Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 58: e201045, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420433

ABSTRACT

Abstract This study aimed to develop a simple and fast capillary electrophoresis (CE) method for the simultaneous determination of adenosine triphosphate (ATP) and its metabolites in dietary energy supplements. Reverse polarity separation mode for faster separation of the three strong negatively charged analytes and capillaries with a 25 µm inner diameter was employed. At -433 V/cm field strength at background electrolyte (BGE) consist with 0.1 M tris-HCl, 0.5 mM tetradecyltrimethylammonium chloride (TTAC) as positively charged surfactant and 0.3 mg/mL hydroxypropylmethylcellulose (HPMC) to reduce the electroosmotic flow (EOF), a complete separation of the three species were achieved in less than 15 minutes. The data acquisition was conducted at a wavelength of 254 nm. Three different commercialised dietary energy supplements were analysed.


Subject(s)
Capillaries , Adenosine Triphosphate/agonists , Electrophoresis, Capillary/methods , Dietary Supplements
2.
Biofactors ; 44(3): 245-262, 2018 May.
Article in English | MEDLINE | ID: mdl-29399895

ABSTRACT

Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 44(3):245-262, 2018.


Subject(s)
Anticholesteremic Agents/pharmacology , Dietary Supplements , Foam Cells/drug effects , Keto Acids/pharmacology , Leucine/pharmacology , Macrophages/drug effects , Adenosine Triphosphate/agonists , Adenosine Triphosphate/biosynthesis , Adolescent , Adult , Animals , Cell Differentiation/drug effects , Cell Line , Cholesterol/biosynthesis , Cholesterol, VLDL/antagonists & inhibitors , Cholesterol, VLDL/biosynthesis , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/metabolism , Dose-Response Relationship, Drug , Foam Cells/cytology , Foam Cells/metabolism , Healthy Volunteers , Humans , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Triglycerides/antagonists & inhibitors , Triglycerides/biosynthesis
3.
Sci Rep ; 8(1): 1165, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348607

ABSTRACT

Mitochondrial complex I (CI) deficiency is the most frequent cause of oxidative phosphorylation (OXPHOS) disorders in humans. In order to benchmark the effects of CI deficiency on mitochondrial bioenergetics and dynamics, respiratory chain (RC) and endoplasmic reticulum (ER)-mitochondria communication, and superoxide production, fibroblasts from patients with mutations in the ND6, NDUFV1 or ACAD9 genes were analyzed. Fatty acid metabolism, basal and maximal respiration, mitochondrial membrane potential, and ATP levels were decreased. Changes in proteins involved in mitochondrial dynamics were detected in various combinations in each cell line, while variable changes in RC components were observed. ACAD9 deficient cells exhibited an increase in RC complex subunits and DDIT3, an ER stress marker. The level of proteins involved in ER-mitochondria communication was decreased in ND6 and ACAD9 deficient cells. |ΔΨ| and cell viability were further decreased in all cell lines. These findings suggest that disruption of mitochondrial bioenergetics and dynamics, ER-mitochondria crosstalk, and increased superoxide contribute to the pathophysiology in patients with ACAD9 deficiency. Furthermore, treatment of ACAD9 deficient cells with JP4-039, a novel mitochondria-targeted reactive oxygen species, electron and radical scavenger, decreased superoxide level and increased basal and maximal respiratory rate, identifying a potential therapeutic intervention opportunity in CI deficiency.


Subject(s)
Acyl-CoA Dehydrogenases/genetics , Electron Transport Complex I/deficiency , Fibroblasts/enzymology , Mitochondrial Diseases/genetics , NADH Dehydrogenase/genetics , Reactive Oxygen Species/metabolism , Acyl-CoA Dehydrogenases/deficiency , Adenosine Triphosphate/agonists , Adenosine Triphosphate/biosynthesis , Electron Transport/drug effects , Electron Transport/genetics , Electron Transport Complex I/genetics , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Fibroblasts/drug effects , Fibroblasts/pathology , Free Radical Scavengers/pharmacology , Gene Expression , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/pathology , NADH Dehydrogenase/deficiency , Nitrogen Oxides/pharmacology , Oxidative Phosphorylation/drug effects , Primary Cell Culture , Reactive Oxygen Species/antagonists & inhibitors
4.
Biochim Biophys Acta ; 1857(8): 1079-1085, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27060254

ABSTRACT

Coenzyme Q (CoQ, or ubiquinone) is a remarkable lipid that plays an essential role in mitochondria as an electron shuttle between complexes I and II of the respiratory chain, and complex III. It is also a cofactor of other dehydrogenases, a modulator of the permeability transition pore and an essential antioxidant. CoQ is synthesized in mitochondria by a set of at least 12 proteins that form a multiprotein complex. The exact composition of this complex is still unclear. Most of the genes involved in CoQ biosynthesis (COQ genes) have been studied in yeast and have mammalian orthologues. Some of them encode enzymes involved in the modification of the quinone ring of CoQ, but for others the precise function is unknown. Two genes appear to have a regulatory role: COQ8 (and its human counterparts ADCK3 and ADCK4) encodes a putative kinase, while PTC7 encodes a phosphatase required for the activation of Coq7. Mutations in human COQ genes cause primary CoQ(10) deficiency, a clinically heterogeneous mitochondrial disorder with onset from birth to the seventh decade, and with clinical manifestation ranging from fatal multisystem disorders, to isolated encephalopathy or nephropathy. The pathogenesis of CoQ(10) deficiency involves deficient ATP production and excessive ROS formation, but possibly other aspects of CoQ(10) function are implicated. CoQ(10) deficiency is unique among mitochondrial disorders since an effective treatment is available. Many patients respond to oral CoQ(10) supplementation. Nevertheless, treatment is still problematic because of the low bioavailability of the compound, and novel pharmacological approaches are currently being investigated. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Subject(s)
Ataxia/metabolism , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Muscle Weakness/metabolism , Ubiquinone/biosynthesis , Ubiquinone/deficiency , Adenosine Triphosphate/agonists , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/deficiency , Animals , Ataxia/drug therapy , Ataxia/genetics , Ataxia/physiopathology , Electron Transport , Electron Transport Chain Complex Proteins/genetics , Humans , Mitochondria/genetics , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Muscle Weakness/drug therapy , Muscle Weakness/genetics , Muscle Weakness/physiopathology , Mutation , Protein Multimerization , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Ubiquinone/genetics , Ubiquinone/metabolism , Ubiquinone/therapeutic use
5.
Photochem Photobiol ; 91(2): 411-6, 2015.
Article in English | MEDLINE | ID: mdl-25443662

ABSTRACT

Low-level laser (light) therapy has been used before exercise to increase muscle performance in both experimental animals and in humans. However, uncertainty exists concerning the optimum time to apply the light before exercise. The mechanism of action is thought to be stimulation of mitochondrial respiration in muscles, and to increase adenosine triphosphate (ATP) needed to perform exercise. The goal of this study was to investigate the time course of the increases in mitochondrial membrane potential (MMP) and ATP in myotubes formed from C2C12 mouse muscle cells and exposed to light-emitting diode therapy (LEDT). LEDT employed a cluster of LEDs with 20 red (630 ± 10 nm, 25 mW) and 20 near-infrared (850 ± 10 nm, 50 mW) delivering 28 mW cm(2) for 90 s (2.5 J cm(2)) with analysis at 5 min, 3 h, 6 h and 24 h post-LEDT. LEDT-6 h had the highest MMP, followed by LEDT-3 h, LEDT-24 h, LEDT-5 min and Control with significant differences. The same order (6 h > 3 h > 24 h > 5 min > Control) was found for ATP with significant differences. A good correlation was found (r = 0.89) between MMP and ATP. These data suggest an optimum time window of 3-6 h for LEDT stimulate muscle cells.


