Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Biol Macromol ; 186: 501-509, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34271043

ABSTRACT

Two homogeneous polysaccharides, GEP-3 and GEP-4, were purified from Gastrodia elata, a precious traditional Chinese medicine. Their structural characteristics were obtained using HPGPC, PMP-HPLC, LC/MS, FT-IR, NMR, and SEM methods. GEP-3 was 1,4-glucan with molecular weight of 20 kDa. Interestingly, GEP-4 comprised of a backbone of →[4)-α-Glcp-(1]10→[4)-α-Glcp-(1→]5[6)-ß-Glcp-(1]11→6)-α-Glcp-(3→ and two branches of ß-Glcp and p-hydroxybenzyl alcohol citrate, with repeating p-hydroxybenzyl alcohol attached to the backbone chain at O-6 position of →4,6)-α-Glcp-(1→ and O-1 position of →3,6)-α-Glcp-(1→. GEP-4 is a novel polysaccharide obtained and characterized for the first time. Bioactivity test indicated that both of them significantly promote the growth of Akkermansia muciniphila (Akk. muciniphila). Furthermore, GEP-3 and GEP-4 promoted the growth of Akk. muciniphila from high-fat diet (HFD) fecal microbiota. These results indicated that GEP-3 and GEP-4 were potential Akk. muciniphila growth promoters.


Subject(s)
Gastrodia , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Akkermansia/drug effects , Akkermansia/growth & development , Akkermansia/isolation & purification , Animals , Diet, High-Fat , Disease Models, Animal , Feces/microbiology , Gastrodia/chemistry , Gastrointestinal Microbiome , Mice , Molecular Structure , Non-alcoholic Fatty Liver Disease/microbiology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification
2.
FEMS Microbiol Lett ; 368(5)2021 04 08.
Article in English | MEDLINE | ID: mdl-33606020

ABSTRACT

In recent years, the relationship between type 2 diabetes (T2D) and gut microbiota has attracted much interest. Dendrobium officinale is a valuable traditional Chinese medicine (TCM) with anti-T2D potential, while its action mechanism remains to be further studied. This study was designed to investigate the modulation effects of D. officinale on gut microbiota of T2D model mice to provide clues to its pharmacology by high-throughput sequencing techniques. It was found that D. officinale supplement could significantly reduce the fasting blood glucose levels of T2D mice. Dendrobium officinale supplement could modulate the composition of gut microbiota and increase the relative abundances of key bacterial taxa associated with T2D development, including Akkermansia and Parabacteroides. Compared with placebo group mice, several Kyoto Encyclopedia of Gene and Genomes pathways associated with T2D altered in the D. officinale treated group. These findings indicated the modulation of D. officinale on gut microbiota of T2D mice, which provide potential pharmacological implications.


Subject(s)
Akkermansia/growth & development , Bacteroidetes/growth & development , Dendrobium/chemistry , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/drug effects , Plant Preparations/pharmacology , Akkermansia/classification , Animals , Bacteroidetes/classification , Diabetes Mellitus, Type 2/pathology , Gastrointestinal Microbiome/physiology , Male , Medicine, Chinese Traditional , Mice , Mice, Transgenic
3.
J Appl Toxicol ; 41(2): 276-290, 2021 02.
Article in English | MEDLINE | ID: mdl-32725676

ABSTRACT

Gut microorganisms are vital for many aspects of human health, and the commensal bacterium Akkermansia muciniphila has repeatedly been identified as a key component of intestinal microbiota. Reductions in A. muciniphila abundance are associated with increased prevalence of metabolic disorders such as obesity and type 2 diabetes. It was recently discovered that administration of A. muciniphila has beneficial effects and that these are not diminished, but rather enhanced after pasteurization. Pasteurized A. muciniphila is proposed for use as a food ingredient, and was therefore subjected to a nonclinical safety assessment, comprising genotoxicity assays (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day toxicity study. For the latter, Han Wistar rats were administered with the vehicle or pasteurized A. muciniphila at doses of 75, 375 or 1500 mg/kg body weight/day (equivalent to 4.8 × 109 , 2.4 × 1010 , or 9.6 × 1010 A. muciniphila cells/kg body weight/day) by oral gavage for 90 consecutive days. The study assessed potential effects on clinical observations (including detailed arena observations and a modified Irwin test), body weight, food and water consumption, clinical pathology, organ weights, and macroscopic and microscopic pathology. The results of both in vitro genotoxicity studies were negative. No test item-related adverse effects were observed in the 90-day study; therefore, 1500 mg/kg body weight/day (the highest dose tested, equivalent to 9.6 × 1010 A. muciniphila cells/kg body weight/day) was established as the no-observed-adverse-effect-level. These results support that pasteurized A. muciniphila is safe for use as a food ingredient.


Subject(s)
Akkermansia/growth & development , Akkermansia/radiation effects , Dietary Supplements/toxicity , Food Safety , Gastrointestinal Microbiome/radiation effects , Pasteurization , Animals , Humans , Male , Models, Animal , Rats , Rats, Wistar
4.
Biomed Pharmacother ; 133: 111014, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33246225

ABSTRACT

BACKGROUND: Intestinal microbiota is a novel drug target of metabolic diseases, especially for those with poor oral bioavailability. Nuciferine, with poor bioavailability, has an anti-hyperlipidemic effect at low dosages. PURPOSE: In the present study, we aimed to explore the role of intestinal microbiota in the anti-hyperlipidemic function of nuciferine and identify the key bacterial targets that might confer the therapeutic actions. METHODS: The contribution of gut microbes in the anti-hyperlipidemic effect of nuciferine was evaluated by conventional and antibiotic-established pseudo-sterile mice. Whole-metagenome shotgun sequencing was used to characterize the changes in microbial communities by various agents. RESULTS: Nuciferine exhibited potent anti-hyperlipidemic and liver steatosis-alleviating effects at the doses of 7.5-30 mg/kg. The beneficial effects of nuciferine were substantially abolished when combined with antibiotics. Metagenomic analysis showed that nuciferine significantly shifted the microbial structure, and the enrichment of Akkermansia muciniphila was closely related to the therapeutic effect of nuciferine. CONCLUSIONS: Our results revealed that gut microbiota played an essential role in the anti-hyperlipidemic effect of nuciferine, and enrichment of Akkermansia muciniphila represented a key mechanism through which nuciferine exerted its therapeutic effects.


Subject(s)
Aporphines/pharmacology , Gastrointestinal Microbiome/drug effects , Hyperlipidemias/drug therapy , Hypolipidemic Agents/pharmacology , Intestines/microbiology , Lipids/blood , Akkermansia/drug effects , Akkermansia/genetics , Akkermansia/growth & development , Animals , Anti-Bacterial Agents/pharmacology , Bacteroides/drug effects , Bacteroides/genetics , Bacteroides/growth & development , Biomarkers/blood , Diet, High-Fat , Disease Models, Animal , Hyperlipidemias/blood , Hyperlipidemias/microbiology , Male , Metagenome , Metagenomics , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/blood , Obesity/microbiology , Obesity/prevention & control , RNA-Seq
5.
Pharmacol Res ; 160: 105086, 2020 10.
Article in English | MEDLINE | ID: mdl-32687951

ABSTRACT

Traditional Chinese medicine (TCM) plays a vital part in cancer treatment due to its unique superiority. Huoxue Yiqi Recipe-2 (HYR-2) was supposed to have therapeutic effect on lung cancer, which came from Ze Qi Decoction in one of the four great classics of TCM called "Synopsis of Prescriptions of the Golden Chamber". Network pharmacology demonstrated that the targets of active components from HYR-2 were significantly enriched in the signaling pathways, which were closely associated with non-small cell lung cancer (NSCLC) and programmed death ligand 1 (PD-L1). Then, data about NSCLC was downloaded from Gene Expression Omnibus database (GEO). The Cancer Genome Atlas (TCGA) and DisGeNET was analyzed by bioinformatics, and 214 biomarkers for NSCLC were obtained, containing 14 targets of active components from HYR-2 (which were significantly enriched in the PD-L1 related signaling pathway). In vivo and in vitro experiments showed that HYR and HYR-2 could inhibit the growth of lung cancer and down-regulate the expression of PD-L1, which might be related to the blocking effect of HYR-2 on the PI3K/Akt signaling pathway. Furthermore, HYR-2 promoted the transformation of M2 macrophages into M1 macrophages as well. It is deserved to be mentioned that the level of Akkermansia muciniphila was also significantly elevated by HYR-2, which was believed to enhance the therapeutic effect of PD-L1 antibodies. To sum up, HYR-2 might play an anti-lung cancer effect by down-regulating PD-L1 together with up-regulating Akkermansia muciniphila.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/drug therapy , Drugs, Chinese Herbal/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Medicine, Chinese Traditional , A549 Cells , Akkermansia/drug effects , Akkermansia/growth & development , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Gene Regulatory Networks , Hep G2 Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , MCF-7 Cells , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Phenotype , Protein Interaction Maps , Signal Transduction , Tumor Burden/drug effects
6.
J Med Food ; 23(8): 841-851, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32598202

ABSTRACT

Trillions of microorganisms reside in the hosts' gut. Since diverse activities of gut microbiota affect the hosts' health status, maintenance of gut microbiota is important for maintaining human health. Green tea (GT) has multiple beneficial effects on energy metabolism with antiobesity, antidiabetic, and hypolipidemic properties. As GT contains a large amount of bioactive ingredients (e.g., catechins), which can be metabolized by microorganisms, it would be feasible that consumption of GT may cause compositional changes in gut microbiota, and that the changes in gut microbiota would be associated with the beneficial effects of GT. In this study, we demonstrated that consumption of GT extract relieves high-fat diet-induced metabolic abnormalities. Interestingly, GT administration significantly encouraged the growth of Akkermansia muciniphila (Akkermansia), a beneficial microorganism to relieve obesity and related metabolic disorders. Finally, we found that epigallocatechin gallate is the component of GT that stimulates the growth of Akkermansia. According to these data, we propose that GT could be a prebiotic agent for Akkermansia to treat metabolic syndromes.


Subject(s)
Akkermansia/growth & development , Catechin/analogs & derivatives , Gastrointestinal Microbiome , Tea/chemistry , Akkermansia/drug effects , Animals , Catechin/pharmacology , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred BALB C
7.
Int J Biol Macromol ; 162: 92-106, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32531370

ABSTRACT

This study aimed to investigate the protective effects of walnut green husk polysaccharide (WGHP) on liver injury, vascular endothelial dysfunction and disorder of gut microbiota in mice induced by high fructose (HF) diet. The chemical analysis results show that the walnut green husk polysaccharide is a low molecular weight acidic heteropolysaccharide, composed mainly of glucuronic acid, arabinose and galactose. Biochemical analysis showed that WGHP significantly improved glucose metabolism and lipid metabolism and decreased oxidative stress in HF-diet induced obesity mice. Histopathological observation of liver and cardiovascular aorta confirmed the protective effects of WGHP on hepatic steatosis and vascular endothelial dysfunction. Furthermore, 16S rRNA sequencing results demonstrated that WGHP reversed the disorders of gut microbiota caused by HF, decreased the relative abundance of Verrucomicrobia and increased the relative abundance of Deferribacteres at the phylum level, decreased the relative abundance of Akkermansia, Lachnoclostridium and norank_f__Muribaculaceae and increased the relative abundance of Prevotellaceae_UCG-001, Helicobacter, Alloprevotella and Allobaculum at the genus levels. Our results indicate that WGHP may act as a functional polysaccharide for protecting liver and cardiovascular in HF-fed mice.


Subject(s)
Endothelium, Vascular/drug effects , Gastrointestinal Microbiome/drug effects , Juglans/chemistry , Lipid Metabolism/drug effects , Non-alcoholic Fatty Liver Disease/diet therapy , Plant Extracts/administration & dosage , Polysaccharides/administration & dosage , Akkermansia/growth & development , Akkermansia/isolation & purification , Animals , Arabinose/analysis , Clostridiales/growth & development , Clostridiales/isolation & purification , Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat , Dietary Carbohydrates/adverse effects , Endothelium, Vascular/pathology , Galactose/analysis , Gastrointestinal Microbiome/genetics , Glucose/metabolism , Glucuronic Acid/analysis , Helicobacter/growth & development , Helicobacter/isolation & purification , Insulin Resistance , Male , Mice , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Obesity/chemically induced , Obesity/drug therapy , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Polysaccharides/analysis , Polysaccharides/pharmacology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Serum/drug effects , Serum/enzymology
8.
Appl Microbiol Biotechnol ; 104(8): 3541-3554, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32103315

ABSTRACT

Alginate oligosaccharides are associated with some beneficial health effects. Gut microbiota is one of the most recently identified factors in the development of several metabolic diseases induced by high-fat diet. Our objective was to evaluate how alginate oligosaccharides impact on high-fat diet­induced features of metabolic disorders and whether this impact is related to modulations in the modulation of the gut microbiota. C57BL/6J mice were fed with chow diet, high-fat diet, or high-fat diet supplemented with alginate oligosaccharides for 10 weeks. Alginate oligosaccharide treatment improved lipid metabolism, such as reducing levels of TG and LDL-C and inhibiting expression of lipogenesis genes. Alginate oligosaccharide administration reduced the levels of fasting blood glucose and increased the levels of serum insulin. Alginate oligosaccharide treatment was found to lower the expression of markers of inflammation, including IL1ß and CD11c. Alginate oligosaccharide treatment modulated gut microbial communities and markedly prompted the growth of Akkermansia muciniphila, Lactobacillus reuteri, and Lactobacillus gasseri. Additionally, alginate oligosaccharide intervention significantly increased concentrations of short-chain fatty acids, such as acetic acid, propionic acid, and butyric acid, as well as decreased levels of endotoxin. Alginate oligosaccharides exert beneficial effects via alleviating metabolic metrics induced by high-fat diet, which is associated with increase in A. muciniphila, L. reuteri, and L. gasseri, as well as the release of microbiota-dependent short-chain fatty acids and inhibition of endotoxin levels.


Subject(s)
Alginates/administration & dosage , Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Lipid Metabolism/drug effects , Oligosaccharides/administration & dosage , Akkermansia/drug effects , Akkermansia/growth & development , Animals , Diet, High-Fat , Dietary Supplements , Lactobacillus/drug effects , Lactobacillus/growth & development , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL