Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.798
Filter
Add more filters

Publication year range
1.
ACS Chem Neurosci ; 15(5): 1010-1025, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38382546

ABSTRACT

Alteration of gut microbiota and microbial metabolites such as short-chain fatty acids (SCFAs) coexisted with stress-generated brain disorders, including depression. Herein, we investigated the effect of SCFAs in a treatment-resistant depression (TRD) model of rat. Rats were exposed to chronic-unpredictable mild stress (CUMS) and repeated adrenocorticotropic hormone (ACTH) injections to generate a TRD-like phenotype. The cecal contents of these animals were engrafted into healthy-recipient rats and allowed to colonize for 4 weeks (TRD-FMT group). Blood, brain, colon, fecal, and cecal samples were collected for molecular studies. Rats exposed to CUMS + ACTH showed TRD-like phenotypes in sucrose-preference (SPT), forced swim (FST), and elevated plus maze (EPM) tests. The TRD-FMT group also exhibited anxiety- and depression-like behaviors. Administration of SCFAs (acetate, propionate, and butyrate at 67.5, 25, and 40 mM, respectively) for 7 days exerted robust antidepressant and antianxiety effects by restoring the levels of SCFAs in plasma and fecal samples, and proinflammatory cytokines (TNF-α and IL-6), serotonin, GABA, norepinephrine, and dopamine in the hippocampus and/or frontal cortex of TRD and TRD-FMT animals. SCFAs treatment elevated the expression of free-fatty acid receptors 2/3, BDNF, doublecortin, and zonula-occludens, and reduced the elevated plasma levels of kynurenine and quinolinic acid and increased mucus-producing goblet cells in TRD and TRD-FMT animals. In 16S sequencing results, decreased microbial diversity in TRD rats corresponds with differences in the genus of Faecalibacterium, Anaerostipes, Allobaculum, Blautia, Peptococcus, Rombustia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-002, Solobacterium, Subdolibacterium, and Eubacterium ventriosum. SCFAs may impart beneficial effects via modulation of tryptophan metabolism, inflammation, neurotransmitters, and microbiota-gut-brain axis in TRD rats.


Subject(s)
Anxiety , Depression , Rats , Animals , Depression/drug therapy , Depression/metabolism , Anxiety/drug therapy , Anxiety/metabolism , Fatty Acids, Volatile , Phenotype , Adrenocorticotropic Hormone , Dietary Supplements , Stress, Psychological/metabolism
2.
Zhen Ci Yan Jiu ; 49(1): 57-63, 2024 Jan 25.
Article in English, Chinese | MEDLINE | ID: mdl-38239139

ABSTRACT

OBJECTIVES: To observe the clinical efficacy of the spirit-regulation method of Jin's three-needle therapy on post-stroke anxiety and its effects on the hypothalamus-pituitary-adrenal (HPA) axis. METHODS: Fifty-four patients with post-stroke anxiety were divided into spirit regulation (Jin's three needle therapy) group and sham-acupuncture group according to the random number table method, 28 cases in the spirit regulation and 26 cases in the sham-acupuncture group. The patients of the two groups received the same regimen of basic medication and rehabilitation, and the same acupoint prescription was adopted, including Sishenzhen (extra points, 1.5 cun to Baihui [GV20] at 3, 6, 9 and 12 o'clock positions), Shenting (GV24), Yintang (EX-HN3), and bilateral Shenmen (HT7), Sanyinjiao (SP6), Hegu (LI4) and Taichong (LR3). The true acupuncture was delivered in the spirit regulation group and the sham acupuncture operated in the sham-acupuncture group. One treatment lasted for 30 min, once daily, 5 times a week. The duration of treatment was 3 weeks in the trial. Before treatment and on day 10 and day 21 of treatment, the changes in the score of Hamilton anxiety scale (HAMA) and that of National Institutes of Health Stroke Scale (NIHSS) were compared between the two groups separately. Using ELISA, the contents of adrenocorticotropin (ACTH) and cortisol (CORT) in the serum were detected, and the adverse reactions were recorded. RESULTS: In the within-group comparison before and after treatment, HAMA score and NIHSS score dropped on day 10 and day 21 after treatment in the spirit regulation group (P<0.05);HAMA score and NIHSS score in the sham-acupuncture group were decreased on day 21 of treatment (P<0.05). After 21 days of treatment, HAMA score and NIHSS score in the spirit-regulation group were decreased significantly than those in the sham-acupuncture group (P<0.05) and the contents of ACTH and CORT in the serum decreased when compared with those before treatment and those of the sham-operation group (P<0.05). No obvious adverse events occurred in the spirit-regulation group and the sham-acupuncture group. CONCLUSIONS: Using sham acupuncture as a control, it is preliminarily confirmed that the spirit regulation method of Jin's three-needle therapy is effective on post-stroke anxiety. In association of the downtrend of serological indicators, it is speculated that the underlying mechanism of this therapy is related to HPA axis.


Subject(s)
Acupuncture Therapy , Stroke , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stroke/complications , Stroke/therapy , Acupuncture Therapy/methods , Anxiety/therapy , Treatment Outcome , Acupuncture Points , Adrenocorticotropic Hormone
3.
Transl Psychiatry ; 14(1): 8, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191479

ABSTRACT

Impaired motivational drive is a key feature of depression. Chronic stress is a known antecedent to the development of depression in humans and depressive-like states in animals. Whilst there is a clear relationship between stress and motivational drive, the mechanisms underpinning this association remain unclear. One hypothesis is that the endocrine system, via corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN; PVNCRH), initiates a hormonal cascade resulting in glucocorticoid release, and that excessive glucocorticoids change brain circuit function to produce depression-related symptoms. Another mostly unexplored hypothesis is that the direct activity of PVNCRH neurons and their input to other stress- and reward-related brain regions drives these behaviors. To further understand the direct involvement of PVNCRH neurons in motivation, we used optogenetic stimulation to activate these neurons 1 h/day for 5 consecutive days and showed increased acute stress-related behaviors and long-lasting deficits in the motivational drive for sucrose. This was associated with increased Fos-protein expression in the lateral hypothalamus (LH). Direct stimulation of the PVNCRH inputs in the LH produced a similar pattern of effects on sucrose motivation. Together, these data suggest that PVNCRH neuronal activity may be directly responsible for changes in motivational drive and that these behavioral changes may, in part, be driven by PVNCRH synaptic projections to the LH.


Subject(s)
Adrenocorticotropic Hormone , Corticotropin-Releasing Hormone , Animals , Humans , Motivation , Pituitary Hormone-Releasing Hormones , Optogenetics , Hypothalamus , Glucocorticoids , Neurons , Sucrose
4.
J Pineal Res ; 76(1): e12922, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37909654

ABSTRACT

This was a prospective, randomized, double-blind, single-center placebo-controlled trial to assess the efficacy and safety of melatonin as an add-on treatment for infantile epileptic spasms syndrome (IESS). Participants aged 3 months to 2 years with a primary diagnosis of IESS were recruited and assigned to two groups in a 1:1 ratio. Both treatment groups received a combination of adrenocorticotrophic hormone (ACTH) and magnesium sulfate (MgSO4 ) for 2 weeks, and the treatment group also received melatonin (3 mg) between 20:00 and 21:00 daily, 0.5-1 h before bedtime. The study's primary endpoint was the average reduction rate in spasm frequency assessed by seizure diaries. Secondary endpoints included assessment of the response rate, EEG hypsarrhythmia (Kramer score), and psychomotor development (Denver Developmental Screening Test, DDST). Sleep quality was assessed by using the Brief Infant Sleep Questionnaire (BISQ), the Infant Sleep Assessment Scale (ISAS), and actigraphy. Safety parameters were also evaluated. Statistical analyses were conducted on intention-to-treat and per-protocol populations. The trial is registered at Clinicaltrials.gov (ChiCTR2000036208). Out of 119 screened patients, 70 were randomized and 66 completed treatments. In the intention-to-treat population, there were no significant differences in the average percentage reduction of spasm frequency (median [interquartile range, IQR: Q3-Q1], 100% [46.7%] vs. 66.7% [55.3%], p = .288), the 3-day response rate (51.4% vs. 37.1%, p = .229), the 28-day response rate (42.9% vs. 28.6%, p = .212), EEG Kramer scores (2 [3.5] vs. 2 [3], p = .853), or DDST comprehensive months (5 [2.5] vs. 6 [6], p = .239) between the melatonin (n = 35) and placebo (n = 35) groups. However, caregivers reported improved sleep quality after melatonin treatment, with 85.7% reporting regular sleep compared to 42.9% with placebo (42.9%, p < .001). The melatonin group had lower ISAS scores in 4-11-month-old patients compared to the placebo (mean ± SD, 29.3 ± 4.4 vs. 35.2 ± 5.9, p < .001). Moreover, the median (IQR) value of sleep-onset latency was shortened by 6.0 (24.5) min after melatonin treatment, while that in the placebo group was extended by 3.0 (22.0) min (p = .030). The serum melatonin (6:00 h) level (pg/mL) of the children in the melatonin group after treatment was significantly higher than in the placebo group (median [IQR], 84.8 [142] vs. 17.5 [37.6], p < .001). No adverse effects related to melatonin were observed in the study, and there were no significant differences in adverse effects between the melatonin and placebo groups. Although not statistically significant, the results of this randomized clinical trial proved that melatonin supplementation, as an add-on treatment, can improve spasm control rate in the treatment of IESS. For IESS children treated with ACTH, the addition of melatonin was found to improve sleep quality, shorten sleep onset latency, and increase blood melatonin levels. Moreover, it was observed to be a safe treatment option.


Subject(s)
Melatonin , Child , Humans , Infant , Melatonin/therapeutic use , Prospective Studies , Adrenocorticotropic Hormone/therapeutic use , Double-Blind Method , Spasm/drug therapy , Dietary Supplements
5.
J Neurosci ; 43(45): 7657-7667, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37833068

ABSTRACT

Worldwide, alcohol use and abuse are a leading risk of mortality, causing 5.3% of all deaths (World Health Organization, 2022). The endocrine stress system, initiated by the peripheral release of corticotropin releasing hormone (CRH) from primarily glutamatergic neurons in the paraventricular nucleus of the hypothalamus (PVN), is profoundly linked with alcohol use, abuse, and relapse (Blaine and Sinha, 2017). These PVN CRH-releasing (PVNCRH) neurons are essential for peripheral and central stress responses (Rasiah et al., 2023), but little is known about how alcohol affects these neurons. Here, we show that two-bottle choice alcohol consumption blunts the endocrine-mediated corticosterone response to stress during acute withdrawal in female mice. Conversely, using slice electrophysiology, we demonstrate that acute withdrawal engenders a hyperexcitable phenotype of PVNCRH neurons in females that is accompanied by increased glutamatergic transmission in both male and female mice. GABAergic synaptic transmission was unaffected by alcohol history. We then tested whether chemogenetic inhibition of PVNCRH neurons would restore stress response in female mice with a history of alcohol drinking in the looming disk test, which mimics an approaching predator threat. Accordingly, inhibition of PVNCRH neurons reduced active escape in hM4Di alcohol history mice only. This study indicates that stress-responsive PVNCRH neurons in females are particularly affected by a history of alcohol consumption. Interestingly, women have indicated an increase in heavy alcohol use to cope with stress (Rodriguez et al., 2020), perhaps pointing to a potential underlying mechanism in alcohol-mediated changes to PVNCRH neurons that alter stress response.SIGNIFICANCE STATEMENT Paraventricular nucleus of the hypothalamus neurons that release corticotropin releasing hormone (PVNCRH) are vital for stress response. These neurons have been understudied in relation to alcohol and withdrawal despite profound relations between stress, alcohol use disorders (AUD), and relapse. In this study, we use a variety of techniques to show that acute withdrawal from a history of alcohol impacts peripheral stress response, PVNCRH neurons, and behavior. Specifically, PVNCRH are in a hyperactive state during withdrawal, which drives an increase in active stress coping behaviors in female mice only. Understanding how alcohol use and withdrawal affects stress responding PVNCRH neurons may contribute to finding new potential targets for the treatment of alcohol use disorder.


