Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 604
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38572889

ABSTRACT

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Subject(s)
Annona , Curcumin , Rats , Animals , Aflatoxin B1/toxicity , Curcumin/pharmacology , Alanine Transaminase/pharmacology , Alkaline Phosphatase/pharmacology , Creatinine/pharmacology , Liver , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Aspartate Aminotransferases/pharmacology , Lactate Dehydrogenases
2.
J Agric Food Chem ; 72(11): 5975-5982, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38462975

ABSTRACT

Due to the high toxicity of aflatoxin B1 and its risks to human health, we developed a click reaction-mediated automated fluorescent immunosensor (CAFI) for sensitive detection of aflatoxin B1 based on the Cu(I)-catalyzed click reaction. With its large specific surface area, a copper-based metal-organic framework (Cu-MOF) was synthesized to adsorb and enrich the copper ion (Cu(II)) and then load the complete antigen (BSA-AFB1). After the immunoreaction, Cu(II) inside the Cu-MOF-Antigen conjugate would be reduced to Cu(I) in the presence of sodium ascorbate, which triggered the click reaction between the fluorescent donor-modified DNA and the receptor-modified complementary DNA to lead to a fluorescence signal readout. The whole reaction steps were finished by the self-developed automated immunoreaction device. This CAFI method showed a limit of detection (LOD) of 0.48 pg/mL as well as a 670-fold enhancement in sensitivity compared to conventional ELISA, revealing its great potential in practical applications and automated detection.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Humans , Copper , Aflatoxin B1/analysis , Immunoassay/methods , Biosensing Techniques/methods , Coloring Agents , Limit of Detection
3.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474096

ABSTRACT

Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.


Subject(s)
Aflatoxins , Biological Products , Kidney Diseases , Animals , Humans , Aflatoxins/toxicity , Aflatoxin B1/toxicity , Dietary Supplements
4.
Toxins (Basel) ; 16(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535788

ABSTRACT

A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.


Subject(s)
Gastrointestinal Microbiome , Zeolites , Animals , Female , Aflatoxin B1 , Butyric Acid , Diet , Humic Substances , Immunity, Cellular , Turkeys
5.
Anal Chim Acta ; 1295: 342328, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38355226

ABSTRACT

Enzyme cascade with high specificity and catalytic efficiency has significant applications for developing efficient bioanalysis methods. In this work, a sensitive and selective aptasensor was constructed based on the DNA-induced assembly of biocatalytic nanocompartments. Different from the conventional co-immobilization in one pot, the cascade enzymes of glucose oxidase (GOX) and horseradish peroxidase (HRP) were separately encapsulated in ZIF-90 nanoparticles. After conjugating complementary DNA or aptermer on enzyme@ZIF-90, DNA hybridization drove enzyme@ZIF-90 connected into clusters or linked on other DNA modified biocatalytic nanocompartment (such as invertase loaded Fe3O4@SiO2). Owing to the shortened distance between enzymes, the catalytic efficiency of connected clusters was significantly enhanced. However, the specifically interaction between the substrate molecule and aptermer sequence would lead to the disassembly of DNA duplexes, resulting in the gradual "switching-off" of cascade reactions. With aflatoxin B1 (AFB1) as the model substrate, the compartmentalized three-enzyme nanoreactors showed good analytical performance in the linear range from 0.01 ng mL-1 to 50 ng mL-1 with a low detection limit (3.3 pg mL-1). In addition, the proposed aptasensor was applied to detect AFB1 in corn oil and wheat powder samples with total recoveries ranging from 94 % to 109 %. As a result, this DNA-induced strategy for enzyme cascade nanoreactors opens new avenues for stimuli-responsive applications in biosensing.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Nanoparticles , Aflatoxin B1/analysis , Silicon Dioxide/chemistry , DNA/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Limit of Detection , Aptamers, Nucleotide/chemistry
6.
Toxins (Basel) ; 16(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38393156

ABSTRACT

Aflatoxin B1 (AFB1), a ubiquitous mycotoxin in corn-based animal feed, particularly in tropical regions, impairs liver function, induces oxidative stress and disrupts cellular pathways, potentially worsening bone health in modern broilers. A 19-day experiment was conducted to investigate the effects of feeding increasing levels of AFB1-contaminated feed (<2, 75-80, 150, 230-260 and 520-560 ppb) on bone mineralization markers in broilers (n = 360). While growth performance remained unaffected up to Day 19, significant reductions in tibial bone ash content were observed at levels exceeding 260 ppb. Micro-computed tomography results showed that AFB1 levels at 560 ppb significantly decreased trabecular bone mineral content and density, with a tendency for reduced connectivity density in femur metaphysis. Moreover, AFB1 above 230 ppb reduced the bone volume and tissue volume of the cortical bone of femur. Even at levels above 75 ppb, AFB1 exposure significantly downregulated the jejunal mRNA expressions of the vitamin D receptor and calcium and phosphorus transporters. It can be concluded that AFB1 at levels higher than 230 ppb negatively affects bone health by impairing bone mineralization via disruption of the vitamin D receptor and calcium and phosphorus homeostasis, potentially contributing to bone health issues in broilers.


Subject(s)
Aflatoxin B1 , Chickens , Animals , Aflatoxin B1/metabolism , Receptors, Calcitriol/metabolism , Calcification, Physiologic , Calcium/metabolism , X-Ray Microtomography , Animal Feed/analysis , Phosphorus/metabolism , Diet/veterinary , Liver
7.
Toxins (Basel) ; 16(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38393185

ABSTRACT

Water kefir grains (WKGs), the starter used to develop a traditional beverage named water kefir, consist of a symbiotic mixture of probiotics with diverse bioactivities, but little is known about their abilities to remove mycotoxins that have serious adverse effects on humans and animals. This study investigated the ability of WKGs to remove aflatoxin B1 (AFB1), one of the most toxic mycotoxins, under different settings, and determined the mechanism of absorption mediated by WKGs and the effect of WKGs on the toxicity induced by AFB1 and the reduction in AFB1 in cow milk and tea soups. The results showed the WKGs used herein were dominated by Lactobacillus, Acetobacter, Phenylobacterium, Sediminibacterium, Saccharomyces, Issatchenkia, and Kodamaea. HPLC analysis demonstrated that the WKGs effectively removed AFB1 at concentrations ranging from 1 to 5 µg/mL, pH values ranging from 3 to 9, and temperatures ranging from 4 to 45 °C. Additionally, the removal of AFB1 mainly depended on absorption, which was consistent with the Freundlich and pseudo-second-order kinetic models. Moreover, only 49.63% of AFB1 was released from the AFB1-WKG complex after four washes when the release of AFB1 was non-detectable. Furthermore, WKG treatment caused a dramatic reduction in the mutagenicity induced by AFB1 according to an Ames test and reduced more than 54% of AFB1 in cow milk and three tea soups. These results suggested that WKGs can act as a potential bio-absorbent with a high binding ability to detoxify AFB1 in food and feed via a chemical action step and multi-binding sites of AFB1 absorption in a wide range of scenarios.


Subject(s)
Kefir , Probiotics , Animals , Female , Cattle , Humans , Aflatoxin B1/metabolism , Lactobacillus/metabolism , Tea/chemistry
8.
Environ Pollut ; 345: 123474, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309422

ABSTRACT

Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.


Subject(s)
Aflatoxin B1 , Quercetin , Animals , Humans , Aflatoxin B1/toxicity , Quercetin/pharmacology , Oxidative Stress , Phenols/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy
9.
Toxicon ; 240: 107640, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325757

ABSTRACT

The effects of dietary supplementation with Capsicum annuum fruit pericarp powder (CPP) and Capsicum annuum fruit seed powder (CSP) on the health and performance of broiler chickens exposed to aflatoxin B1 (AFB1) was investigated. Four dietary groups were established: CON (control), AFT (0.5 mg/kg AFB1), CPAF (0.5 g/kg CPP and 0.5 mg/kg AFB1), and CSAF (0.5 g/kg CSP and 0.5 mg/kg AFB1). The AFT group shows a significant (P < 0.05) reduction in the relative growth rate compared to CON, CPAF, and CSAF. In contrast, the latter two groups exhibit growth rates similar (P > 0.05) to CON. Additionally, immunoglobulin levels (IgG, IgM, and IgA) in the AFT group are significantly (P < 0.05) lower compared to the other treatment groups. Serum interleukin-6 levels in the CPAF and CSAF groups were similar (P > 0.05) to CON but higher (P < 0.05) than in AFT. Tumor necrosis factor-alpha levels were elevated (P < 0.05) in AFT compared to the other treatment groups. Interferon-gamma concentrations in AFT were significantly (P < 0.05) lower than in the other treatment groups. The liver histology reveals that the AFT treatment group has periportal hepatic inflammation. In contrast, the CPAF and CSAF treatment groups exhibit normal hepatic microanatomy. In conclusion, 0.5 g/kg CPAF dietary supplementation may help to ameliorate the adverse effects of AFB1 exposure on broiler chicken health, specifically the growth, immune parameters and liver histology.


Subject(s)
Capsicum , Platelet Activating Factor/analogs & derivatives , Animals , Chickens , Aflatoxin B1/toxicity , Aflatoxin B1/analysis , Powders/pharmacology , Cytokines , Adipokines/pharmacology , Liver , Dietary Supplements , Immunoglobulins , Meat , Animal Feed/analysis
10.
J Agric Food Chem ; 72(2): 1276-1291, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38179648

ABSTRACT

Microorganisms rely on diverse ion transport and trace elements to sustain growth, development, and secondary metabolism. Manganese (Mn2+) is essential for various biological processes and plays a crucial role in the metabolism of human cells, plants, and yeast. In Aspergillus flavus, we confirmed that Pmr1 localized in cis- and medial-Golgi compartments was critical in facilitating Mn2+ transport, fungal growth, development, secondary metabolism, and glycosylation. In comparison to the wild type, the Δpmr1 mutant displayed heightened sensitivity to environmental stress, accompanied by inhibited synthesis of aflatoxin B1, kojic acid, and a substantial reduction in pathogenicity toward peanuts and maize. Interestingly, the addition of exogenous Mn2+ effectively rectified the developmental and secondary metabolic defects in the Δpmr1 mutant. However, Mn2+ supplement failed to restore the growth and development of the Δpmr1Δgdt1 double mutant, which indicated that the Gdt1 compensated for the functional deficiency of pmr1. In addition, our results showed that pmr1 knockout leads to an upregulation of O-glycosyl-N-acetylglucose (O-GlcNAc) and O-GlcNAc transferase (OGT), while Mn2+ supplementation can restore the glycosylation in A. flavus. Collectively, this study indicates that the pmr1 regulates Mn2+ via Golgi and maintains growth and metabolism functions of A. flavus through regulation of the glycosylation.


Subject(s)
Calcium-Transporting ATPases , Saccharomyces cerevisiae Proteins , Humans , Calcium-Transporting ATPases/metabolism , Aflatoxin B1/metabolism , Aspergillus flavus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Membrane Transport Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
11.
Toxins (Basel) ; 16(1)2024 01 19.
Article in English | MEDLINE | ID: mdl-38276533

ABSTRACT

(1) Background: Safety problems associated with aflatoxin B1 (AFB1) contamination have always been a major threat to human health. Removing AFB1 through adsorption is considered an attractive remediation technique. (2) Methods: To produce an adsorbent with a high AFB1 adsorption efficiency, a magnetic reduced graphene oxide composite (Fe3O4@rGO) was synthesized using one-step hydrothermal fabrication. Then, the adsorbent was characterized using a series of techniques, such as SEM, TEM, XRD, FT-IR, VSM, and nitrogen adsorption-desorption analysis. Finally, the effects of this nanocomposite on the nutritional components of treated foods, such as vegetable oil and peanut milk, were also examined. (3) Results: The optimal synthesis conditions for Fe3O4@rGO were determined to be 200 °C for 6 h. The synthesis temperature significantly affected the adsorption properties of the prepared material due to its effect on the layered structure of graphene and the loading of Fe3O4 nanoparticles. The results of various characterizations illustrated that the surface of Fe3O4@rGO had a two-dimensional layered nanostructure with many folds and that Fe3O4 nanoparticles were distributed uniformly on the surface of the composite material. Moreover, the results of isotherm, kinetic, and thermodynamic analyses indicated that the adsorption of AFB1 by Fe3O4@rGO conformed to the Langmuir model, with a maximum adsorption capacity of 82.64 mg·g-1; the rapid and efficient adsorption of AFB1 occurred mainly through chemical adsorption via a spontaneous endothermic process. When applied to treat vegetable oil and peanut milk, the prepared material minimized the loss of nutrients and thus preserved food quality. (4) Conclusions: The above findings reveal a promising adsorbent, Fe3O4@rGO, with favorable properties for AFB1 adsorption and potential for food safety applications.


Subject(s)
Graphite , Nanocomposites , Water Pollutants, Chemical , Humans , Graphite/chemistry , Aflatoxin B1/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Plant Oils , Magnetic Phenomena , Nanocomposites/chemistry , Kinetics
12.
Toxicon ; 237: 107553, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072319

ABSTRACT

Aflatoxin B1 (AFB1) is a widely distributed mycotoxin, causing hepatotoxicity and oxidative stress. One of the most famous unicellular cyanobacteria is Spirulina platensis (SP) which is well known for its antioxidant characteristics against many toxicants. Therefore, this study aimed to investigate the antioxidant potential and hepatoprotective ability of SP against oxidative stress and cytotoxicity in male Wistar albino rats intraperitoneally injected with AFB1. Rats were separated into five groups as follows: negative control administered with saline; SP (1000 mg/kg BW) for two weeks; AFB1 (2.5 mg/kg BW) twice on days 12 and 14; AFB1 (twice) + 500 mg SP/kg BW (for two weeks) and AFB1 (twice) + 1000 mg SP/kg BW (for two weeks). Liver and blood samples were assembled for histological and biochemical analyses. AFB1 intoxicated rats showed a marked elevation in serum biochemical parameters (ALP, ALT, and AST), hepatic lipid peroxidation (MDA and NO), and proliferating cell nuclear antigen (PCNA) indicating DNA damage. Moreover, AFB1 caused suppression of antioxidant biomarkers (SOD, GHS, GSH-Px, and CAT). However, the elevated serum levels of biochemical parameters and PCNA expression were reduced by SP. Moreover, SP lowered oxidative stress and lipid peroxidation markers in a dose-dependent manner. To sum up, SP supplementation is capable of decreasing AFB1 toxicity through its powerful antioxidant activity.


Subject(s)
Aflatoxin B1 , Antioxidants , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Rats, Wistar , Catalase/metabolism , Oxidative Stress , Liver/metabolism , DNA Damage
13.
J Food Sci ; 89(1): 96-103, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37983886

ABSTRACT

The present study aimed to investigate the effects of dietary lycopene (LYC) supplementation on the growth performance, meat quality, and antioxidant capacity of breast muscle in aflatoxin B1 (AFB1 )-challenged broilers. A total of 192 1-day-old healthy Arbor Acres broilers were randomly assigned to 3 treatments, each with 8 replicates (8 broilers per replicate). The broilers of the three treatments were fed a basal diet (control), a basal diet supplemented with 100 µg/kg AFB1 (CA), and a basal diet supplemented with 100 µg/kg AFB1 and 200 mg/kg LYC (CAL). The results demonstrated that the AFB1 diet increased the feed-to-gain (F/G) ratio (p < 0.05), yellowness and shear force of breast muscle (p < 0.05), and protein carbonyl (PC) content (p < 0.05) while decreasing the average daily gain (ADG) (p < 0.05), redness of breast muscle (p < 0.05), glutathione peroxidase activity (p < 0.05), and ability to clear OH· from breast muscle (p < 0.05) in comparison to the control group. Dietary LYC supplementation significantly decreased the F/G ratio (p < 0.05), yellowness and shear force (p < 0.05), and the content of PC and hydrogen peroxide (p < 0.05) while significantly increasing the ADG (p < 0.05), redness of breast muscle (p < 0.05), and ability of breast muscle to clear ABTS·+ (p < 0.05) compared to the CA diet. In conclusion, LYC can alleviate the negative impacts of AFB1 on the growth performance, meat quality, and antioxidant capacity of breast muscle in broilers. PRACTICAL APPLICATION: LYC, as a popular antioxidant, is beneficial to the growth and health of animals. The detailed application effects are still being investigated. In this study, by adding LYC to an AFB1 -contaminated diet, it was found that LYC could alleviate the adverse effects of AFB1 on the growth performance, meat quality, and muscle antioxidant capacity of broilers. These findings can provide a reference for the application of LYC and similar plant-derived materials in animal production.


Subject(s)
Antioxidants , Chickens , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Chickens/metabolism , Lycopene , Aflatoxin B1/toxicity , Animal Feed/analysis , Dietary Supplements/analysis , Diet/veterinary , Meat/analysis
14.
Poult Sci ; 103(2): 103272, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100946

ABSTRACT

Vasicine from Adhatoda vasica was investigated in the management of aflatoxicosis and ochratoxicosis by in silico molecular docking approach. The computational analysis was carried out using Discovery Studio Autodock 4.5 tool. Absorption, distribution, metabolism, and excretion (ADME), pharmacodynamics and toxicity studies were also carried out using Swiss ADME and PASS online server, respectively. The standard drug compound used was silymarin and the structure were retrieved from the protein data bank for both the test compound vasicine and the standard drug. Vasicine interacted with aflatoxin B1 at 10 different poses and the maximum dock score was found to be 83.04 and the binding energy was -37.54 kcal/mol. Silymarin interacted with aflatoxin B1 at 10 different poses and the maximum dock score was found to be 143.578 and the binding energy was -67.32 kcal/mol. Vasicine interacted with ochratoxin A at 10 different poses and the maximum dock score was found to be 73.75 and the binding energy was -56.20 kcal/mol. Silymarin interacted with ochratoxin A at 10 different poses and the maximum dock score was found to be 89.23 and the binding energy was -98.86 kcal/mol. The compounds possess good gastro intestinal absorption with antioxidant property and exhibits minimum adverse effects. The obtained results support the toxin mitigating potential of the test compound with minimum adverse effects and hence vasicine can be regarded as a potential toxin binder of aflatoxin B1 and ochratoxin A, wherein it can be implemented for alleviating aflatoxicosis and ochratoxicosis.


Subject(s)
Alkaloids , Justicia , Ochratoxins , Quinazolines , Silymarin , Animals , Aflatoxin B1/toxicity , Justicia/chemistry , Justicia/metabolism , Molecular Docking Simulation , Chickens/metabolism , Alkaloids/metabolism , Silymarin/pharmacology
15.
Toxins (Basel) ; 15(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38133191

ABSTRACT

The most frequent adverse effects of AFB1 in chicken are low performance, the depression of the immune system, and a reduced quality of both eggs and meat, leading to economic losses. Since oxidative stress plays a major role in AFB1 toxicity, natural products are increasingly being used as an alternative to mineral binders to tackle AFB1 toxicosis in farm animals. In this study, an in vivo trial was performed by exposing broilers for 10 days to AFB1 at dietary concentrations approaching the maximum limits set by the EU (0.02 mg/kg feed) in the presence or absence of turmeric powder (TP) (included in the feed at 400 mg/kg). The aims were to evaluate (i) the effects of AFB1 on lipid peroxidation, antioxidant parameters, histology, and the expression of drug transporters and biotransformation enzymes in the liver; (ii) the hepatic accumulation of AFB1 and its main metabolites (assessed using an in-house-validated HPLC-FLD method); (iii) the possible modulation of the above parameters elicited by TP. Broilers exposed to AFB1 alone displayed a significant increase in lipid peroxidation in the liver, which was completely reverted by the concomitant administration of TP. Although no changes in glutathione levels and antioxidant enzyme activities were detected in any treatment group, AFB1 significantly upregulated and downregulated the mRNA expression of CYP2A6 and Nrf2, respectively. TP counteracted such negative effects and increased the hepatic gene expression of selected antioxidant enzymes (i.e., CAT and SOD2) and drug transporters (i.e., ABCG2), which were further enhanced in combination with AFB1. Moreover, both AFB1 and TP increased the mRNA levels of ABCC2 and ABCG2 in the duodenum. The latter changes might be implicated in the decrease in hepatic AFB1 to undetectable levels (

Subject(s)
Antioxidants , Mycotoxins , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Chickens/metabolism , Curcuma/metabolism , Powders/metabolism , Powders/pharmacology , Mycotoxins/metabolism , Aflatoxin B1/metabolism , Liver , Oxidative Stress , RNA, Messenger/metabolism
16.
Stud Health Technol Inform ; 308: 105-110, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007731

ABSTRACT

Aflatoxin is a highly toxic substance, of which aflatoxin B1 is the most toxic and carcinogenic among aflatoxins. In this paper, the team used homemade CdSe/Zns quantum dots to construct a fluorescent immunoprobe and all-antigen coupling with aflatoxin B1. It used a self-developed fluorescence intensity detector to detect aflatoxin B1 in five traditional Chinese medicines, namely, ginseng, Panax ginseng, Chuanxiong rhizome, rhubarb, and yam. The recoveries were 80.0-102.0%; the relative standard deviations (RSD)were from 2.4 to 9.2.


Subject(s)
Cadmium Compounds , Quantum Dots , Selenium Compounds , Aflatoxin B1/analysis , Fluorescence
17.
Food Chem ; 428: 136779, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37413832

ABSTRACT

Physical adsorbents for detoxification are widely used in vegetable oil industry. So far, the high-efficiency and low-cost adsorbents have not been well explored. Here, a hierarchical fungal mycelia@graphene oxide@Fe3O4 (FM@GO@Fe3O4) was fabricated as an efficient adsorbent for simultaneous removal of aflatoxin B1 (AFB1) and zearalenone (ZEN). The morphological, functional and structural characteristics of the prepared adsorbents were systematic investigated. Batch adsorption experiments in both single and binary systems were conducted, and the adsorption behaviours and mechanism were explored. The results indicated that the adsorption process occurred spontaneously and the mycotoxin adsorption could be described as physisorption through hydrogen bonding, π-π stacking, electrostatic and hydrophobic interactions. Due to good biological safety, magnetic manipulability, scalability, recyclability and easy regeneration, FM@GO@Fe3O4 performance is suitable for application as a detoxification adsorbent in vegetable oil industry. Our study addresses a novel green strategy for removing multiple mycotoxins by integrating the toxigenic isolates with advanced nanomaterials.


Subject(s)
Mycotoxins , Zearalenone , Zearalenone/chemistry , Aflatoxin B1/chemistry , Plant Oils , Adsorption
18.
Poult Sci ; 102(8): 102795, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327744

ABSTRACT

The present study was conducted to determine the ability of multicomponent mycotoxin detoxifying agent (MMDA) in feed to prevent the gastrointestinal absorption of aflatoxin B1 (AFB1) and T2-toxin supplemented via spiked maize. For comparisons, hens were fed with uncontaminated basal diet without or with addition of MMDA at 2 g/kg feed. The trial consisted of 105 laying hens (Lohmann Brown) without obvious signs of disease allocated to 7 treatment groups in 35 pens. Responses were demonstrated on laying performance and health status throughout the 42 d experimental period. The results of laying performance indicated significantly decreased egg mass with increasing mycotoxin (AFB1 and T2-toxin) levels up to the maximum tolerated dosage, however simultaneous presence of MMDA laying performance was slightly modified linearly to increasing application. Dose-dependent pathological changes in liver and kidneys and their relative weights, changes in blood parameters and reduced eggshell weights were observed in the hens fed AFB1 and T2-toxin. The pathological changes in the hens fed with diets containing AFB1 and T2-toxin without MMDA were significantly higher as compared with the control group, but eggshell stability was not affected. The contents of AFB1, T2-toxin and their metabolites in liver and kidney tissues were significantly decreased in the hens supplemented with MMDA at 2 and 3 g/kg in feed. MMDA supplementation significantly reduced the deposition of AFB1, T2-toxin and their metabolites in liver and kidneys at the maximum tolerated dosage (2 and 3 g/kg) indicating specific binding to AFB1 and T2-toxin in the digestive tract as compared to the corresponding diets without MMDA. Exposure of AFB1 and T2-toxin indicated significantly decreased egg mass with increasing mycotoxin levels up to the maximum tolerated dosage because of the significantly reduced egg production. Therefore, in this study, MMDA could reduce negative effects of feeding AFB1 and T-2 to laying hens.


Subject(s)
Mycotoxins , T-2 Toxin , Animals , Female , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Animal Feed/analysis , Chickens/physiology , Diet/veterinary , Dietary Supplements , Mycotoxins/toxicity , Ovum/chemistry , T-2 Toxin/toxicity
19.
Poult Sci ; 102(8): 102803, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37352582

ABSTRACT

A dose-response assay in a central composite design platform was conducted to investigate the responses (performance, immunity, and meat quality) of quail chicks to dietary tryptophan (Trp), melatonin (MEL), and N,N-dimethylglycine (DMG) exposed to aflatoxin B1 (AFB1). A total of 1,275 quail chicks were randomly allotted to 85-floor pens consisting of 17 treatments with 5 replicates and 15 birds per each pen. Dietary MEL and DMG had a different effect on growth rate and interacted with dietary Trp and AFB1 during the first 4 wk of age, while their effect disappeared at the last week of the experiment. Dietary Trp and AFB1 were only significant on the gain of quail chick after d 28 of the assay. During the second and third weeks of age, the reduction in feed intake caused by AFB1 attenuated by dietary MEL and DMG and dietary Trp profoundly affects feed intake in the last 2 wk of the experiment. Dietary MEL and DMG were effective on feed conversion ratio (FCR) during the second and third weeks of age. AFB1 decreased breast meat yield (BMY) and thigh meat yield (TMY), but the inclusion of either MEL or DMG removed the adverse effects of AFB1. Dietary Trp increased BMY, but it did not affect TMY. Increasing dietary Trp linearly increased the Lactobacillus bacteria (LAB) population, and AFB1 negatively impacts the LAB population. The inclusion of dietary DMG removed that negative effect on LAB. Although AFB1 decreased the antibody production against SRBC-antigen, increasing dietary Trp in intoxicated quails increased the plasma antibody in SRBC-challenged birds. At low levels of dietary Trp (0.15-0.19%), the addition of DMG increased malondialdehyde (MDA) production while increasing Trp reversed this adverse situation. In conclusion, these supplements may interact with AFB1 in younger chicks, and dietary Trp and AFB1 have a significant impact on the growth performance of quail chicks during the fifth and sixth week of age.


Subject(s)
Aflatoxin B1 , Melatonin , Animals , Aflatoxin B1/toxicity , Animal Feed/analysis , Chickens , Diet/veterinary , Melatonin/pharmacology , Quail , Tryptophan/pharmacology
20.
Ecotoxicol Environ Saf ; 260: 115073, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37257342

ABSTRACT

Aflatoxin B1 (AFB1) is extremely carcinogenic and can cause liver cancer in humans and animals with continued ingestion. As a natural compound, curcumin (Cur) exhibits excellent anti-inflammatory, and anti-cancer properties with few side effects. In this study, a total of 60 male mice (6-week-olds, 15 per group). After one week of acclimatization feeding, the mice were divided into control group (Con), AFB1 group, curcumin group (Cur), and AF+Cur group. The mice were gavaged with curcumin (Cur, 100 mg/kg) and/or AFB1 (0.75 mg/kg). To identify a new therapeutic target for AFB1-induced pyroptosis, we performed proteomic profiling for curcumin alleviating liver injury caused by AFB1 to further validate the targets through volcano plot analysis, Venn analysis, heatmap analysis, correlation, cluster analysis, GO and KEGG enrichment. AFB1 exposure resulted in the loss of hepatocyte membrane, swelling of the endoplasmic reticulum, and a significant increase in transaminase (ALT and AST) contents, while curcumin greatly improved these changes. We found that differentially expressed proteins are enriched in the endoplasmic reticulum membrane and identified ITPR2 as a target of curcumin that alleviates AFB1-induced liver injury by proteomics. Furthermore, ITPR2 expression was detected by immunofluorescence, and qRT-PCR for mRNA expression of genes downstream of ITPR2 (calpain1, calpain2, caspase-12, caspase-3). ITPR2-activated endoplasmic reticulum stress-related proteins (calpain1, calpaini2, bcl-2, BAX, cl-caspase-12, cl-caspase-3), apoptosis (PARP) and pyroptosis (DFNA5) related proteins were examined by western blotting. The analysis showed that it effectively prevents AFB1-induced pyroptosis by lowering endoplasmic reticulum stress via interfering with ITPR2 and its downstream proteins (calpain1, calpain2, bcl-2, Bax) and inhibiting caspase-12/caspase-3 pathway. Conclusively, this study applied proteomic profiling to elucidate ITPR2 as a new target, which might give a new perspective on the mechanism of curcumin alleviating AFB1-induced pyroptosis.


Subject(s)
Curcumin , Pyroptosis , Male , Mice , Humans , Animals , Caspase 3/metabolism , Aflatoxin B1 , Curcumin/pharmacology , bcl-2-Associated X Protein/metabolism , Proteomics , Caspase 12/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Inositol 1,4,5-Trisphosphate Receptors
SELECTION OF CITATIONS
SEARCH DETAIL