Subject(s)
Adenosine Triphosphate/agonists , Membrane Potential, Mitochondrial/radiation effects , Mitochondria/radiation effects , Muscle Fibers, Skeletal/radiation effects , Adenosine Triphosphate/biosynthesis , Animals , Cell Line , Infrared Rays , Low-Level Light Therapy , Membrane Potential, Mitochondrial/physiology , Mice , Mitochondria/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Time Factors
6.
Neurochem Int ; 53(6-8): 278-82, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18805451

ABSTRACT

Neuropathic pain usually is persistent and no effective treatment. ATP plays an important role in the initiation of pain. P2X(3) receptors are localized in the dorsal root ganglion (DRG) neurons and activated by extracellular ATP. Sodium ferulate (SF) is an active principle from Chinese herbal medicine and has anti-inflammatory activities. This study observed the effects of SF on the nociceptive facilitation of the primary sensory afferent after chronic constriction injury (CCI) mediated by P2X(3) receptor. In this study, the content of ATP in DRG neurons was measured by high-performance liquid chromatography (HPLC). P2X(3) agonist-activated currents in DRG neurons was recorded by the whole-cell patch-clamp skill. The expression of P2X(3) mRNA in DRG neurons was analyzed by in situ hybridization. The ATP content of DRG was increased after CCI. In CCI rats treated with SF, the content of ATP in DRG neurons was reduced. SF decreased the increment of P2X(3) agonist-activated currents and P2X(3) mRNA expression in DRG neurons during CCI. SF may inhibit the initiation of pain and primary afferent sensitization mediated by P2X(3) receptor during CCI.


Subject(s)
Coumaric Acids/pharmacology , Ganglia, Spinal/drug effects , Nociceptors/drug effects , Peripheral Nervous System Diseases/drug therapy , Purinergic P2 Receptor Antagonists , Sensory Receptor Cells/drug effects , Adenosine Triphosphate/agonists , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/pharmacology , Ganglia, Spinal/metabolism , Ligation , Male , Nociceptors/metabolism , Patch-Clamp Techniques , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/physiopathology , Purinergic P2 Receptor Agonists , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2X3 , Sensory Receptor Cells/metabolism
7.
J Thorac Cardiovasc Surg ; 121(1): 155-62, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11135172

ABSTRACT

OBJECTIVE: This study was designed to compare ischemic preconditioning with opening of mitochondrial adenosine triphosphate-sensitive potassium channels and Na(+)/H(+) exchange inhibition in an isolated heart model of cold storage, simulating the situation of cardiac allografts. METHODS: Sixty-seven isolated isovolumic buffer-perfused rat hearts were arrested with and stored in Celsior solution (Imtix-Sangstat) at 4 degrees C for 4 hours before a 2-hour reperfusion. Group I hearts served as controls and were arrested with and stored in Celsior solution. In group II, hearts were preconditioned by two 5-minute episodes of global ischemia, each separated by 5 minutes of reperfusion before arrest with Celsior solution. Group III hearts were arrested with and stored in Celsior solution supplemented with 100 micromol/L of the mitochondrial adenosine triphosphate-sensitive potassium channel opener diazoxide. In group IV, hearts received an infusion of diazoxide (30 micromol/L) during the first 15 minutes of reperfusion. Group V hearts underwent a protocol combining both interventions used in groups III and IV. In group VI, hearts were arrested with and stored in Celsior solution supplemented with 1 micromol/L of the Na(+)/H(+) exchange inhibitor cariporide. Group VII hearts received an infusion of cariporide (1 micromol/L) during the first 15 minutes of reperfusion. In group VIII, hearts underwent a protocol combining both interventions used in groups VI and VII. Group IX hearts were ischemically preconditioned as in group II, and sustained Na(+)/H(+) exchange inhibition during both storage and early reperfusion was used as in group VIII. RESULTS: On the basis of comparisons of postischemic left ventricular contractility and diastolic function, coronary flow, total creatine kinase leakage, and myocardial water content, values indicative of improved protection were obtained by combining ischemic preconditioning with Na(+)/H(+) exchange inhibition by cariporide given during storage and initial reperfusion. The endothelium-dependent vasodilatory postischemic responses to 5-hydroxytryptamine or acetylcholine and endothelium-independent responses to papaverine were not affected by these interventions. CONCLUSIONS: These data suggest that cardioprotection conferred by the Na(+)/H(+) exchange inhibitor cariporide is additive to that of ischemic preconditioning and might effectively contribute to improve donor heart preservation during cardiac transplantation.


Subject(s)
Adenosine Triphosphate/agonists , Heart Transplantation , Ischemic Preconditioning, Myocardial/methods , Mitochondria, Heart/metabolism , Myocardial Ischemia/prevention & control , Potassium Channels/drug effects , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Anti-Arrhythmia Agents/pharmacology , Coronary Circulation/drug effects , Creatine Kinase/metabolism , Diazoxide/pharmacology , Disaccharides/pharmacology , Electrolytes/pharmacology , Glutamates/pharmacology , Glutathione/pharmacology , Guanidines/pharmacology , Heart Arrest, Induced/methods , Heart Transplantation/adverse effects , Histidine/pharmacology , In Vitro Techniques , Male , Mannitol/pharmacology , Mitochondria, Heart/drug effects , Myocardial Contraction/drug effects , Myocardial Ischemia/etiology , Myocardial Ischemia/metabolism , Myocardial Ischemia/physiopathology , Organ Preservation/methods , Organ Preservation Solutions/pharmacology , Potassium Channels/metabolism , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Sulfones/pharmacology , Transplantation, Homologous , Vasodilator Agents/pharmacology
8.
J Immunol ; 165(8): 4615-23, 2000 Oct 15.
Article in English | MEDLINE | ID: mdl-11035104

ABSTRACT

Cultured monocytes and macrophages stimulated with LPS produce large quantities of proIL-1beta, but release little mature cytokine to the medium. The efficiency at which the procytokine is converted to its active 17-kDa species and released extracellularly is enhanced by treating cytokine-producing cells with a secretion stimulus such as ATP or nigericin. To determine whether this need for a secretion stimulus extends to blood, individual donors were bled twice daily for 4 consecutive days, and the collected blood samples were subjected to a two-step IL-1 production assay. LPS-activated blood samples generated cell-free IL-1beta, but levels of the extracellular cytokine were greatly increased by subsequent treatment with ATP or nigericin. Specificity and concentration requirements of the nucleotide triphosphate effect suggests a P2X(7) receptor involvement. Quantities of IL-1beta generated by an individual donor's blood in response to the LPS-only and LPS/ATP stimuli were relatively consistent over the 4-day period. Between donors, consistent differences in cytokine production capacity were observed. Blood samples treated with ATP also demonstrated enhanced IL-18 production, but TNF-alpha levels decreased. Among leukocytes, monocytes appeared to be the most affected cellular targets of the ATP stimulus. These studies indicate that an exogenous stimulus is required by blood for the efficient production of IL-1beta and IL-18, and suggest that circulating blood monocytes constitutively express a P2X(7)-like receptor.


Subject(s)
Adenosine Triphosphate/agonists , Interleukin-18/blood , Interleukin-18/metabolism , Interleukin-1/blood , Interleukin-1/metabolism , Adenosine Triphosphate/blood , Adjuvants, Immunologic/agonists , Adjuvants, Immunologic/blood , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/immunology , Circadian Rhythm/immunology , Eosinophils/immunology , Eosinophils/metabolism , Female , Humans , Interleukin-1/biosynthesis , Lipopolysaccharides/blood , Lipopolysaccharides/pharmacology , Lymphocyte Activation , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Monocytes/immunology , Monocytes/metabolism , Neutrophil Activation/immunology , Neutrophils/immunology , Neutrophils/metabolism , Protein Processing, Post-Translational/immunology , Receptors, Purinergic P2/biosynthesis , Receptors, Purinergic P2X7
SELECTION OF CITATIONS
SEARCH DETAIL