Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 8(6): e66642, 2013.
Article in English | MEDLINE | ID: mdl-23805254

ABSTRACT

The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.


Subject(s)
Acyl-Butyrolactones/metabolism , Pectobacterium/physiology , Rhodococcus/metabolism , Acyl-Butyrolactones/analysis , Acyl-Butyrolactones/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatography, High Pressure Liquid , Escherichia coli/metabolism , Mass Spectrometry , Microscopy, Confocal , Plant Tubers/microbiology , Quorum Sensing/drug effects , Rhodococcus/genetics , Solanum tuberosum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL