation for further research.


Subject(s)
Actinidia , Ozone , Humans , Ozone/pharmacology , Treatment Delay , Gene Expression Profiling , Pectins/metabolism , Actinidia/chemistry , Cell Wall , Fruit/chemistry
6.
Prep Biochem Biotechnol ; 54(1): 95-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37167555

ABSTRACT

Three phase partitioning (TPP) method was effectively utilized for the extraction and purification of milk clotting protease (actinidin) from the kiwifruit pulp. The different purification parameters of TPP such as ammonium sulfate saturation, ratio of the crude kiwifruit extract to tert-butanol, and the pH value of extract were optimized. The 40% (w/v) salt saturation having 1.0:0.75 (v/v) ratio of crude kiwifruit extract to tert-butanol at 6.0 pH value exhibited 3.14 purification fold along with 142.27% recovery, and the protease was concentrated exclusively at intermediate phase (IP). This fraction showed milk-clotting activity (MCA), but there was no such activity in lower aqueous phase (AP). The enzyme molecular weight was found to be 24 kDa from Tricine SDS-PAGE analysis. Recovered protease demonstrated greater stability at pH 7.0 and temperature 50 °C. The Vmax and Km values were 121.9 U/ml and 3.2 mg/ml respectively. Its cysteine nature was demonstrated by inhibition studies. This study highlighted that the TPP is an economic and effective method for extraction and purification of actinidin from kiwifruit, and it could be used as a vegetable coagulant for cheesemaking.


Subject(s)
Actinidia , Actinidia/chemistry , tert-Butyl Alcohol/chemistry , Cysteine Endopeptidases , Peptide Hydrolases , Plant Extracts
7.
J Sci Food Agric ; 104(4): 2142-2155, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37926484

ABSTRACT

BACKGROUND: Kiwifruit pomace, which contains abundant phenolic compounds, is typically discarded during the juicing process, leading to wastage of valuable resources. To address this issue, various indicators (including total acidity, sugar/acid ratio, vitamin C, total polyphenols, polyphenol monomers, and soluble solids content) of 15 kiwifruit cultivars were evaluated and juiced. Then, a polyphenol-concentrated solution from kiwifruit pomace was backfilled into kiwi juice to prepare whole nutritious compound kiwi juice, and its anti-hyperlipidemic activity on obese model mice was then investigated. RESULTS: Through grey relational analysis and the technique for order preference by similarity to an ideal solution (TOPSIS), Kuimi and Huayou were identified as the predominant varieties for juicing, with weighted relevance scores of 0.695 and 0.871 respectively and TOPSIS scores of 0.6509 and 0.8220 respectively. The polyphenol content of Cuixiang pomace was 43.97 mg g-1 , making it the most suitable choice for polyphenol extraction. By backfilling a polyphenol-concentrated solution derived from Cuixiang pomace into compound kiwi juice of Huayou and Kuimi, the whole nutritious compound kiwi juice with polyphenols was produced and exhibited superior bioactivities, including enhanced hepatic oxidative stress defense, and alleviated serum lipid abnormalities. Furthermore, whole nutritious compound kiwi juice with polyphenols ameliorated host intestinal microbiota dysbiosis by increasing the relative abundance of the phyla Bacteroidota and Verrucomicrobiota. CONCLUSION: A hypolipidemic dietary supplement based on kiwifruit pomace polyphenols has been successfully developed, providing an effective solution for hyperlipidemia intervention. © 2023 Society of Chemical Industry.


Subject(s)
Actinidia , Hyperlipidemias , Animals , Mice , Polyphenols/chemistry , Hyperlipidemias/drug therapy , Fruit/chemistry , Plant Extracts/chemistry , Dietary Supplements/analysis , Actinidia/chemistry
8.
Food Res Int ; 175: 113770, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129059

ABSTRACT

In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.


Subject(s)
Actinidia , Glioblastoma , Fruit , Actinidia/genetics , Glioblastoma/drug therapy , Antioxidants , Plant Extracts , Tumor Microenvironment
9.
Molecules ; 28(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067549

ABSTRACT

Actinidia arguta (Siebold & Zucc.) Planch ex Miq. (A. arguta) is a highly valued vine plant belonging to the Actinidia lindl genus. It is extensively utilized for its edible and medicinal properties. The various parts of A. arguta serve diverse purposes. The fruit is rich in vitamins, amino acids, and vitamin C, making it a nutritious and flavorful raw material for producing jam, canned food, and wine. The flowers yield volatile oils suitable for essential oil extraction. The leaves contain phenolic compounds and can be used for tea production. Additionally, the roots, stems, and leaves of A. arguta possess significant medicinal value, as they contain a wide array of active ingredients that exert multiple pharmacological and therapeutic effects. These effects include quenching thirst, relieving heat, stopping bleeding, promoting blood circulation, reducing swelling, dispelling wind, and alleviating dampness. Comprehensive information on A. arguta was collected from scientific databases covering the period from 1970 to 2023. The databases used for this review included Web of Science, PubMed, ProQuest, and CNKI. The objective of this review was to provide a detailed explanation of A. arguta from multiple perspectives, such as phytochemistry and pharmacological effects. By doing so, it aimed to establish a solid foundation and propose new research ideas for further exploration of the plant's potential applications and industrial development. To date, a total of 539 compounds have been isolated and identified from A. arguta. These compounds include terpenoids, flavonoids, phenolics, phenylpropanoids, lignin, organic acids, volatile components, alkanes, coumarins, anthraquinones, alkaloids, polysaccharides, and inorganic elements. Flavonoids, phenolics, alkaloids, and polysaccharides are the key bioactive constituents of A. arguta. Moreover, phenolics and flavonoids in A. arguta exhibit remarkable antioxidant, anti-inflammatory, and anti-tumor properties. Additionally, they show promising potential in improving glucose metabolism, combating aging, reducing fatigue, and regulating the immune system. While some fundamental studies on A. arguta have been conducted, further research is necessary to enhance our understanding of its mechanism of action, quality evaluation, and compatibility mechanisms. A more comprehensive investigation is highly warranted to explore the mechanism of action and expand the range of drug resources associated with A. arguta. This will contribute to the current hot topics of anti-aging and anti-tumor drug research and development, thereby promoting its further development and utilization.


Subject(s)
Actinidia , Alkaloids , Actinidia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Polysaccharides , Vitamins , Flavonoids , Phenols , Phytochemicals/pharmacology , Ethnopharmacology
10.
Hereditas ; 160(1): 39, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102686

ABSTRACT

BACKGROUND: As an anticancer Chinese herbal medicine, the effective components and mechanism of Actinidia chinensis Planch (ACP, Tengligen) in the treatment of colon cancer are still unclear. In the present study, the integration of network pharmacology, molecular docking, and cell experiments was employed to study the effective mechanism of ACP against colon cancer. METHODS: The Venn diagram and STRING database were used to construct the protein-protein interaction network (PPI) of ACP-colon cancer, and further topological analysis was used to obtain the key target genes of ACP in colon cancer. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to visualize the related functions and pathways. Molecular docking between key targets and compounds was determined using software such as AutoDockTools. Finally, the effect of ACP on CT26 cells was observed in vitro. RESULTS: The study identified 40 ACP-colon key targets, including CASP3, CDK2, GSK3B, and PIK3R1. GO and KEGG enrichment analyses found that these genes were involved in 211 biological processes and 92 pathways, among which pathways in cancer, PI3K-Akt, p53, and cell cycle might be the main pathways of ACP against colon cancer. Molecular docking verified that the key components of ACP could stably bind to the corresponding targets. The experimental results showed that ACP could inhibit proliferation, induce apoptosis, and downregulate the phosphorylation of PIK3R1, Akt, and GSK3B in CT26 cells. CONCLUSION: ACP is an anti-colon cancer herb with multiple components, and involvement of multiple target genes and signaling pathways. ACP can significantly inhibit proliferation and induce apoptosis of colon cancer cells, which may be closely related to the regulation of PI3K/AKT/GSK3B signal transduction.


Subject(s)
Actinidia , Colonic Neoplasms , Molecular Docking Simulation , Actinidia/genetics , Network Pharmacology , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Transcription Factors
11.
Food Res Int ; 173(Pt 1): 113276, 2023 11.
Article in English | MEDLINE | ID: mdl-37803588

ABSTRACT

Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.


Subject(s)
Actinidia , Transcriptome , Fruit/genetics , Fruit/metabolism , Anthocyanins/metabolism , Metabolome , Actinidia/genetics , Actinidia/metabolism , Carotenoids/metabolism , Chlorophyll
12.
Food Res Int ; 173(Pt 1): 113324, 2023 11.
Article in English | MEDLINE | ID: mdl-37803635

ABSTRACT

The aim of this study was to investigate the inhibitory effects of Actinidia arguta ('Weiki', 'Skarlet September Kiwi') and Actinidia kolomikta ('Lande') fruit extracts against advanced glycation end-products (AGEs) formation and acetylcholinesterase (AChE) activity. The extracts were also tested regarding polyphenol profile and Lascorbic acid content (UHPLC-DAD-MS), and antioxidant capacity (DPPH, ABTS). 'Scarlet September Kiwi' showed the strongest anti-AGEs activity studied with BSAGLU (IC50 = 2.68) and BSA-MGO (IC50 = 18.06) models. The highest anti-AChE activity was found for the 'Lande' extract (IC50 = 4.56). 'Lande' showed the highest L-ascorbic acid content (8271.96 µg/g dw), ABTS (312.42 µmol TE/g dw) and DPPH (282.01 µmol TE/g dw) values. 'Scarlet September Kiwi' revealed the highest individual phenolics concentration (2321.43 µg/g dw). The contents of (+)-catechin and L-ascorbic acid were significantly correlated with anti-AChE activity. This research sheds new light on the bioactivity of Actinidia arguta and Actinidia kolomikta fruit elucidating the role of (+)-catechin and L-ascorbic acid in prevention of Alzheimer's disease.


Subject(s)
Actinidia , Catechin , Antioxidants/analysis , Polyphenols/pharmacology , Polyphenols/analysis , Actinidia/chemistry , Fruit/chemistry , Catechin/analysis , Cholinergic Antagonists/analysis , Acetylcholinesterase , Plant Extracts/chemistry , Ascorbic Acid/analysis
13.
Nutrients ; 15(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37836402

ABSTRACT

Actinidia arguta leaves (AAL) are an excellent source of bioactive components for the food industry and possess many functional properties. However, the hypoglycemic effect and mechanism of AAL remain unclear. The aim of this work was to investigate the potential hypoglycemic effect of AAL and explore its possible mechanism using 16S rRNA sequencing and serum metabolomics in diabetic mice induced by high-fat feeding in combination with streptozotocin injection. A total of 25 flavonoids from AAL were isolated and characterized, and the contents of the extract from the AAL ranged from 0.14 mg/g DW to 8.97 mg/g DW. The compound quercetin (2) had the highest content of 8.97 ± 0.09 mg/g DW, and the compound kaempferol-3-O-(2'-O-D-glucopyl)-ß-D-rutinoside (12) had the lowest content of 0.14 ± 0.01 mg/g DW. In vivo experimental studies showed that AAL reduced blood glucose and cholesterol levels, improved insulin sensitivity, and ameliorated oxidative stress and liver and kidney pathological damage. In addition, gut microbiota analysis found that AAL significantly reduced the F/B ratio, enriched the beneficial bacteria Bacteroides and Bifidobacterium, and inhibited the harmful bacteria Lactobacillus and Desulfovibrio, thereby playing an active role in intestinal imbalance. In addition, metabolomics analysis showed that AAL could improve amino acid metabolism and arachidonic acid metabolism, thereby exerting a hypoglycemic effect. This study confirmed that AAL can alleviate type 2 diabetes mellitus (T2DM) by regulating intestinal flora and interfering with related metabolic pathways, providing a scientific basis for its use as a dietary supplement and for further exploration of the mechanism of AAL against T2DM.


Subject(s)
Actinidia , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Animals , Mice , Hypoglycemic Agents/pharmacology , RNA, Ribosomal, 16S , Metabolomics
14.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762060

ABSTRACT

Type 2 diabetes (T2D) is a chronic metabolic condition associated with obesity, oxidative stress-mediated inflammation, apoptosis, and impaired insulin signaling. The utilization of phytochemical therapy generated from plants has emerged as a promising approach for the treatment of diabetes and its complications. Kiwifruit is recognized for its substantial content of antioxidative phenolics. Therefore, this work aimed to examine the effect of Actinidia deliciosa (kiwi fruit) on hepatorenal damage in a high-fat diet (HFD) and streptozotocin (STZ)-induced T2D in rats using in vivo and in silico analyses. An increase in hepatic and renal lipid peroxidation was observed in diabetic rats accompanied by a decrease in antioxidant status. Furthermore, it is important to highlight that there were observable inflammatory and apoptotic responses in the hepatic and renal organs of rats with diabetes, along with a dysregulation of the phosphorylation levels of mammalian target of rapamycin (mTOR), protein kinase B (Akt), and phosphoinositide 3-kinase (PI3K) signaling proteins. However, the administration of kiwi extract to diabetic rats alleviated hepatorenal dysfunction, inflammatory processes, oxidative injury, and apoptotic events with activation of the insulin signaling pathway. Furthermore, molecular docking and dynamic simulation studies revealed quercetin, chlorogenic acid, and melezitose as components of kiwi extract that docked well with potential as effective natural products for activating the silent information regulator 1(SIRT-1) pathway. Furthermore, phenolic acids in kiwi extract, especially syringic acid, P-coumaric acid, caffeic acid, and ferulic acid, have the ability to inhibit the phosphatase and tensin homolog (PTEN) active site. In conclusion, it can be argued that kiwi extract may present a potentially beneficial adjunctive therapy approach for the treatment of diabetic hepatorenal complications.


Subject(s)
Actinidia , Diabetes Complications , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulins , Animals , Rats , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Antioxidants , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Mammals
15.
Nutrients ; 15(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37447357

ABSTRACT

Kiwifruit allergy is an emerging pathological condition in both general and pediatric populations with a wide range of symptoms linked to variable molecular patterns, justifying systemic and cross-reactions with other allergens (i.e., latex, pollen, and fruit). Skin prick test (SPT), specific serum IgE (Act d 1, Act d 2, Act d 5, Act d 8, and Act d 10) directed against five out of thirteen molecular allergens described in the literature, and oral test challenge with kiwifruit are available for defining diagnosis. The management is similar to that of other food allergies, mostly based on an elimination diet. Although kiwi allergy has been on the rise in recent years, few studies have evaluated the clinical characteristics and methods of investigating this form of allergy. Data collected so far show severe allergic reaction to be more frequent in children compared to adults. Therefore, the aim of this review is to collect the reported clinical features and the available association with specific molecular patterns of recognition to better understand how to manage these patients and improve daily clinical practice.


Subject(s)
Actinidia , Food Hypersensitivity , Adult , Humans , Child , Immunoglobulin E , Food Hypersensitivity/diagnosis , Allergens , Fruit , Pollen
16.
Ann Intern Med ; 176(5): JC53, 2023 05.
Article in English | MEDLINE | ID: mdl-37126812

ABSTRACT

SOURCE CITATION: Gearry R, Fukudo S, Barbara G, et al. Consumption of 2 green kiwifruits daily improves constipation and abdominal comfort-results of an international multicenter randomized controlled trial. Am J Gastroenterol. 9 Jan 2023. [Epub ahead of print]. 36537785.


Subject(s)
Actinidia , Irritable Bowel Syndrome , Psyllium , Humans , Psyllium/therapeutic use , Defecation , Constipation/chemically induced , Constipation/drug therapy , Double-Blind Method , Treatment Outcome
17.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240222

ABSTRACT

To investigate how different species or ploidy level of pollen donors affects the fruit quality of kiwifruit, flowers of 'Hayward' kiwifruit (a hexaploid Actinidia deliciosa cultivar, 6x) were hand-pollinated with pollen from ten different male donors. Kiwifruit plants pollinated with four distant species-M7 (2x, A. kolomikta), M8 (4x, A. arguta), M9 (4x, A. melanandra), and M10 (2x, A. eriantha)-had a low fruit-setting rate and therefore were not investigated further. Of the other six treatments, kiwifruit plants pollinated with M4 (4x, A. chinensis), M5 (6x, A. deliciosa) M6 (6x, A. deliciosa) had a larger fruit size and weight than those pollinated with M1 (2x, A. chinensis) and M2 (2x, A. chinensis). However, pollination with M1 (2x) and M2 (2x) resulted in seedless fruits, having few small and aborted seeds. Notably, these seedless fruits had higher fructose, glucose, and total sugar and lower citric acid content. This resulted in a higher sugar to acid ratio compared to fruits from plants pollinated with M3 (4x, A. chinensis), M4 (4x), M5 (6x), and M6 (6x). Most volatile compounds increased in the M1 (2x)- and M2 (2x)-pollinated fruit. A combination of principal component analysis (PCA), electronic tongue, and electronic nose suggested that the different pollen donors significantly affected the kiwifruit's overall taste and volatiles. Specifically, two diploid donors had the most positive contribution. This was in agreement with the findings from the sensory evaluation. In conclusion, the present study showed that the pollen donor affected the seed development, taste, and flavor quality of 'Hayward' kiwifruit. This provides useful information for improving the fruit quality and breeding of seedless kiwifruit.


Subject(s)
Actinidia , Fruit , Taste , Plant Breeding , Seeds , Pollen
18.
Neurogastroenterol Motil ; 35(11): e14613, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37243443

ABSTRACT

BACKGROUND: Over-the-counter supplements are commonly used to manage chronic constipation; however, their efficacy remains unclear. We aimed to investigate the effect of food, vitamin or mineral supplements on stool output, gut transit time, symptoms, and quality of life in adults with chronic constipation via a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS: Studies were identified using electronic databases, backward citation, and hand-searching abstracts. RCTs reporting administration of food supplements (e.g., fruit extract supplements), vitamin or mineral supplements in adults with chronic constipation were included. Studies administering whole foods (e.g., fruits) were excluded. Risk of bias (RoB) was assessed with Cochrane RoB 2.0. Relative risks (RR), mean differences (MD), or standardized mean differences (95% confidence intervals [CI]) were calculated using a random-effects model. KEY RESULTS: Eight RCTs (787 participants) were included, investigating kiwifruit (n = 3 RCTs), senna (n = 2), magnesium oxide (n = 2), Ziziphus jujuba (n = 1), and Malva Sylvestris (n = 1) supplements. Kiwifruit supplements did not impact stool frequency (MD 0.24 bowel movements/week [-0.32, 0.80]; p = 0.40) or consistency (MD -0.11 Bristol points [-0.31, 0.09], p = 0.29). Overall, 61% responded to senna and 28% to control; however, this did not reach statistical significance (RR 2.78, [0.93, 8.27]; p = 0.07). Overall, 68% responded to magnesium oxide and 19% to control (RR 3.32 [1.59, 6.92]; p = 0.001). Magnesium oxide improved stool frequency (MD 3.72 bowel movements/week [1.41, 6.03]; p = 0.002) and consistency (MD 1.14 Bristol points [0.48, 1.79]; p = 0.0007). CONCLUSIONS AND INFERENCES: Magnesium oxide supplements are effective at improving cardinal symptoms of chronic constipation. Senna and kiwifruit supplements did not impact symptoms; however, findings were based on a small number of studies. Further research is required to investigate the effect of food supplements (e.g., kiwifruit supplements), as well as their whole food equivalents (e.g., whole kiwifruits) in chronic constipation.


Subject(s)
Actinidia , Vitamins , Adult , Humans , Vitamins/therapeutic use , Magnesium Oxide , Randomized Controlled Trials as Topic , Constipation/drug therapy , Sennosides , Dietary Supplements , Minerals/therapeutic use
19.
J Econ Entomol ; 116(3): 674-685, 2023 06 13.
Article in English | MEDLINE | ID: mdl-36939034

ABSTRACT

Due to a lack of knowledge on the pollination requirements of kiwifruit cultivars grown within the United States, farmers simultaneously implement multiple pollination methods, like the rental of managed bee species or artificial pollination to achieve high fruit yields. However, implementing multiple pollination methods is costly and possibly an inefficient use of resources. We assessed the contribution of two managed bees (Apis mellifera and Bombus impatiens) to the pollination of kiwifruit by i) determining the relative abundance of kiwifruit pollen collected by foragers of each bee species, and ii) comparing fruit set and fruit quality among insect and artificially pollinated flowers through an insect exclusion experiment. A significant difference was observed between the mean relative abundance of kiwifruit pollen carried in the corbicula of A. mellifera and B. impatiens, with B. impatiens carrying on average 46% more kiwifruit pollen than A. mellifera. Artificially pollinated kiwifruit flowers set significantly greater numbers of fruit per flower at four weeks post-bloom and at harvest compared to insect pollination, wind pollination, and pollen exclusion treatment. Artificial pollination produced fruits of greater weight, size, and seed number compared to insect-pollinated flowers, and few fruits were produced in the pollen exclusion and wind pollination treatments. Kiwifruit producers experiencing similar conditions to ours should focus on artificially pollinating their crops rather than relying on managed or wild insects for kiwifruit pollination. Future research should evaluate other methods of artificial pollination to determine their effectiveness, efficiency, and economics in the pollination of kiwifruit grown within the United States.


Subject(s)
Actinidia , Actinidiaceae , Ericales , Hymenoptera , Bees , Animals , Fruit , Pollination , Flowers
20.
Bioorg Chem ; 134: 106466, 2023 05.
Article in English | MEDLINE | ID: mdl-36934691

ABSTRACT

Actinidia polygama has been used as a traditional medicine for treating various diseases. In the present study, 13 compounds, including three new monoterpenoids (1-3), were isolated from the leaves of A. polygama to investigate the bioactive constituents of the plant. The structures were characterized by analyzing spectroscopic and chiroptical data. These compounds were preliminarily screened for their ability to increase insulin secretion levels after glucose stimulation. Of these, 3-O-coumaroylmaslinic acid (4) and jacoumaric acid (5) showed activity. In further biological studies, these compounds exhibited increased glucose-stimulated insulin secretion (GSIS) activity without cytotoxicity in rat INS-1 pancreatic ß-cells as well as α-glucosidase inhibitory activity. Furthermore, both compounds increased insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), pancreatic and duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression. Hence, these compounds may be developed as potential antidiabetic agents.


Subject(s)
Actinidia , alpha-Glucosidases , Rats , Animals , Insulin Secretion , alpha-Glucosidases/metabolism , Actinidia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glucose/metabolism , Insulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL