Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Virol J ; 21(1): 95, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664855

ABSTRACT

BACKGROUND: African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS: Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS: Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.


Subject(s)
African Swine Fever Virus , Anti-Inflammatory Agents , Antiviral Agents , Animals , African Swine Fever Virus/drug effects , African Swine Fever Virus/physiology , Antiviral Agents/pharmacology , Swine , Anti-Inflammatory Agents/pharmacology , Chlorocebus aethiops , Vero Cells , Macrophages/drug effects , Macrophages/virology , Macrophages/immunology , African Swine Fever/virology , Virus Replication/drug effects , Biological Products/pharmacology , Drug Evaluation, Preclinical , Cytopathogenic Effect, Viral/drug effects , Cytokines/metabolism , Virus Internalization/drug effects
2.
Antiviral Res ; 186: 104990, 2021 02.
Article in English | MEDLINE | ID: mdl-33249093

ABSTRACT

The endocytic pathway is a common strategy that several highly pathogenic viruses use to enter into the cell. To demonstrate the usefulness of this pathway as a common target for the development of broad-spectrum antivirals, the inhibitory effect of drug compounds targeting endosomal membrane proteins were investigated. This study entailed direct comparison of drug effectiveness against animal and human pathogenic viruses, namely Ebola (EBOV), African swine fever virus (ASFV), and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A panel of experimental and FDA-approved compounds targeting calcium channels and PIKfyve at the endosomal membrane caused potent reductions of entry up to 90% in SARS-CoV-2 S-protein pseudotyped retrovirus. Similar inhibition was observed against transduced EBOV glycoprotein pseudovirus and ASFV. SARS-CoV-2 infection was potently inhibited by selective estrogen receptor modulators in cells transduced with pseudovirus, among them Raloxifen inhibited ASFV with very low 50% inhibitory concentration. Finally, the mechanism of the inhibition caused by the latter in ASFV infection was analyzed. Overall, this work shows that cellular proteins related to the endocytic pathway can constitute suitable cellular targets for broad range antiviral compounds.


Subject(s)
African Swine Fever Virus/drug effects , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Endosomes/drug effects , SARS-CoV-2/drug effects , Virus Internalization/drug effects , African Swine Fever Virus/physiology , Animals , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Cholesterol/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Ebolavirus/physiology , Endocytosis/drug effects , Endosomes/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Raloxifene Hydrochloride/pharmacology , Receptors, Estrogen/metabolism , SARS-CoV-2/physiology , Selective Estrogen Receptor Modulators/pharmacology , Vero Cells
3.
Antiviral Res ; 91(1): 57-63, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21557969

ABSTRACT

Stilbenols are polyphenolic phytoalexins produced by plants in response to biotic or abiotic stress. These compounds have received much attention because of their significant biological effects. One of these is their antiviral action, which has previously been documented for two members of this class, namely resveratrol and oxyresveratrol. Here we tested the antiviral effect of these two compounds on African swine fever virus, the only member of the newly created family Asfarviridae and a serious limitation to porcine production worldwide. Our results show a potent, dose-dependent antiviral effect of resveratrol and oxyresveratrol in vitro. Interestingly, this antiviral activity was found for these synthetic compounds and also for oxyresveratrol extracted from new natural sources (mulberry twigs). The antiviral effect of these two drugs was demonstrated at concentrations that do not induce cytotoxicity in cultured cells. Moreover, these antivirals achieved a 98-100% reduction in viral titers. Both compounds allowed early protein synthesis but inhibited viral DNA replication, late viral protein synthesis and viral factory formation.


Subject(s)
African Swine Fever Virus/drug effects , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Stilbenes/pharmacology , Virus Replication/drug effects , African Swine Fever Virus/physiology , Animals , Antioxidants/pharmacology , Cell Line , Chlorocebus aethiops , DNA Replication/drug effects , Phytotherapy , Polymerase Chain Reaction , Protein Synthesis Inhibitors/pharmacology , Resveratrol
4.
Virology ; 249(1): 175-88, 1998 Sep 15.
Article in English | MEDLINE | ID: mdl-9740789

ABSTRACT

African swine fever virus (ASFV) is a large complex icosahedral double-stranded DNA virus that replicates in the cytoplasm of susceptible cells. Assembly of new virus particles occurs within the perinuclear viroplasm bodies known as virus factories. Two types of virus particle are routinely observed: "fulls," which are particles with an electron-dense DNA-containing nucleoid, and "empties," which consist of the virus protein and membrane icosahedral shell but are without the incorporation of the virus genome. The objective of this study was to understand ASFV morphogenesis by determining the distribution of intracellular viral DNA in the virus factory and during virus particle assembly. The ultrastructural localisation of DNA within ASFV-infected cells was achieved using two complementary methods: with an ASFV-specific DNA probe to the major capsid protein (p73) gene (B646L) hybridised in situ or through detection of all forms of DNA (viral and cellular) with gold-labelled DNase. Conditions for in situ hybridisation at the electron microscopic level were optimised for infected cells in two Lowicryl resins (K4M and HM20) and using two nonradioactive probe labels (digoxygenin and biotin). The morphological data indicate that the viral DNA, perhaps from specialised storage sites within the factory, begins to condense into a pronucleoid and is then inserted, at a single vertex, into an "empty" particle. Further maturation of the viral particle, including closure of the narrow opening in the icosahedron, gives rise to "intermediate" particles, where the nucleoprotein core undergoes additional consolidation to produce the characteristic mature or "full" virions. The site of particle closure may represent a "weak point" at one vertex, but the mechanisms and structures involved in the packaging and release of the virus genome via such a port are yet to be determined.


Subject(s)
African Swine Fever Virus/physiology , DNA, Viral/ultrastructure , Virion , Virus Assembly , African Swine Fever Virus/ultrastructure , Animals , Cell Line , DNA, Viral/physiology , Deoxyribonucleases , In Situ Hybridization/methods , Microscopy, Electron
SELECTION OF CITATIONS
SEARCH DETAIL