Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.753
Filter
Add more filters

Publication year range
1.
Nutr. clín. diet. hosp ; 44(2): 55-60, Abr. 2024. tab
Article in Spanish | IBECS | ID: ibc-VR-8

ABSTRACT

Introducción: El envejecimiento está relacionado con diversas enfermedades crónicas que causan inflamación sistémica, caracterizada por un aumento en los niveles sanguíneos de interleucina 6 (IL-6) y factor de necrosis tumoral alfa (TNF-α). La función física y la composición corporal podrían estar relacionadas con estos marcadores inflamatorios en adultos mayores.Objetivo: Analizar la correlación entre marcadores inflamatorios sanguíneos, función física y composición corporal en adultos mayores de la comunidad.Metodología: Estudio transversal con 245 adultos mayores (hombres 68±6 años; mujeres: 69%) de la ciudad de Londrina, Brasil. Se analizaron los niveles sanguíneos de IL-6 y TNF-α con citometría de flujo. Para la evaluación física fue considerado el equilibrio estático con la prueba de estación unipodal (PEU), la fuerza de prensión manual (FPM) utilizando un dinamómetro digital y la capacidad aeróbica con la prueba de caminata de seis minutos (PC6M). Para la evaluación de la composición corporal, fueron considerados los siguientes perímetros: cadera, pantorrilla, cuádriceps, bíceps braquial, tríceps braquial y cintura. Se analizó la correlación de las variables inflamatorias con las de función física y composición corporal, utilizando Pearson o Spearman con el software SPSS versión 22.Resultados: Los niveles de IL-6 se correlacionaron con la PEU (r: -0.22; p: 0.002), el perímetro de tríceps (r: 0.16; p: 0.023) y el de cintura (r: 0.34; p: 0.000). Los niveles de TNF-α se correlacionaron con FPM (r: -0.15; p: 0.035), el perímetro de tríceps (r: 1.79; p: 0.012) y el de cintura (r: 0.27; p< 0.001). Conclusión: Los marcadores inflamatorios están relacionados con menor fuerza, equilibrio estático y un aumento en el perímetro de tríceps y cintura en adultos mayores de la comunidad.(AU)


Introduction: Aging is associated with various chronic dis-eases that cause systemic inflammation, characterized by an in-crease in blood levels of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). Physical function and body compositionmay be related to these inflammatory markers in older adults.Objective: To analyze the correlation between blood in-flammatory markers, physical function and body compositionin community-dwelling older adults.Methodology: A cross-sectional study was carried out with242 community-dwelling older adults (mean age was 68±6years for males and 70±6 years for females; the percentageof men was 36.6% and 69.4% of women) from the city ofLondrina, Brazil. Blood levels of IL-6 and TNF-α were analyzedwith flow cytometry. For the physical evaluation, static balancewas measured with the one-legged stance test (OLS), hand-grip strength (HGS) using a digital dynamometer and aerobiccapacity with the six-minute walk test (6MWT). For the evalu-ation of body composition, the following perimeters were con-sidered: hip, calf, quadriceps, biceps brachii, triceps brachiiand waist. The correlation of inflammatory variables withthose of physical function and body composition was analyzedusing Pearson or Spearman with SPSS version 22 software.Results: IL-6 levels were correlated with OLS (r: -0.22;p:0.002), triceps circumference (r: 0.16; p:0.023) and waist cir-cumference (r: 0.34; p:0.000). TNF-α levels were correlatedwith HGS (r: -0.15; p:0.035), triceps circumference (r: 1.79;p:0.012) and waist circumference (r: 0.27; p < 0.001).Conclusion: Inflammatory biomarkers are related to lowmuscle strength, static balance, and an increase in tricepsand waist circumference.(AU)


Subject(s)
Humans , Male , Female , Aged , Body Composition , Postural Balance , Muscle Strength , Anthropometry , Inflammation , Aging , Cross-Sectional Studies , Nutritional Sciences , Health of the Elderly
2.
Adv Exp Med Biol ; 1446: 203-215, 2024.
Article in English | MEDLINE | ID: mdl-38625530

ABSTRACT

Aging is often associated with chronic inflammation and declining health. Both veterinarians and owners of aging dogs and cats are interested in nutritional solutions and strategies to prevent signs of age-related disease, increase longevity, and improve quality of life. Physiological decreases in muscle mass, decreased immunity, and a decrease in sense acuity are some of the changes often seen in otherwise healthy senior pets; however, there may also be an increase in risk for pathologies such as renal, cardiovascular, musculoskeletal, and neoplastic diseases. Aging may also lead to cognitive decline and even cognitive dysfunction. Some nutritional strategies that may be helpful with the prevention and treatment of age-related diseases include supplementation with ω3 polyunsaturated fatty acids and antioxidant nutrients that can help modulate inflammation and benefit osteoarthritis, renal disease, cancer, and more. Supplementation with medium-chain triglycerides shows promise in the treatment of canine cognitive dysfunction as these may be metabolized to ketone bodies that are utilized as an alternative energy source for the central nervous system. Additionally, a high intake of dietary phosphorus in soluble and bioavailable forms can lead to renal disease, which is of greater concern in senior pets. There are no published guidelines for nutritional requirements specific to senior pets and as a result, products marketed for senior dogs and cats are highly variable.


Subject(s)
Cat Diseases , Dog Diseases , Cats , Dogs , Animals , Cat Diseases/prevention & control , Quality of Life , Dog Diseases/prevention & control , Aging , Inflammation
4.
J Med Humanit ; 45(2): 139-155, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575758

ABSTRACT

Jane Austen normally avoids discussing appearance throughout her works. Persuasion constitutes the exception to the rule, as the story focuses on the premature aging experienced by her protagonist, Anne Elliot, seemingly due to disappointed love. Much has been written about Anne's "loss of bloom," but never from the perspective of psychoneuroimmunology, the field that researches the interrelation between psychological processes and the nervous and immune systems. In this paper, we adopt a perspective of psychoneuroimmunology to argue that Austen established a connection between psychological distress, specifically lovesickness, and the development of early senescence signs, and vice versa, since the recovery of love is associated with happiness and physical glow. From a gender perspective, we discuss how Austen brightly reflected these interrelationships through the story of Anne, when the latest psychoneuroimmunological research has actually shown that women age earlier than men as a consequence of psychological turmoil.


Subject(s)
Aging , Psychoneuroimmunology , Humans , Female , Persuasive Communication , Love , Male , Medicine in Literature
5.
Ageing Res Rev ; 97: 102309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615895

ABSTRACT

Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Animals , Aging/physiology
6.
Phytomedicine ; 129: 155567, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579644

ABSTRACT

BACKGROUND: Sarcopenia, an age-related disease, is characterized by a gradual loss of muscle mass, strength, and function. It has been linked to abnormal organelle function in myotubes, including the mitochondria and endoplasmic reticulum (ER). Recent studies revealed that mitochondria-associated membranes (MAM), the sites connecting mitochondria and the ER, may be implicated in skeletal muscle aging. In this arena, the potential of Polygonatum sibiricum polysaccharide (PSP) emerges as a beacon of hope. PSP, with its remarkable antioxidant and anti-senescence properties, is on the cusp of a therapeutic revolution, offering a promising strategy to mitigate the impacts of sarcopenia. PURPOSE: The objective of this research is to explore the effects of PSP on age-related muscle dysfunction and the underlying mechanisms involved both in vivo and in vitro. METHODS: In this investigation, we used in vitro experiments using D-galactose (D-gal)-induced aging in C2C12 myotubes and in vivo experiments on aged mice. Key indices were assessed, including reactive oxygen species (ROS) levels, mitochondrial function, the expression of aging-related markers, and the key proteins of mitochondria and MAM fraction. Differentially expressed genes (DEGs) related to mitochondria and ER were identified, and bioinformatic analyses were performed to explore underlying mechanisms. Muscle mass and function were determined to evaluate the quantity and quality of skeletal muscle in vivo. RESULTS: PSP treatment effectively mitigated oxidative stress and mitochondrial malfunction caused by D-gal in C2C12 myotubes, preserving mitochondrial fitness and reducing MAM formation. Besides, PSP attenuated D-gal-induced increases in Ca2+ concentrations intracellularly by modulating the calcium-related proteins, which were also confirmed by gene ontology (GO) analysis of DEGs. In aged mice, PSP increased muscle mass and improved grip strength, hanging time, and other parameters while reducing ROS levels and increasing antioxidant enzyme activities in skeletal muscle tissue. CONCLUSION: PSP offers protection against age-associated muscle impairments. The proposed mechanism suggests that modulation of calcium homeostasis via regulation of the MAM results in a favorable functional outcome during skeletal muscle aging. The results of this study highlight the prospect of PSP as a curative intervention for sarcopenia and affiliated pathological conditions, warranting further investigation.


Subject(s)
Aging , Calcium , Homeostasis , Muscle, Skeletal , Polygonatum , Polysaccharides , Reactive Oxygen Species , Animals , Polysaccharides/pharmacology , Polygonatum/chemistry , Mice , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Calcium/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Aging/drug effects , Male , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Sarcopenia/drug therapy , Mitochondrial Membranes/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line , Mice, Inbred C57BL , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Antioxidants/pharmacology , Mitochondria Associated Membranes
7.
J Nat Med ; 78(3): 576-589, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662301

ABSTRACT

This study aimed to compare fat accumulation in young and aged mice raised on a high-fat diet and to characterize the obesity-reducing effects of a Kampo medicine, bofutsushosan (BTS; fangfengtongshengsan in Chinese). Aged mice fed a high-fat diet containing 2% BTS extract for 28 days exhibited a significant reduction in weight gain and accumulation of visceral and subcutaneous fat, which were greater degree of reduction than those of the young mice. When the treatment period was extended to two months, the serum aspartate aminotransferase and alanine aminotransferase levels and the accumulation of fat droplets in the hepatocytes decreased. The mRNA expression of mitochondrial uncoupling protein 1 (UCP1) in the brown adipose tissue was significantly reduced in the aged mice compared to the young mice but increased by 2% in the BTS-treated aged mice. Additionally, the effect of BTS extract on oleic acid-albumin-induced triglyceride accumulation in hepatoblastoma-derived HepG2 cells was significantly inhibited in a concentration-dependent manner. Evaluation of the single crude drug extracts revealed that Forsythia Fruit, Schizonepeta Spike, and Rhubarb were the active components in BTS extract. These results suggest that BTS extract is effective against visceral, subcutaneous, and ectopic fats in the liver, which tend to accumulate with aging. Thus, BTS extract is useful in preventing and ameliorating the development of obesity and metabolic syndrome.


Subject(s)
Aging , Diet, High-Fat , Drugs, Chinese Herbal , Obesity , Animals , Obesity/drug therapy , Obesity/metabolism , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Diet, High-Fat/adverse effects , Aging/drug effects , Humans , Hep G2 Cells , Mice, Inbred C57BL , Uncoupling Protein 1/metabolism , Triglycerides/blood , Triglycerides/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Aspartate Aminotransferases/blood
8.
Food Funct ; 15(6): 3199-3213, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38445897

ABSTRACT

Ageing is defined as the degeneration of physiological functions in numerous tissues and organs of an organism, which occurs with age. As we age, the gut undergoes a series of changes and weaknesses that may contribute to overall ageing. Emerging evidence suggests that ß-nicotinamide mononucleotide (NMN) plays a role in regulating intestinal function, but there is still a lack of literature on its role in maintaining the colon health of ageing mice. In our research, Zmpste24-/- mice proved that NMN prolonged their life span and delayed senescence. This study was designed to investigate the effects of long-term intervention on regulating colon function in ageing mice. Our results indicated that NMN improved the pathology of intestinal epithelial cells and intestinal permeability by upregulating the expression of intestinal tight junction proteins and the number of goblet cells, increasing the release of anti-inflammatory factors, and increasing beneficial intestinal bacteria. NMN increased the expression of the proteins SIRT1, NMNAT2, and NMNAT3 and decreased the expression of the protein P53. It also regulated the activity of ISCs by increasing Wnt/ß-catenin and Lgr5. Our findings also revealed that NMN caused a significant increase in the relative abundance of Akkermansia muciniphila and Bifidobacterium pseudolongum and notable differences in metabolic pathways related to choline metabolism in cancer. In summary, NMN supplementation can delay frailty in old age, aid healthy ageing, and delay gut ageing.


Subject(s)
Longevity , Nicotinamide Mononucleotide , Mice , Animals , Nicotinamide Mononucleotide/metabolism , Nicotinamide Mononucleotide/pharmacology , Aging , Dietary Supplements , Colon/metabolism
9.
J Agric Food Chem ; 72(10): 5197-5211, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477041

ABSTRACT

Broccoli has gained popularity as a highly consumed vegetable due to its nutritional and health properties. This study aimed to evaluate the composition profile and the antioxidant capacity of a hydrophilic extract derived from broccoli byproducts, as well as its influence on redox biology, Alzheimer's disease markers, and aging in the Caenorhabditis elegans model. The presence of glucosinolate was observed and antioxidant capacity was demonstrated both in vitro and in vivo. The in vitro acetylcholinesterase inhibitory capacity was quantified, and the treatment ameliorated the amyloid-ß- and tau-induced proteotoxicity in transgenic strains via SOD-3 and SKN-1, respectively, and HSP-16.2 for both parameters. Furthermore, a preliminary study on aging indicated that the extract effectively reduced reactive oxygen species levels in aged worms and extended their lifespan. Utilizing broccoli byproducts for nutraceutical or functional foods could manage vegetable processing waste, enhancing productivity and sustainability while providing significant health benefits.


Subject(s)
Alzheimer Disease , Brassica , Caenorhabditis elegans Proteins , Animals , Antioxidants/metabolism , Oxidative Stress , Caenorhabditis elegans Proteins/metabolism , Brassica/metabolism , Acetylcholinesterase , Plant Extracts/pharmacology , Aging , Caenorhabditis elegans , Reactive Oxygen Species , Oxidation-Reduction , Longevity , Biology
10.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474050

ABSTRACT

Although many types of antioxidant supplements are available, the effect is greater if multiple types are taken simultaneously rather than one type. However, it is difficult to know which type and how much to take, as it is possible to take too many of some vitamins. As it is difficult for general consumers to make this choice, it is important to provide information based on scientific evidence. This study investigated the various effects of continuous administration of a blended supplement to aging mice. In 18-month-old C57BL/6 mice given a blended supplement ad libitum for 1 month, spatial cognition and short-term memory in the Morris water maze and Y-maze improved compared with the normal aged mice (spontaneous alternative ratio, normal aged mice, 49.5%, supplement-treated mice, 68.67%, p < 0.01). No significant differences in brain levels of secreted neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, were observed between these two groups. In treadmill durability tests before and after administration, the rate of increase in running distance after administration was significantly higher than that of the untreated group (increase rate, normal aged mice, 91.17%, supplement-treated aged mice, 111.4%, p < 0.04). However, training had no reinforcing effect, and post-mortem serum tests showed a significant decrease in aspartate aminotransferase, alanine aminotransferase, and total cholesterol values. These results suggest continuous intake of a blended supplement may improve cognitive function and suppress age-related muscle decline.


Subject(s)
Memory, Short-Term , Vitamins , Mice , Animals , Maze Learning , Mice, Inbred C57BL , Vitamins/pharmacology , Aging/physiology , Cognition , Spatial Memory/physiology
11.
Mar Drugs ; 22(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38535468

ABSTRACT

The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated ß-galactosidase (SA-ß-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.


Subject(s)
Corydalis , Humans , Autophagy , Skin , Aging , Plant Extracts , Ubiquitin-Protein Ligases
12.
Int J Clin Exp Hypn ; 72(2): 139-154, 2024.
Article in English | MEDLINE | ID: mdl-38446038

ABSTRACT

Sleep disturbance is a public health problem among aging adults (age 45 and older). While aging adults are at an elevated risk for sleep disturbance, many also have high rates of mistrust toward psychological interventions, such as self-hypnosis, which may be beneficial for sleep. The purpose of the study was to assess factors that may impact utilization of self-hypnosis for sleep, including willingness, preferences, and access among informed aging adults. 244 aging adults were recruited. After reading an information sheet on self-hypnosis for sleep, participants completed questionnaires assessing sleep related worry, stress, and perceptions of self-hypnosis for sleep, including willingness, benefits, barriers, preferences, and access. The findings indicated that informed aging adults were willing to engage in self-hypnosis for sleep, regardless of their race or gender. Furthermore, they preferred technological delivery methods (i.e. telehealth or smartphone apps) with flexible scheduling options. However, very few participants endorsed having access to self-hypnosis.


Subject(s)
Hypnosis , Adult , Humans , Middle Aged , Cross-Sectional Studies , Hypnosis/methods , Surveys and Questionnaires , Aging , Sleep
13.
Medicina (Kaunas) ; 60(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38541188

ABSTRACT

Background and objectives: Musculoskeletal (MSK) pain significantly impacts physical activity and quality of life in older adults, potentially influencing mortality. This study explored the relationship between MSK pain, physical activity, muscle mass, and mortality among older adults. Material and Methods: We studied 1000 participants in the Korean Longitudinal Study on Health and Aging (KLoSHA), a prospective, population-based cohort study of people aged 65 years or older. Survival status was tracked over a 5-year period. Correlations between low back pain (LBP), knee pain, regular exercise, appendicular skeletal muscle mass (ASM), and other variables were analyzed. Logistic regression analyses were used to identify independent risk factors for mortality. Results: Of the total participants, 829 (82.9%) survived over a 5-year period. Survivors tended to be younger, had a higher BMI, and were more active in regular exercise. In contrast, non-survivors exhibited a higher prevalence of both LBP and knee pain, along with increased instances of multiple MSK pains. Lower ASM correlated moderately with LBP and knee pain, whereas higher ASM was associated with regular exercise. There was a moderate correlation between LBP and knee pain, both of which were associated with a lack of regular exercise. Age, sex, ASM, and regular exercise were significant predictors, even though MSK pain itself did not directly predict all-cause mortality. Conclusions: This study demonstrated the independent association between ASM, regular exercise, and mortality. Although MSK pain did not directly correlate with all-cause mortality, the non-survivor group had higher levels of both single and multiple MSK pains. Recognizing the interplay of MSK pain, physical activity, and muscle mass for older adults, the research underscores the need for holistic strategies to enhance health outcomes in older individuals with MSK pain.


Subject(s)
Low Back Pain , Musculoskeletal Pain , Humans , Aged , Longitudinal Studies , Cohort Studies , Quality of Life , Prospective Studies , Aging/physiology , Exercise , Republic of Korea/epidemiology , Muscles
14.
Molecules ; 29(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542911

ABSTRACT

Polygonatum cyrtonema Hua, the dried rhizome of Polygonum multiflorum from the Liliaceae family, is a widely used medicinal herb with a long history of application. Its main active ingredients are polysaccharides, which have been demonstrated in contemporary studies to effectively delay the aging process. In the present study, homogeneous polysaccharide (PCP-1) was obtained after the purification and isolation of polysaccharides from Polygonatum cyrtonema Hua (PCP). The anti-aging activities of both were compared, and the possible mechanism of action for exerting anti-aging activity was explored using Caenorhabditis elegans (C. elegans). Research has indicated that PCP and PCP-1 exhibit potent anti-oxidant and anti-aging properties. Of particular note is that PCP-1 acts better than PCP. The two were able to prolong the lifespan of nematodes, improve the stress resistance of nematodes, reduce the accumulation of lipofuscin in the intestine, decrease the content of ROS and MDA in the body, increase the activity of the antioxidant enzymes SOD and CAT, promote the nuclear translocation of DAF-16, down-regulate the mRNA levels of the age-1 and daf-2 genes of the IIS pathway in nematodes, and up-regulate the expression of the daf-16, skn-1, sod-3, and hsp-16.2 genes. Based on the aforementioned findings, it is possible that the mechanism by which PCP and PCP-1 exert anti-aging effects may be through negative regulation of the IIS pathway, activation of the transcription factor DAF-16/FOXO, and enhancement of oxidative defenses and stress resistance in nematodes. Overall, the present study illustrated the great potential of polysaccharides from Polygonatum cyrtonema Hua in anti-aging and antioxidant activities. Specifically, PCP-1 demonstrated superior characteristics, which provides a reference for the future development of Polygonatum cyrtonema Hua polysaccharides.


Subject(s)
Caenorhabditis elegans , Polygonatum , Animals , Caenorhabditis elegans/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Aging , Polysaccharides/pharmacology , Polysaccharides/metabolism , Superoxide Dismutase/metabolism
15.
Invest Ophthalmol Vis Sci ; 65(3): 36, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38551585

ABSTRACT

Purpose: Symptomatic vitreous opacifications, so-called floaters, are difficult to objectively assess majorly limiting the possibility of in vitro studies. Forward light scattering was found previously to be increased in eyes with symptomatic floaters. Using an objective setup to measure forward light scattering, we studied the effects of enzymatically digesting the components of the vitreous body on straylight to develop an in vitro model of vitreous opacifications. Methods: Fifty-seven porcine vitreous bodies were digested using hyaluronidase, collagenase, trypsin, and bromelain, as well as using a combination of hyaluronidase + collagenase and hyaluronidase + bromelain. A modified C-Quant setup was used to objectively assess forward light scattering. Results: Depletion of hyaluronic acid majorly increased vitreous straylight (mean increase 34.4 deg2/sr; P = 0.01), whereas primarily digesting the vitreous gel with collagenase or trypsin did not significantly affect straylight. When collagenase or bromelain is applied in hyaluronic acid depleted vitreous gels, the increase in forward light scattering is reversed partially. Conclusions: The age-related loss of hyaluronic acid primarily drives the increase in vitreous gel straylight induced by conglomerates of collagen. This process can be reversed partially by digesting collagen. This in vitro model allows the objective quantification and statistical comparison of straylight burden caused by vitreous opacities and, thus, can serve as a first testing ground for pharmacological therapies, as demonstrated with bromelain.


Subject(s)
Bromelains , Light , Animals , Swine , Hyaluronoglucosaminidase/pharmacology , Hyaluronic Acid/pharmacology , Trypsin , Aging , Collagen/pharmacology , Collagenases/pharmacology , Scattering, Radiation
16.
J Ethnopharmacol ; 327: 118016, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38462027

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY: This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS: First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS: CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.


Subject(s)
Codonopsis , Mice , Animals , Codonopsis/chemistry , Galactose , Brain , Aging , Autophagy
17.
Neurotox Res ; 42(2): 21, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441819

ABSTRACT

The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, ß-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aß peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aß plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.


Subject(s)
Chitosan , Nanoparticles , Male , Rats , Animals , Amyloid Precursor Protein Secretases , Rats, Wistar , Aging , Apolipoproteins E , Hippocampus , Arginine
18.
Am J Chin Med ; 52(2): 513-539, 2024.
Article in English | MEDLINE | ID: mdl-38533568

ABSTRACT

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Subject(s)
Astragalus propinquus , Interleukin-22 , Aged , Humans , Mice , Male , Female , Animals , Infant , Child, Preschool , Astragalus propinquus/chemistry , Intestines , Signal Transduction , Intestine, Small , Stem Cells , Polysaccharides/pharmacology , Aging , Regeneration
19.
Haemophilia ; 30 Suppl 3: 5-11, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38539058

ABSTRACT

As treatments for individuals with inherited bleeding disorders improve, life expectancy increases and is approaching that of the normal population. Concomitant with this we are now seeing the problems of ageing in the bleeding disorder population. Although the clear-cut association between low clotting factor levels and risk of bleeding is well recognised, a relationship between high levels, some non-factor therapies and thrombotic risk also exists. The management of thrombosis in persons with inherited bleeding disorders is complex but manageable with modern treatments and collaboration in decision making between health care professionals and patients. Despite the improvements in treatment and reduction in bleeding, mostly musculoskeletal pain continues to be a major issue with advancing age. The management of pain amongst older people with haemophilia who may have multiple comorbidities should involve a person-centred, holistic, multi-disciplinary approach to support and optimise long-term physical functioning and overall quality of life.


Subject(s)
Hemophilia A , Humans , Aged , Hemophilia A/complications , Hemophilia A/therapy , Hemophilia A/epidemiology , Quality of Life , Blood Coagulation Factors , Aging , Comorbidity
20.
J Neuroeng Rehabil ; 21(1): 34, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443983

ABSTRACT

BACKGROUND: The regulation of gait is critical to many activities of everyday life. When walking, somatosensory information obtained from mechanoreceptors throughout body is delivered to numerous supraspinal networks and used to execute the appropriate motion to meet ever-changing environmental and task demands. Aging and age-related conditions oftentimes alter the supraspinal sensorimotor control of walking, including the responsiveness of the cortical brain regions to the sensorimotor inputs obtained from the peripheral nervous system, resulting in diminished mobility in the older adult population. It is thus important to explicitly characterize such supraspinal sensorimotor elements of walking, providing knowledge informing novel rehabilitative targets. The past efforts majorly relied upon mental imagery or virtual reality to study the supraspinal control of walking. Recent efforts have been made to develop magnetic resonance imaging (MRI)-compatible devices simulating specific somatosensory and/or motor aspects of walking. However, there exists large variance in the design and functionality of these devices, and as such inconsistent functional MRI (fMRI) observations. METHODS: We have therefore completed a systematic review to summarize current achievements in the development of these MRI-compatible devices and synthesize available imaging results emanating from studies that have utilized these devices. RESULTS: The device design, study protocol and neuroimaging observations of 26 studies using 13 types of devices were extracted. Three of these devices can provide somatosensory stimuli, eight motor stimuli, and two both types of stimuli. Our review demonstrated that using these devices, fMRI data of brain activation can be successfully obtained when participants remain motionless and experience sensorimotor stimulation during fMRI acquisition. The activation in multiple cortical (e.g., primary sensorimotor cortex) and subcortical (e.g., cerebellum) regions has been each linked to these types of walking-related sensorimotor stimuli. CONCLUSION: The observations of these publications suggest the promise of implementing these devices to characterize the supraspinal sensorimotor control of walking. Still, the evidence level of these neuroimaging observations was still low due to small sample size and varied study protocols, which thus needs to be confirmed via studies with more rigorous design.


Subject(s)
Magnetic Resonance Imaging , Walking , Humans , Aged , Gait , Neuroimaging , Aging
SELECTION OF CITATIONS
SEARCH DETAIL