Subject(s)
Alcoholism , Corticotropin-Releasing Hormone , Humans , Female , Male , Mice , Animals , Corticotropin-Releasing Hormone/metabolism , Adrenocorticotropic Hormone , Pituitary Hormone-Releasing Hormones , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Neurons/physiology , Alcohol Drinking , Recurrence
6.
Int. j. morphol ; 41(5): 1527-1536, oct. 2023. ilus
Article in English | LILACS | ID: biblio-1521022

ABSTRACT

SUMMARY: The 12C6+ heavy ion beam irradiation can cause bystander effects. The inflammatory cytokines, endocrine hormones and apoptotic proteins may be involved in 12C6+ irradiation-induced bystander effects. This study characterized the protective effects and mechanisms of Huangqi decoction (HQD) against 12C6+ radiation induced bystander effects. Wistar rats were randomly divided into control, 12C6+ heavy ion irradiation model, and high-dose/medium-dose/low-dose HQD groups. HE staining assessed the pathological changes of brain and kidney. Peripheral blood chemical indicators as well as inflammatory factors and endocrine hormones were detected. Apoptosis was measured with TUNEL. Proliferating cell nuclear antigen (PCNA) expression was determined with real-time PCR and Western blot.Irradiation induced pathological damage to the brain and kidney tissues. After irradiation, the numbers of white blood cells (WBC) and monocyte, and the expression of interleukin (IL)-2, corticotropin-releasing hormone (CRH) and PCNA decreased. The damage was accompanied by increased expression of IL-1β, IL-6, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) as well as increased neuronal apoptosis. These effects were indicative of radiation-induced bystander effects. Administration of HQD attenuated the pathological damage to brain and kidney tissues, and increased the numbers of WBC, neutrophils, lymphocyte and monocytes, as well as the expression of IL-2, CRH and PCNA. It also decreased the expression of IL-1β, IL-6, CORT and ACTH as well as neuronal apoptosis. HQD exhibits protective effects against 12C6+ radiation-induced bystander effects. The underlying mechanism may involve the promotion of the production of peripheral blood cells, inhibition of inflammatory factors and apoptosis, and regulation of endocrine hormones.


La irradiación con haz de iones pesados 12C6+ puede provocar efectos secundarios. Las citoquinas inflamatorias, las hormonas endocrinas y las proteínas apoptóticas pueden estar involucradas en los efectos secundarios inducidos por la irradiación 12C6+. Este estudio caracterizó los efectos y mecanismos protectores de la decocción de Huangqi (HQD) contra los efectos externos inducidos por la radiación 12C6+. Las ratas Wistar se dividieron aleatoriamente en grupos control, modelo de irradiación de iones pesados 12C6+ y grupos de dosis alta/media/baja de HQD. La tinción con HE evaluó los cambios patológicos del cerebro y el riñón. Se detectaron indicadores químicos de sangre periférica, así como factores inflamatorios y hormonas endocrinas. La apoptosis se midió con TUNEL. La expresión del antígeno nuclear de células en proliferación (PCNA) se determinó mediante PCR en tiempo real y transferencia Western blot. La irradiación indujo daños patológicos en los tejidos cerebrales y renales. Después de la irradiación, disminuyó el número de glóbulos blancos (WBC) y monocitos, y la expresión de interleucina (IL)-2, hormona liberadora de corticotropina (CRH) y PCNA. El daño estuvo acompañado por una mayor expresión de IL-1β, IL-6, corticosterona (CORT) y hormona adrenocorticotrópica (ACTH), así como un aumento de la apoptosis neuronal. Estas alteraciones fueron indicativas de efectos inducidos por la radiación. La administración de HQD atenuó el daño patológico a los tejidos cerebrales y renales, y aumentó el número de leucocitos y monocitos, así como la expresión de IL-2, CRH y PCNA. También disminuyó la expresión de IL-1β, IL-6, CORT y ACTH, así como la apoptosis neuronal. HQD exhibe mecanismos protectores contra los efectos externos inducidos por la radiación 12C6+. El mecanismo subyacente puede implicar la promoción de la producción de células sanguíneas periféricas, la inhibición de factores inflamatorios y la apoptosis y la regulación de hormonas endocrinas.


Subject(s)
Animals , Female , Rats , Drugs, Chinese Herbal , Protective Agents/administration & dosage , Heavy Ions/adverse effects , Scutellaria baicalensis/chemistry , Brain/drug effects , Brain/radiation effects , Corticotropin-Releasing Hormone , Enzyme-Linked Immunosorbent Assay , Rats, Wistar , Apoptosis/drug effects , Apoptosis/radiation effects , Adrenocorticotropic Hormone , Proliferating Cell Nuclear Antigen , Endocrine System/drug effects , Endocrine System/radiation effects , Immunologic Factors/antagonists & inhibitors , Kidney/drug effects , Kidney/radiation effects
7.
J Tradit Chin Med ; 43(5): 944-954, 2023 10.
Article in English | MEDLINE | ID: mdl-37679982

ABSTRACT

OBJECTIVE: To verify the hypothesis that electroacupuncture inhibits the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis regulating the expression of glial fibrillary acidic protein (GFAP) in the hippocampus of acute myocardial ischemia (AMI) rats. METHODS: Sixty-six healthy male Sprague-Dawley rats were randomly divided into five groups: Sham, AMI (Model), electroacupuncture at Shenmen (HT7)-Tongli (HT5) segment (EA), non-acupoint electroacupuncture (Control), and Model + corticosterone (Model + CORT). AMI was induced occlusion of the left anterior descending coronary artery, followed by 3 d of electroacupuncture at Shenmen (HT7)-Tongli (HT5) segment. In the Control group, electroacupuncture was applied at points lying 5 and 10 mm from the base of the tail. The AMI + CORT group was injected with CORT (20 mg/kg) in saline. Hemorheology, electrocardiography (ECG), hematoxylin and eosin staining, and expression of glycogen phosphorylase BB (GPBB) and heart-type fatty acid-binding protein (H-FABP) were used to assess cardiac function. The effects of adrenocorticotropic hormone (ACTH) and CORT were evaluated by enzyme-linked immunosorbent assay. Protein expression in the Sham and Model groups were screened by tandem mass tag-based quantitative proteomics analysis. Protein expression was evaluated by Western blotting (vimentin and GFAP) and immunofluorescence staining (GFAP). RESULTS: Compared with the Sham group, the hemorheology indicators, heart rate, ECG-ST segment elevation, and GPBB and H-FABP levels were higher in Model rats. The EA group showed reductions in these indicators compared with the Model group. Similarly, in Model rats, the expression of ACTH and CORT were significantly increased compared with the Sham group. The EA group also showed reduced expression of ACTH and CORT. Importantly, proteomics analysis showed that vimentin was differentially expressed in Model rats. Compared with the Sham group, vimentin and GFAP expression in the hippocampus was increased in the Model group but decreased in the AMI + EA group. Additionally, intraperitoneal injection of CORT aggravated the expression of GPBB, H-FABP and GFAP. CONCLUSIONS: Our results suggested that electroacupuncture may protect against cardiac injury induced by AMI through regulation of HPA axis hyperactivity, and that hippocampal GFAP may play an important role in the regulation.


Subject(s)
Electroacupuncture , Myocardial Ischemia , Male , Rats , Animals , Fatty Acid Binding Protein 3 , Hypothalamo-Hypophyseal System , Vimentin , Rats, Sprague-Dawley , Pituitary-Adrenal System , Myocardial Ischemia/complications , Myocardial Ischemia/genetics , Myocardial Ischemia/therapy , Adrenocorticotropic Hormone
8.
J Oleo Sci ; 72(10): 939-955, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37704445

ABSTRACT

Hemp seed, the dried fruit of Cannabis sativa L. (Moraceae), has been extensively documented as a folk source of food due to its nutritional and functional value. This study evaluated the antidepressant effect of hemp seed oil (HSO) during its estrogen-like effect in Perimenopausal depression (PMD) rats induced by ovariectomy combined with chronic unpredictable mild stress (OVX-CUMS). Female SD rats (SPF, 10 weeks, sham operated group, ovariectomy (OVX) model group, ovariectomy - chronic unpredictable mild stress (OVX-CUMS) group, HSO + OVX-CUMS group, fluoxetine (FLU) + OVX-CUMS group, n=8) were subjected to treatment with HSO (4.32 g/kg) or fluoxetine (10 mg/kg) for 28 days (20 mL/kg by ig). Sucrose preference test (SPT), forced swimming test (FST), open field test (OFT), estrogen receptor α (ERα) and estrogen receptor ß (ERß) expression, estradiol (E2), follicle stimulating hormone (FSH), luteinizing hormone (LH), cortisol (CORT), adrenocorticotropic hormone (ACTH), corticotropin releasing hormone (CRH), norepinephrine (NE), 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5HIAA) levels are measured to evaluate the function of the hypothalamic-pituitary-ovarian (HPO) and hypothalamic-pituitary-adrenal (HPA) axis. The results showed that OVX-CUMS significantly decrease sucrose preference rate in SPT, increase immobility time in FST and OFT, and decrease movement distance and stand-up times in OFT. HSO treatment significantly improves depression-like behaviors, upregulates the expression of ERα and ERß, improves HPO axis function by increasing E2 levels and decreasing FSH and LH levels, reverses HPA axis hyperactivation by decreasing CORT, ACTH, and CRH levels, and upregulates NE, 5-HT, and 5HIAA levels in model rats. The findings suggested that HSO could improve depression-like behavior in OVX-CUMS rats by regulating HPO/HPA axis function and neurotransmitter disturbance.


Subject(s)
Cannabis , Depression , Rats , Female , Animals , Depression/drug therapy , Depression/prevention & control , Hypothalamo-Hypophyseal System/metabolism , Cannabis/metabolism , Estrogen Receptor alpha/metabolism , Fluoxetine/metabolism , Fluoxetine/pharmacology , Serotonin/metabolism , Serotonin/pharmacology , Estrogen Receptor beta/metabolism , Perimenopause , Rats, Sprague-Dawley , Pituitary-Adrenal System/metabolism , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Sucrose , Stress, Psychological/drug therapy , Disease Models, Animal
9.
Brain Res Bull ; 203: 110768, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37739234

ABSTRACT

BACKGROUND: Stellaria dichotoma L. var. lanceolata Bge. is renowned for its efficacy in "clearing deficiency heat" and represents a significant traditional Chinese medicine (TCM) resource. Modern pharmacology has demonstrated the anti-anxiety effects of Stellaria dichotoma L. var. lanceolata Bge. polysaccharides (SDPs). SDPs are one of the active constituents of Stellaria dichotoma L. var. lanceolata Bge. This study presents the first extraction of SDPs and investigates their potential molecular mechanisms and anxiolytic effects that are not previously reported. METHODS: First, SDPs were obtained by water extraction and alcohol precipitation and analyzed for their monosaccharide composition by high performance liquid chromatography (HPLC). Male SD rats were subjected to a two-week indeterminate empty bottle stress procedure and a three-day acute restraint stress procedure, during which diazepam (DZP) (1 mg/kg) and SDPs (50, 100 and 200 mg/kg, intragastrically) were administered. A number of behavioral tests, including the elevated plus maze test (EPM), the open field test (OFT) and the light/dark box test (LDB), were used to assess the anti-anxiety potential of SDPs. Serum levels of Corticosterone (CORT) and Adrenocorticotropic hormone (ACTH), as well as the levels of Dopamine (DA) and serotonin (5-HT) found in the hippocampus and frontal cortex, were quantified using commercially available enzyme-linked immunosorbent assay (ELISA) kits. In addition, protein levels of key proteins cAMP-response element binding protein (CREB), phospho-CREB (p-CREB), brain-derived neurotrophic factor (BDNF), ERK½, p-ERK½, and GAPDH expression in rat hippocampus were measured by Western blot analysis, and modulation of the endocannabinoid system was assessed by immunohistochemistry. RESULTS: Following administration of SDPs (50, 100, 200 mg/kg) and diazepam 1 mg/kg, anxiolytic activity was exhibited through an increase in the percentage of arm opening times and arm opening time of rats in the elevated plus maze. Additionally, there was an increase in the number of times and time spent in the open field center, percentage of time spent in the open box, and shuttle times in the LDB. Furthermore, tissue levels of DA and 5-HT were increased in the hippocampus and frontal cortex of rats after treatment with SDPs. In addition, SDPs significantly decreased serum levels of CORT and ACTH in rats. SDPs also effectively regulated the phosphorylation of the extracellular regulated protein kinases (ERK) and CREB-BDNF pathway in the hippocampus. Moreover, the expression levels of CB1 and CB2 proteins were heightened due to SDPs treatment in rats. CONCLUSIONS: The study verified that SDPs alleviate anxiety in the EBS and ARS. The neuroregulatory behavior is accomplished by regulating the Monoamine neurotransmitter, HPA axis, and ECB-ERK-CREB-BDNF signaling pathway.


Subject(s)
Anti-Anxiety Agents , Rats , Male , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats, Sprague-Dawley , Protein Kinases/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Serotonin/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Signal Transduction , Hippocampus/metabolism , Dopamine/metabolism , Adrenocorticotropic Hormone , Diazepam/pharmacology , Neurotransmitter Agents/metabolism
10.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188968, 2023 11.
Article in English | MEDLINE | ID: mdl-37657683

ABSTRACT

The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.


Subject(s)
Melanins , Melanoma , Humans , Melanins/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Monophenol Monooxygenase/metabolism , Pro-Opiomelanocortin , Cell Line, Tumor , Tyrosine , Enzyme Inhibitors , Adrenocorticotropic Hormone
11.
Magnes Res ; 36(1): 1-13, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37605600

ABSTRACT

Oxidative stress, arising from disrupted balance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant defences, has been implicated in the pathogenesis of stress-related disorders. There is a growing body of evidence that supports the relationship between the activity of the hypothalamic-pituitary-adrenal (HPA) stress system, oxidative stress and magnesium (Mg) homeostasis. The present study aimed to explore the gap in our current understanding of antigenotoxic and protective effects of Mg supplementation against excessive ROS production in male rats during chronic treatment with adrenocorticotropic hormone (ACTH). Our findings show that exposure to exogenous ACTH (10 µg/day, s.c., for 21 days), as one of the key mediators of the HPA axis and stress response, produced an increase in superoxide anion levels and a decrease in superoxide dismutase activity in plasma. We observed that Mg supplementation, starting seven days prior to ACTH treatment and lasting 28 days (300 mg/L of drinking water, per os), abolished these effects in experimental animals. Moreover, our study reveals that ACTH increased the susceptibility of peripheral blood lymphocytes to ex vivo H2O2-induced total and high-level oxidative DNA damage, while Mg completely reversed these effects. Collectively, these results highlight the promising role of Mg in stress-related conditions accompanied by increased oxidative stress in animals and support further investigation using human dietary trials.


Subject(s)
Hydrogen Peroxide , Magnesium , Humans , Animals , Rats , Male , Magnesium/pharmacology , Reactive Oxygen Species , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Oxidative Stress , Adrenocorticotropic Hormone/pharmacology , DNA Damage , Psychophysiologic Disorders
12.
Altern Ther Health Med ; 29(8): 292-296, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37573603

ABSTRACT

Aim: To compare the efficacy of arthroscopic debridement and olecranon fossa augmentation plasty in patients with elbow osteoarthritis. Methods: Eighty-four patients with elbow osteoarthritis admitted to our hospital were randomly divided into two groups with 42 cases in each group. Patients in the control group received expanded olecranon fossa plasty, while those in the observation group underwent arthroscopic debridement. Then the elbow joint function, VAS score, stress level, and incidence of complications were compared between the two groups. Results: The MEPS score, ROM level, and VAS score, as well as the expression of TNF-α, IL-6, and ACTH between the two groups, were significantly different before and after surgery (P < .05). Moreover, compared to patients in the control group, the MEPS score and ROM level of patients in the observation group were higher than those in the control group after six months since surgery, while VAS score, the levels of TNF-α, IL-6, and ACTH were lower on the second day after surgery (P < .05). Conclusion: Arthroscopic cleaning is more helpful in improving elbow joint function and alleviating pain in patients with osteoarthritis of the elbow compared to olecranon fossa augmentation and reconstruction surgery.


Subject(s)
Elbow , Osteoarthritis , Humans , Adrenocorticotropic Hormone , Arthroscopy , Debridement , Humerus , Interleukin-6 , Osteoarthritis/surgery , Range of Motion, Articular , Retrospective Studies , Treatment Outcome , Tumor Necrosis Factor-alpha
13.
Endocr J ; 70(10): 1005-1013, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37468265

ABSTRACT

Although there are a few case reports of patients with small cell lung cancer developing hypophosphatemia, detailed information on this condition is scarce. A 52-year-old patient with advanced stage small cell lung cancer developed hypophosphatemia (1.1 mg/dL) during chemotherapy. A reduced level of the tubular reabsorption of phosphate concomitant with an inappropriately elevated level of fibroblast growth factor (FGF) 23 (48.4 pg/mL) was noted, leading to the diagnosis of FGF23-related hypophosphatemia. Laboratory data also showed hypercortisolemia with an elevated ACTH level and hyponatremia with an inappropriately unsuppressed level of antidiuretic hormone (ADH). These data suggested the overproduction of FGF23 in addition to ACTH and ADH. Because the octreotide loading test did not present a suppressive effect on ACTH or FGF23 levels, the patient was treated with phosphate supplementation, active vitamin D and metyrapone, which partially improved the serum phosphate and cortisol levels. Even after two subsequent courses of chemotherapy, the small cell lung cancer progressed, and the FGF23 level was further elevated (83.7 pg/mL). Although it is very rare, FGF23-related hypophosphatemia is one of the hormonal disturbances that could be observed in patients with small cell lung cancer. This article reviews similar clinical conditions and revealed that advanced states of malignancy seemed to be associated with the development of renal wasting hypophosphatemia, especially in lung cancer and prostate cancer. Therefore, the parameters related to hypophosphatemia should be monitored in patients with advanced small cell lung cancer to prevent the development of hypophosphatemic osteomalacia.


Subject(s)
Hypophosphatemia , Lung Neoplasms , Osteomalacia , Small Cell Lung Carcinoma , Male , Humans , Middle Aged , Small Cell Lung Carcinoma/complications , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/complications , Lung Neoplasms/drug therapy , Hypophosphatemia/etiology , Phosphates , Fibroblast Growth Factors , Adrenocorticotropic Hormone , Osteomalacia/etiology
14.
J Neurophysiol ; 130(2): 380-391, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37435647

ABSTRACT

Electroacupuncture (EA) is well documented to treat irritable bowel syndrome (IBS). However, the mechanism of the central nervous system related to IBS and acupuncture stimulation is still not well known. In this study, a rat model of IBS was established by cold-restraint comprehensive stresses for 15 days, and it was found that the levels of corticotropin-releasing hormone (CRH), corticosterone (CORT), and adrenocorticotropic hormone (ACTH) in the peripheral serum were increased; the visceral sensitivity was enhanced; and the intestinal motility was accelerated, specifically, there was an enhancement in the discharge frequency of neurons in the paraventricular nucleus (PVN). EA treatment for 3 days, 20 min/day, alleviated the increase in the levels of CRH, CORT, and ACTH in the peripheral serum of rats, reduced the visceral sensitivity of IBS rats, and inhibited colon movement and discharge frequency of the neurons in the PVN. In addition, EA could reduce the excitability of CRH neurons and the expression of corticotropin-releasing hormone receptor 1 (CRHR1) and corticotropin-releasing hormone receptor 2 (CRHR2) in PVN. At the same time, the expression of CRH, CRHR1, and CRHR2 in the peripheral colon was decreased. Taken together, EA appears to regulate intestinal functional activity through the central CRH nervous system, revealing the central regulation mechanism of EA in IBS rats, and providing a scientific research basis for the correlation among the meridians, viscera, and brain.NEW & NOTEWORTHY The purpose of this research was to determine the central regulatory mechanism of electroacupuncture (EA) in rats with irritable bowel syndrome (IBS). Our results showed that combined with the serum changes in corticotropin-releasing hormone (CRH), corticosterone (CORT), and adrenocorticotropic hormone (ACTH), the improvement of IBS by EA was related to them. Furthermore, EA could regulate intestinal functional activity through the central CRH+ nervous system.


Subject(s)
Electroacupuncture , Irritable Bowel Syndrome , Rats , Animals , Corticotropin-Releasing Hormone/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Irritable Bowel Syndrome/therapy , Corticosterone , Electroacupuncture/methods , Rats, Sprague-Dawley , Adrenocorticotropic Hormone/metabolism , Neurons/metabolism
15.
Neurochem Res ; 48(11): 3391-3401, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37436613

ABSTRACT

Electroacupuncture (EA) can effectively reduce surgical stress reactions and promote postoperative recovery, but the mechanisms remain unclear. The present study aims to examine the effects of EA on the hyperactivity of the hypothalamic‒pituitary‒adrenal (HPA) axis and investigate its potential mechanisms. Male C57BL/6 mice were subjected to partial hepatectomy (HT). The results showed that HT increased the concentrations of corticotrophin-releasing hormone (CRH), corticosterone (CORT), and adrenocorticotropic hormone (ACTH) in the peripheral blood and upregulated the expression of CRH and glucocorticoid receptors (GR) proteins in the hypothalamus. EA treatment significantly inhibited the hyperactivity of the HPA axis by decreasing the concentration of CRH, CORT, and ACTH in peripheral blood and downregulating the expression of CRH and GR in the hypothalamus. Moreover, EA treatment reversed the HT-induced downregulation of oxytocin (OXT) and oxytocin receptor (OXTR) in the hypothalamus. Furthermore, intracerebroventricular injection of the OXTR antagonist atosiban blocked the effects of EA. Thus, our findings implied that EA mitigated surgical stress-induced HPA axis dysfunction by activating the OXT/OXTR signaling pathway.


Subject(s)
Electroacupuncture , Surgical Wound , Rats , Mice , Male , Animals , Oxytocin/metabolism , Hypothalamo-Hypophyseal System/metabolism , Rats, Sprague-Dawley , Mice, Inbred C57BL , Pituitary-Adrenal System/metabolism , Hypothalamus/metabolism , Corticotropin-Releasing Hormone/metabolism , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/pharmacology , Corticosterone/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Oxytocin/metabolism
16.
Endocrinology ; 164(8)2023 06 26.
Article in English | MEDLINE | ID: mdl-37450603

ABSTRACT

Patients with secondary adrenal insufficiency can present with impaired free water excretion and hyponatremia, which is due to the enhanced secretion of vasopressin (AVP) despite increased total body water. AVP is produced in magnocellular neurons in the paraventricular nucleus of the hypothalamus (PVH) and supraoptic nucleus and in parvocellular corticotropin-releasing factor (CRF) neurons in the PVH. This study aimed to elucidate whether magnocellular AVP neurons or parvocellular CRF neurons coexpressing AVP are responsible for the pathogenesis of hyponatremia in secondary adrenal insufficiency. The number of CRF neurons expressing copeptin, an AVP gene product, was significantly higher in adrenalectomized AVP-floxed mice (AVPfl/fl) than in sham-operated controls. Adrenalectomized AVPfl/fl mice supplemented with aldosterone showed impaired water diuresis under ad libitum access to water or after acute water loading. They became hyponatremic after acute water loading, and it was revealed under such conditions that aquaporin-2 (AQP2) protein levels were increased in the kidney. Furthermore, translocation of AQP2 to the apical membrane was markedly enhanced in renal collecting duct epithelial cells. Remarkably, all these abnormalities observed in the mouse model for secondary adrenal insufficiency were ameliorated in CRF-AVP-/- mice that lacked AVP in CRF neurons. Our study demonstrates that CRF neurons in the PVH are responsible for the pathogenesis of impaired water excretion in secondary adrenal insufficiency.


Subject(s)
Adrenal Insufficiency , Hyponatremia , Mice , Animals , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Adrenocorticotropic Hormone/metabolism , Pituitary Hormone-Releasing Hormones/metabolism , Hyponatremia/metabolism , Aquaporin 2/genetics , Aquaporin 2/metabolism , Arginine Vasopressin/metabolism , Hypothalamus/metabolism , Vasopressins/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Neurons/metabolism , Diuresis
17.
Endocr Rev ; 44(6): 1096-1106, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37409973

ABSTRACT

Based on insights obtained during the past decade, the classical concept of an activated hypothalamus-pituitary-adrenocortical axis in response to critical illness is in need of revision. After a brief central hypothalamus-pituitary-adrenocortical axis activation, the vital maintenance of increased systemic cortisol availability and action in response to critical illness is predominantly driven by peripheral adaptations rather than by an ongoing centrally activated several-fold increased production and secretion of cortisol. Besides the known reduction of cortisol-binding proteins that increases free cortisol, these peripheral responses comprise suppressed cortisol metabolism in liver and kidney, prolonging cortisol half-life, and local alterations in expression of 11ßHSD1, glucocorticoid receptor-α (GRα), and FK506 binding protein 5 (FKBP51) that appear to titrate increased GRα action in vital organs and tissues while reducing GRα action in neutrophils, possibly preventing immune-suppressive off-target effects of increased systemic cortisol availability. Peripherally increased cortisol exerts negative feed-back inhibition at the pituitary level impairing processing of pro-opiomelanocortin into ACTH, thereby reducing ACTH-driven cortisol secretion, whereas ongoing central activation results in increased circulating pro-opiomelanocortin. These alterations seem adaptive and beneficial for the host in the short term. However, as a consequence, patients with prolonged critical illness who require intensive care for weeks or longer may develop a form of central adrenal insufficiency. The new findings supersede earlier concepts such as "relative," as opposed to "absolute," adrenal insufficiency and generalized systemic glucocorticoid resistance in the critically ill. The findings also question the scientific basis for broad implementation of stress dose hydrocortisone treatment of patients suffering from acute septic shock solely based on assumption of cortisol insufficiency.


Subject(s)
Adrenal Insufficiency , Pituitary Diseases , Humans , Hydrocortisone/metabolism , Critical Illness/therapy , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/pharmacology , Hypothalamo-Hypophyseal System , Adrenal Insufficiency/drug therapy , Adrenal Insufficiency/metabolism , Hypothalamus , Pituitary Diseases/metabolism , Adrenocorticotropic Hormone/metabolism , Pituitary-Adrenal System/metabolism
18.
Clin Endocrinol (Oxf) ; 99(3): 253-261, 2023 09.
Article in English | MEDLINE | ID: mdl-37401517

ABSTRACT

OBJECTIVE: Endogenous Cushing's syndrome (CS) is a known cause of secondary osteoporosis. Vertebral fractures (VFs) in endogenous CS may occur despite normal bone mineral density (BMD). Trabecular bone score (TBS) is a relatively new, non-invasive technique to assess bone microarchitecture. The objective of our study was to analyse the BMD and bone microarchitecture using TBS in endogenous CS and compare it with a group of age and sex-matched healthy controls, and also analyse the factors predicting BMD and TBS. DESIGN: Cross-sectional study of cases and controls. PATIENTS AND MEASUREMENTS: We included 40 female patients with overt endogenous CS, out of which 32 were adrenocorticotropic hormone (ACTH)-dependent CS and 8 were ACTH-independent. We also included 40 healthy, female controls. Both patients and controls were subjected to an assessment of biochemical parameters and BMD and TBS. RESULTS: Patients with endogenous CS had significantly lower BMD at the lumbar spine, femoral neck, and total hip and significantly lower TBS than healthy controls (all p < .001), while no significant difference was noted in the distal radius BMD (p = .055). In endogenous CS, a large proportion of patients, n = 13 (32.5%) had normal BMD for age (BMD Z-score ≥ -2.0) with low TBS (L1 -L4 TBS ≤ 1.34). TBS correlated negatively with HbA1c (p = .006), and positively with serum T4 (p = .027). CONCLUSION: TBS should be considered an important complementary tool in addition to BMD for the routine assessment of skeletal health in CS.


Subject(s)
Cushing Syndrome , Osteoporotic Fractures , Humans , Female , Bone Density , Cushing Syndrome/complications , Absorptiometry, Photon/adverse effects , Absorptiometry, Photon/methods , Cancellous Bone , Cross-Sectional Studies , Lumbar Vertebrae , Adrenocorticotropic Hormone , Osteoporotic Fractures/etiology
19.
Hum Psychopharmacol ; 38(4): e2867, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37165544

ABSTRACT

BACKGROUND: Stress and depression have each been associated with relapse risk. In clinical practice, chronic alcohol use is often accompanied by poor emotional and self-regulatory processes. Tonic and phasic changes in stress responsivity impact an individual's relapse risk to alcohol. A further complicating factor is the pervasive coexistence of depressive symptoms in those with Alcohol Use Disorder (AUD), where the contribution of depressive symptomatology to these processes is not well understood. Individuals with AUD (AD) (21 with and 12 without sub-clinical depressive symptoms) and 37 social drinking controls (16 with and 21 without sub-clinical depressive symptoms) as part of a more extensive study (Fox et al., 2019). All participants were exposed to two 5-min personalized guided imagery conditions (stress and neutral) in a randomized and counterbalanced order across consecutive days. Alcohol craving, negative mood, Stroop performance, and plasma measures (cortisol, adrenocorticotrophic hormone, and salivary alpha-amylase) were collected before and after imagery exposure. RESULTS: Elevations in autonomic response (heart rate) to imagery (stress and neutral) were observed as a function of drinking (in both depressed and non-depressed individuals with alcohol use disorder compared with depressed and non-depressed social drinkers). Conversely, suppressed cortisol following stress was observed as a function of depressive symptomatology across both drinking groups. Individuals with comorbid AD and depressive symptoms demonstrated attenuated Adrenocorticotropic Hormone and poor Stroop performance compared with the other groups, indicating an interactive effect between drinking and depression on pituitary and inhibitory systems. CONCLUSION: Sub-clinical depressive pathophysiology may be distinct from drinking severity and may alter relapse-related stress adaptations during protracted abstinence from alcohol.


Subject(s)
Alcoholism , Humans , Alcoholism/complications , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , Alcohol Drinking/psychology , Hydrocortisone , Ethanol , Adrenocorticotropic Hormone , Stress, Psychological/complications , Recurrence , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System
20.
J Neuroendocrinol ; 35(4): e13268, 2023 04.
Article in English | MEDLINE | ID: mdl-37078436

ABSTRACT

Stress has a strong influence on mental health around the world. Decades of research has sought to identify mechanisms through which stress contributes to psychiatric disorders such as depression, to potentially guide the development of therapeutics targeting stress systems. The hypothalamic pituitary adrenal (HPA) axis is the key endocrine system that is responsible for coordinating body-wide changes that are necessary for survival under stress, and much of the research aimed at understanding the mechanisms by which stress contributes to depression has focussed on HPA axis dysfunction. Corticotrophin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) sit at the apex of the HPA axis, integrating signals relevant to stress and external threats, to ensure HPA axis activity is appropriate for the given context. In addition to this, emerging research has demonstrated that neural activity in PVNCRH neurons regulates stress related behaviours via modulation of downstream synaptic targets. This review will summarize convergent evidence from preclinical studies on chronic stress and clinical research in mood disorders demonstrating changes in PVNCRH neural function, consider how this may influence synaptic targets of PVNCRH neurons, and discuss the potential role of these PVNCRH synaptic pathways in the development of maladaptive behaviours following chronic stress that are relevant to depression. We will also highlight important questions for future research aimed at precisely dissecting endocrine and synaptic roles of PVNCRH neurons in chronic stress, their potential interactions, and therapeutic opportunities for the treatment of stress related disorders.


Subject(s)
Adrenocorticotropic Hormone , Corticotropin-Releasing Hormone , Humans , Corticotropin-Releasing Hormone/metabolism , Adrenocorticotropic Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary Hormone-Releasing Hormones/metabolism , Pituitary-Adrenal System/metabolism , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL