Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Biol Macromol ; 265(Pt 2): 131059, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521338

ABSTRACT

Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.


Subject(s)
Bone Matrix , Osteogenesis , Mice , Animals , Humans , Microspheres , Phosphorus , Bone Regeneration , Alginates/pharmacology , Alginates/chemistry
2.
Nutrients ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337697

ABSTRACT

The main purpose of this study was to investigate the effect of a novel alginate-encapsulated carbohydrate-protein (CHO-PRO ratio 2:1) supplement (ALG) on cycling performance. The ALG, designed to control the release of nutrients, was compared to an isocaloric carbohydrate-only control (CON). Alginate encapsulation of CHOs has the potential to reduce the risk of carious lesions. METHODS: In a randomised cross-over clinical trial, 14 men completed a preliminary test over 2 experimental days separated by ~6 days. An experimental day consisted of an exercise bout (EX1) of cycling until exhaustion at W~73%, followed by 5 h of recovery and a subsequent time-to-exhaustion (TTE) performance test at W~65%. Subjects ingested either ALG (0.8 g CHO/kg/hr + 0.4 g PRO/kg/hr) or CON (1.2 g CHO/kg/hr) during the first 2 h of recovery. RESULTS: Participants cycled on average 75.2 ± 5.9 min during EX1. Levels of plasma branched-chain amino acids decreased significantly after EX1, and increased significantly with the intake of ALG during the recovery period. During recovery, a significantly higher plasma insulin and glucose response was observed after intake of CON compared to ALG. Intake of ALG increased plasma glucagon, free fatty acids, and glycerol significantly. No differences were found in the TTE between the supplements (p = 0.13) nor in the pH of the subjects' saliva. CONCLUSIONS: During the ALG supplement, plasma amino acids remained elevated during the recovery. Despite the 1/3 less CHO intake with ALG compared to CON, the TTE performance was similar after intake of either supplement.


Subject(s)
Alginates , Athletic Performance , Male , Humans , Alginates/pharmacology , Athletic Performance/physiology , Physical Endurance , Dietary Carbohydrates/pharmacology , Athletes , Dietary Supplements
3.
ACS Appl Mater Interfaces ; 16(8): 10565-10579, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38377563

ABSTRACT

Post-traumatic hemorrhage, which can result from accidents or battlefield injuries, is a significant global concern due to the high prehospital mortality rate. Substantial efforts have been made to develop hemostatic agents that can effectively reduce hemorrhage in the immediate aftermath of a traumatic event. The present study investigated the potential efficacy of Ca2+ and Zn2+ supplemented sodium alginate-based dry hemostatic particles (SA-CZ DHP) to manage excessive blood loss or post-traumatic hemorrhage. SA-CZ DHP were developed, followed by their physical and biochemical characterization, cytocompatibility and hemocompatibility testing, and critical evaluation of the hemostatic potential in vitro and in vivo. The safe SA-CZ DHP showed high absorption and accelerated blood clotting kinetics with reduced coagulation time (≈70%, p < 0.0001) in whole human blood, observed with insignificant hemolysis and uninterrupted RBC morphology. SA-CZ DHP significantly reduced the mean blood loss (≈90% in SD rats tail incision), and bleeding time (≈60% in BALB/c mice tail incision) was at par with commercially available Celox hemostatic granules. In conclusion, the biocompatible SA-CZ DHP exhibited rapid and effective management of excessive blood loss. It is also pertinent to note that the developed formulation could be a cost-effective alternative to its commercial counterparts.


Subject(s)
Hemostatics , Mice , Rats , Humans , Animals , Hemostatics/pharmacology , Hemostatics/therapeutic use , Hemostatics/chemistry , Alginates/therapeutic use , Alginates/pharmacology , Calcium , Zinc/therapeutic use , Zinc/pharmacology , Rats, Sprague-Dawley , Hemorrhage/drug therapy , Hemostasis
4.
Int J Biol Macromol ; 264(Pt 2): 130213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38365158

ABSTRACT

This study investigated the use of nanoemulsions and various polymer coatings to enhance the quality and shelf life of chicken breast. This comprehensive study explored the antibacterial activity of essential oils (EOs) against Escherichia coli and Staphylococcus aureus, as well as the characterization of nanoemulsions (Nes) and nanoemulsion-based coatings. The antimicrobial potential of EOs, such as cinnamon, tea tree, jojoba, thyme, and black cumin seed oil, was evaluated against microorganisms, and thyme oil exhibited the highest inhibitory effect, followed by cinnamon and tea tree oil by disk diffusion analysis. The MIC and MBC values of EOs were found between 0.16-2.5 mg/mL and 0.16-5 mg/mL, respectively, while thyme EO resulted in the lowest values showing its antimicrobial potential. Then, the essential oil nanoemulsions (EONe) and their coatings, formulated with thyme oil, alginate, chitosan, and pectin, were successfully characterized. Optical microscope observations confirmed the uniform distribution of droplets in all (EONe), while particle size analysis demonstrated multimodal droplet size distributions. The EONe-chitosan coating showed the highest efficacy in reducing cooking loss, while the EONe-chitosan, EONe-alginate, and EONe-pectin coatings displayed promising outcomes in preserving color stability. Microbial analysis revealed the significant inhibitory effects of the EONe-chitosan coating against mesophilic bacteria, psychrophilic bacteria, and yeasts, leading to an extended shelf life of chicken breast. These results suggest the potential application of thyme oil and NE-based coatings in various industries for antimicrobial activity and quality preservation.


Subject(s)
Anti-Infective Agents , Chitosan , Oils, Volatile , Plant Oils , Thymol , Thymus Plant , Animals , Alginates/pharmacology , Chitosan/pharmacology , Chickens , Pectins/pharmacology , Oils, Volatile/pharmacology , Anti-Infective Agents/pharmacology , Biopolymers/pharmacology , Escherichia coli
5.
Int J Biol Macromol ; 259(Pt 2): 129260, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199544

ABSTRACT

Hydrogels offer a novel approach to wound repair. In this study, we synthesized a ternary composite using sodium alginate (SA), carboxymethyl cellulose (CMC) and copper-doped 58S bioactive glass (BG). According to our mechanical testing results, the composite made of 7 wt% CMC and 7 wt% BG (SA-7CMC-7BG) showed optimal properties. In addition, our in vitro studies revealed the biocompatibility and bioactivity of SA-7CMC-7BG, with a negative zeta potential of -31.7 mV. Scanning electron microscope (SEM) images showed 273-µm-diameter pores, cell adhesion, and anchoring. The SA-7CMC-7BG closed 90.4 % of the mechanical scratch after 2 days. An in vivo wound model using Wistar rats showed that SA-7CMC-7BG promoted wound healing, with 85.57 % of the wounds healed after 14 days. Treatment with the SA-7CMC-7BG hydrogel caused a 1.6-, 65-, and 1.87-fold increase in transforming growth factor beta (TGF-ß), Col I, and vascular endothelial growth factor (VEGF) expression, respectively that prevents fibrosis and promotes angiogenesis. Furthermore, interleukin 1ß (IL-1ß) expression was downregulated by 1.61-fold, indicating an anti-inflammatory effect of SA-7CMC-7BG. We also observed an increase in epidermal thickness, the number of fibroblast cells, and collagen deposition, which represent complementary pathology results confirming the effectiveness of the SA-7CMC-7BG hydrogel in cutaneous wound healing.


Subject(s)
Carboxymethylcellulose Sodium , Glass , Wound Healing , Rats , Animals , Carboxymethylcellulose Sodium/pharmacology , Copper/pharmacology , Hydrogels/pharmacology , Alginates/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Rats, Wistar
6.
Adv Healthc Mater ; 13(8): e2303017, 2024 03.
Article in English | MEDLINE | ID: mdl-38273733

ABSTRACT

How to promote wound healing is still a major challenge in the healthcare while macrophages are a critical component of the healing process. Compared to various bioactive drugs, many plants have been reported to facilitate the wound healing process by regulating the immune response of wounds. In this work, a Three-dimensional (3D) printed hydrogel scaffold loaded with natural Centella asiatica extract (CA extract) is developed for wound healing. This CA@3D scaffold uses gelatin (Gel) and sodium alginate (SA) with CA extract as bio-ink for 3D printing. The CA extract contains a variety of bioactive compounds that make the various active ingredients in Centella asiatica work in concert. The printed CA@3D scaffold can fit the shape of wound, orchestrate the macrophages and immune responses within the wound, and promote wound healing compared to commercial wound dressings. The underlying mechanism of promoting wound healing is also illuminated by applying multi-omic analyses. Moreover, the CA extract loaded 3D scaffold also showed great ability to promote wound healing in diabetic chronic wounds. Due to its ease of preparation, low-cost, biosafety, and therapeutic outcomes, this work proposes an effective strategy for promoting chronic wound healing.


Subject(s)
Hydrogels , Plants, Medicinal , Hydrogels/pharmacology , Wound Healing , Plant Extracts/pharmacology , Alginates/pharmacology
7.
Int J Biol Macromol ; 257(Pt 2): 128449, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029911

ABSTRACT

The present work explores the 3D extrusion printing of ferulic acid (FA)-containing alginate dialdehyde (ADA)-gelatin (GEL) scaffolds with a wide spectrum of biophysical and pharmacological properties. The tailored addition of FA (≤0.2 %) increases the crosslinking between FA and GEL in the presence of calcium chloride (CaCl2) and microbial transglutaminase, as confirmed using trinitrobenzenesulfonic acid (TNBS) assay. In agreement with an increase in crosslinking density, a higher viscosity of ADA-GEL with FA incorporation was achieved, leading to better printability. Importantly, FA release, enzymatic degradation and swelling were progressively reduced with an increase in FA loading to ADA-GEL, over 28 days. Similar positive impact on antibacterial properties with S. epidermidis strains as well as antioxidant properties were recorded. Intriguingly, FA incorporated ADA-GEL supported murine pre-osteoblast proliferation with reduced osteosarcoma cell proliferation over 7 days in culture, implicating potential anticancer property. Most importantly, FA-incorporated and cell-encapsulated ADA-GEL can be extrusion printed to shape fidelity-compliant multilayer scaffolds, which also support pre-osteoblast cells over 7 days in culture. Taken together, the present study has confirmed the significant potential of 3D bioprinting of ADA-GEL-FA ink to obtain structurally stable scaffolds with a broad spectrum of biophysical and therapeutically significant properties, for bone tissue engineering applications.


Subject(s)
Bioprinting , Coumaric Acids , Tissue Scaffolds , Mice , Animals , Alginates/pharmacology , Gelatin , Hydrogels , Tissue Engineering , Printing, Three-Dimensional
8.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040656

ABSTRACT

AIM: This study aims to incorporate alginate microparticles containing berberine and fluconazole into two different types of pharmaceutical formulations, to subsequently evaluate the antifungal activity against Candida albicans. METHODS AND RESULTS: Alginate microparticles containing BBR (berberine) and FLU (fluconazole) were produced by the spray-drying technique, characterized and incorporated in two pharmaceutical formulations, a vaginal cream and artificial saliva. Broth microdilution, checkerboard, time-kill curve, and scanning electron microscopy were carried out to determine the antifungal effects of BBR and FLU against C. albicans. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of free BBR were 125 µg ml-1. Synergism between BBR and FLU was demonstrated by a fractional inhibitory concentration index (FICI) = 0.0762. The time-kill curve for the combination BBR + FLU showed a more pronounced decrease in fungal growth in comparison to free drugs, and an antibiofilm effect of BBR occurred in the formation and preformed biofilm. CONCLUSION: Alginate microparticles containing BBR and FLU were obtained and incorporated in a vaginal cream and artificial saliva. Both formulations showed good stability, antifungal effects, and organoleptic characteristics, which suggest that BBR-FLU microparticles in formulations have potential as antifungal therapy.


Subject(s)
Berberine , Candidiasis , Humans , Female , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Berberine/pharmacology , Saliva, Artificial/pharmacology , Saliva, Artificial/therapeutic use , Vaginal Creams, Foams, and Jellies/pharmacology , Vaginal Creams, Foams, and Jellies/therapeutic use , Candidiasis/microbiology , Candida albicans , Microbial Sensitivity Tests , Alginates/pharmacology , Drug Synergism , Drug Resistance, Fungal
9.
Clin Oral Investig ; 27(11): 6677-6688, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37775587

ABSTRACT

OBJECTIVES: Disinfection of alginate impression materials is a mandatory step to prevent cross-infection in dental clinics. However, alginate disinfection methods are time-consuming and exert a negative impact on accuracy and mechanical properties. Thus, this study aimed to prepare disinfecting agents (CHX and AgNO3) and silver nanoparticles reduced by a natural plant extract to produce a self-disinfecting dental alginate. METHODS: Conventional alginate impression material was used in this study. Silver nitrate (0.2% AgNO3 group) and chlorohexidine (0.2% CHX group) solutions were prepared using distilled water, and these solutions were later employed for alginate preparation. Moreover, a 90% aqueous plant extract was prepared from Boswellia sacra (BS) oleoresin and used to reduce silver nitrate to form silver nanoparticles that were incorporated in the dental alginate preparation (BS+AgNPs group). The plant extract was characterized by gas chromatography/mass spectrometry (GC/MS) analysis while green-synthesized silver nanoparticles (AgNPs) were characterized by UV-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). An agar disc diffusion assay was used to test the antimicrobial activity against Candida albicans, Streptococcus mutans, Escherichia coli, methicillin-resistant and susceptible Staphylococcus aureus strains, and Micrococcus luteus. Agar plates were incubated at 37 ± 1 °C for 24 h to allow microbial growth. Diameters of the circular inhibition zones formed around each specimen were measured digitally by using ImageJ software. RESULTS: Chemical analysis of the plant extract revealed the presence of 41 volatile and semi-volatile active compounds. UV-Vis spectrophotometry, SEM, and EDX confirmed the formation of spherical silver nanoparticles using the BS extract. CHX, AgNO3, and the BS+AgNPs modified groups showed significantly larger inhibition zones than the control group against all tested strains. BS+AgNPs and CHX groups showed comparable efficacy against all tested strains except for Staphylococcus aureus, where the CHX-modified alginate had a significantly higher effect. CONCLUSIONS AND CLINICAL RELEVANCE: CHX, silver nitrate, and biosynthesized silver nanoparticles could be promising inexpensive potential candidates for the preparation of a self-disinfecting alginate impression material without affecting its performance. Green synthesis of metal nanoparticles using Boswellia sacra extract could be a very safe, efficient, and nontoxic way with the additional advantage of a synergistic action between metal ions and the phytotherapeutic agents of the plant extract.


Subject(s)
Alginates , Metal Nanoparticles , Alginates/pharmacology , Disinfection , Silver Nitrate/pharmacology , Metal Nanoparticles/chemistry , Agar/pharmacology , Gas Chromatography-Mass Spectrometry , Silver , Plant Extracts/pharmacology , Staphylococcus aureus , Nanotechnology/methods , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
10.
Acta Biomater ; 171: 261-272, 2023 11.
Article in English | MEDLINE | ID: mdl-37742726

ABSTRACT

A strategy that seeks to combine the biophysical properties of inert encapsulation materials like alginate with the biochemical niche provided by pancreatic extracellular matrix (ECM)-derived biomaterials, could provide a physiomimetic pancreatic microenvironment for maintaining long-term islet viability and function in culture. Herein, we have demonstrated that incorporating human pancreatic decellularized ECM within alginate microcapsules results in a significant increase in Glucose Stimulation Index (GSI) and total insulin secreted by encapsulated human islets, compared to free islets and islets encapsulated in only alginate. ECM supplementation also resulted in long-term (58 days) maintenance of GSI levels, similar to that observed in free islets at the first time point (day 5). At early time points in culture, ECM promoted gene expression changes through ECM- and cell adhesion-mediated pathways, while it demonstrated a mitochondria-protective effect in the long-term. STATEMENT OF SIGNIFICANCE: The islet isolation process can damage the islet extracellular matrix, resulting in loss of viability and function. We have recently developed a detergent-free, DI-water based method for decellularization of human pancreas to produce a potent solubilized ECM. This ECM was added to alginate for microencapsulation of human islets, which resulted in significantly higher stimulation index and total insulin production, compared to only alginate capsules and free islets, over long-term culture. Using ECM to preserve islet health and function can improve transplantation outcomes, as well as provide novel materials and platforms for studying islet biology in microfluidic, organ-on-a-chip, bioreactor and 3D bioprinted systems.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Insulin Secretion , Pancreas/metabolism , Insulin/pharmacology , Extracellular Matrix/metabolism , Alginates/pharmacology
11.
Fish Shellfish Immunol ; 141: 109011, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604263

ABSTRACT

The intestine is a host-pathogen interaction site and improved intestinal barrier function help to prevent disease in shrimp. Alginate oligosaccharides (AOS) are derived from resourceful brown algae. The intestine protection properties of AOS were widely recognized, and their benefits in fish have been reported. Nevertheless, there are no reports on AOS in shrimp and other crustaceans. In the present work, we measured the effects of AOS on growth performance and disease resistance in the white shrimp Litopenaeus vannamei and investigated their effects on intestinal health. Shrimps with an initial weight of about 2 g were fed with diets supplemented with 0 (control), 0.07%, 0.2%, 0.6%, or 1.2% of AOS for 56 days and were sampled and challenged with Vibrio parahaemolyticus. Dietary AOS did not significantly influence weight gain or feed utilization (P > 0.05). However, AOS considerably decreased the seven-day cumulative mortality after the challenge at any dose (P < 0.05). Dietary AOS improved the intestinal structure, significantly boosted the intestinal villus height at 0.6% and 1.2% levels, and increased intestinal wall thickness by 0.2%, 0.6%, and 1.2%. The alkaline phosphatase and maltase activities were also increased, suggesting that AOS improved the intestinal condition. Redox homeostasis in intestinal was improved by AOS, as expressed by the enhanced total antioxidant capacity and decreased malonaldehyde content, partly due to the increased superoxide dismutase and catalase activities. Compared with the antioxidant system, AOS's stimulating effects on immunity were more significant. At any level, AOS significantly activated lysozyme activity, the expression of propo and two antimicrobial peptide genes (pen-3 and crusin). However, the lowest concentration of AOS did not stimulate the gene expression of all three assayed pattern recognition receptors (LGBP, Toll, and IMD), and only the highest concentration of AOS increased the expression of imd. These findings suggest that AOS are highly efficient immunostimulants, and various immune pathways in shrimp are differentially sensitive to AOS. Finally, our findings suggest that AOS significantly alter the gut microbiota and their relative abundance at the phylum, family, and genus levels. In conclusion, AOS significantly enhances disease resistance in L. vannamei, possibly attributed to improved intestinal development, increased intestinal immunity and altered microbiota. These findings could provide a basis for future studies on the practical use of AOS and its mechanisms of action.


Subject(s)
Intestinal Diseases , Penaeidae , Vibrio parahaemolyticus , Animals , Disease Resistance , Antioxidants/pharmacology , Alginates/pharmacology , Immunity, Innate , Diet/veterinary , Intestines , Oligosaccharides/pharmacology , Animal Feed/analysis
12.
Ann Clin Microbiol Antimicrob ; 22(1): 61, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37475017

ABSTRACT

BACKGROUND: Biofilms play a role in recalcitrance and treatability of bacterial infections, but majority of known antibiotic resistance mechanisms are biofilm-independent. Biofilms of Pseudomonas aeruginosa, especially in cystic fibrosis patients infected with the alginate producing strains in their lungs, are hard to treat. Changes in growth-related bacterial metabolism in biofilm affect their antibiotic recalcitrance which could be considered for new therapies designed based on these changes. In this study, effects of nitrate, arginine, and ferrous were investigated on antibiotic recalcitrance in alginate-encapsulated P. aeruginosa strains isolated from cystic fibrosis patients in the presence of amikacin, tobramycin, and ciprofloxacin. Also, expression of an efflux pump gene, mexY, was analyzed in selected strains in the presence of amikacin and ferrous. METHODS: Clinical P. aeruginosa strains were isolated from cystic fibrosis patients and minimum inhibitory concentration of amikacin, tobramycin, and ciprofloxacin was determined against all the strains. For each antibiotic, a susceptible and a resistant or an intermediate-resistant strain were selected, encapsulated into alginate beads, and subjected to minimal biofilm eradication concentration (MBEC) test. After determining MBECs, sub-MBEC concentrations (antibiotics at concentrations one level below the determined MBEC) for each antibiotic were selected and used to study the effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of encapsulated strains. Effects of ferrous and amikacin on expression of the efflux pump gene, mexY, was studied on amikacin sensitive and intermediate-resistant strains. One-way ANOVA and t test were used as the statistical tests. RESULTS: According to the results, the supplements had a dose-related effect on decreasing the number of viable cells; maximal effect was noted with ferrous, as ferrous supplementation significantly increased biofilm susceptibility to both ciprofloxacin and amikacin in all strains, and to tobramycin in a resistant strain. Also, treating an amikacin-intermediate strain with amikacin increased the expression of mexY gene, which has a role in P. aeruginosa antibiotic recalcitrance, while treating the same strain with ferrous and amikacin significantly decreased the expression of mexY gene, which was a promising result. CONCLUSIONS: Our results support the possibility of using ferrous and arginine as an adjuvant to enhance the efficacy of conventional antimicrobial therapy of P. aeruginosa infections.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa , Amikacin/pharmacology , Nitrates/pharmacology , Nitrates/therapeutic use , Alginates/metabolism , Alginates/pharmacology , Alginates/therapeutic use , Arginine/pharmacology , Arginine/therapeutic use , Cystic Fibrosis/microbiology , Pseudomonas Infections/microbiology , Tobramycin/pharmacology , Ciprofloxacin/pharmacology , Biofilms , Microbial Sensitivity Tests
13.
Fish Physiol Biochem ; 49(5): 815-828, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37500968

ABSTRACT

This study evaluated the effects of microencapsulation of L. plantarum (as a probiotic) with chitosan/alginate biopolymers (MLCA) on innate immune response, disease resistance, and growth performance of Nile tilapia (Oreochromis niloticus). Four hundred and eighty fish were randomly distributed in glass tanks (150 L) and fed with diets including diet 1: control; diet 2: 10 g kg-1 microcapsules; diet 3: 108 CFU g-1 L. plantarum; and diet 4: 10 g kg-1 MLCA for 60 days. The hematology and biochemical indices, lysozyme activity, alternative complement activities, respiratory burst, serum bactericidal activity, as well as growth performance parameters (specific growth rate, feed conversion ratio) were analyzed. White blood cells, plasma protein and globulin concentration, serum lysozyme, and respiratory burst activities of fish were significantly increased (P < 0.05) in the MLCA diet. A challenge test against Streptococcus agalactiae, at the end of the experiment, showed the highest survival rate of the fish fed with MLCA. Moreover, the fish fed with MLCA showed a significant improvement in SGR (3.12 ± 0.18%) and FCR (1.23 ± 0.20) and had the highest growth performance. These results suggest longer stability of probiotics in the microcapsules, and their immunomodulatory effect can be considered a promising immunostimulant and growth enhancer in the Nile tilapia diet.


Subject(s)
Chitosan , Cichlids , Fish Diseases , Lactobacillus plantarum , Animals , Alginates/pharmacology , Animal Feed/analysis , Capsules , Chitosan/pharmacology , Diet/veterinary , Dietary Supplements , Disease Resistance , Fish Diseases/prevention & control , Immunity, Innate , Muramidase
14.
Chemosphere ; 336: 139212, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315854

ABSTRACT

Plastics are still the most popular food packaging material and many of them end up in the environment for a long period. Due to packaging material's inability to inhibit microbial growth, beef often contains microorganisms that affect its aroma, colour and texture. Cinnamic acid is categorized as generally recognised as safe and is permitted for use in food. The development of biodegradable food packaging film with cinnamic acid has never been conducted before. This present study was aimed to develop a biodegradable active packaging material for fresh beef using sodium alginate and pectin. The film was successfully developed with solution casting method. The films' thickness, colour, moisture level, dissolution, water vapour permeability, bending strength and elongation at break were comparable to those of polyethylene plastic film in terms of these attributes. The developed film also showed the degradability in soil of 43.26% in a duration of 15 days. Fourier Transform Infrared (FTIR) spectra showed that cinnamic acid was successfully incorporated with the film. The developed film showed significant inhibitory activity on all test foodborne bacteria. On Hohenstein challenge test, a 51.28-70.45% reduction on bacterial growth was also observed. The antibacterial efficacy of the established film by using fresh beef as food model. The meats wrapped with the film showed significant reduction in bacterial load throughout the experimental period by 84.09%. The colour of the beef also showed significant different between control film and edible film during 5 days test. Beef with control film turned into dark brownish and beef with cinnamic acid turn into light brownish. Sodium alginate and pectin film with cinnamic acid showed good biodegradability and antibacterial activity. Further studies can be conducted to investigate the scalability and commercial viability of this environmental-friendly food packaging materials.


Subject(s)
Food Packaging , Pectins , Animals , Cattle , Alginates/pharmacology , Anti-Bacterial Agents/pharmacology , Plastics
15.
Phytomedicine ; 116: 154806, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37236046

ABSTRACT

BACKGROUND: Alginate oligosaccharide (AOS) has been reported to exert a crucial role in maintaining the intestinal mucosal barrier (IMB) function. The current study aimed at ascertaining the protective effects of AOS on aging-induced IMB dysfunction and to elucidate the underlying molecular mechanisms. METHODS: An aging mouse model and a senescent NCM460 cell model were established using d-galactose. AOS was administered to aging mice and senescent cells, and IMB permeability, inflammatory response and tight junction proteins were assessed. In silico analysis was conducted to identify factors regulated by AOS. Using gain- and loss-of-function approaches, we evaluated the roles of FGF1, TLR4 and NF-κB p65 in the aging-induced IMB dysfunction and NCM460 cell senescence. RESULTS: AOS protected the IMB function of aging mice and NCM460 cells by reducing permeability and increasing tight junction proteins. In addition, AOS up-regulated FGF1, which blocked the TLR4/NF-κB p65 pathway, and identified as the mechanism responsible for the protective effect of AOS. CONCLUSION: AOS blocks the TLR4/NF-κB p65 pathway via inducing FGF1, ultimately reducing the risk of IMB dysfunction in aging mice. This study highlights the potential of AOS as a protective agent against aging-induced IMB disorder and provides insight into the underlying molecular mechanisms.


Subject(s)
Gastrointestinal Diseases , Intestinal Diseases , Mice , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Fibroblast Growth Factor 1 , Alginates/pharmacology , Tight Junction Proteins/metabolism , Oligosaccharides/pharmacology , Aging
16.
Int J Biol Macromol ; 242(Pt 1): 124732, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148940

ABSTRACT

At present, food waste has become a serious issue and the use of petroleum-based food packaging films has resulted in a series of potential hazards. Therefore, more attention has been focused on the development of new food packaging materials. The polysaccharide-based composite film loaded with active substances considered to be an excellent preservative material. A novel packaging film based on sodium alginate and konjac glucomannan (SA-KGM) blended with tea polyphenols (TP) was prepared in the present study. The excellent microstructure of films was shown by atomic force microscopy (AFM). It was indicated by FTIR spectra that the components could interact with each other through hydrogen bonds, which was also confirmed by molecular docking simulation. Meanwhile, the mechanical properties, barrier property, oxidation property, antibacterial activity, and stability of the structure of the TP-SA-KGM film were significantly improved. The AFM images and results of molecular docking simulation indicated that TP could affect the cell wall of bacteria by acting with peptidoglycan. Finally, the film showed excellent preservation effects in both beef and apples, which suggested that TP-SA-KGM film could be a novel bioactive packaging material with wide application potential in food preservation.


Subject(s)
Alginates , Edible Films , Food Preservation , Mannans , Polyphenols , Alginates/chemistry , Alginates/pharmacology , Mannans/chemistry , Mannans/pharmacology , Food Preservation/methods , Camellia sinensis , Microscopy, Atomic Force , Spectroscopy, Fourier Transform Infrared , Polyphenols/chemistry , Polyphenols/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation
17.
Nutrients ; 15(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771389

ABSTRACT

Benign prostatic hyperplasia (BPH) is an age-related disease of the urinary system that affects elderly men. Current treatments for BPH are associated with several adverse effects, thus highlighting the need for alternative agents. Alginate oligosaccharide (AOS), a water-soluble functional oligomer derived from brown algae, inhibits prostate cancer cell proliferation. However, the effects of AOS on BPH and the underlying molecular mechanisms remain unclear. Therefore, here, we aimed to investigate the therapeutic potential of AOS in BPH by using human benign prostatic epithelial cells (BPH-1) and a rat model of testosterone-induced BPH. Treatment with AOS inhibited in vitro and in vivo proliferation of prostatic epithelial cells and the testosterone-induced expression of androgen receptor (AR) and androgen-associated genes, such as those encoding 5α-reductase type 2 and prostate-specific antigen. Oral administration of AOS remarkably reduced the serum levels of dihydrotestosterone (DHT) and testosterone as well as the expression of proliferating cell nuclear antigen, inflammatory cytokines, and enzymes, which showed increased levels in prostatic tissues of rats with testosterone-induced BPH. Taken together, these data demonstrate that AOS suppresses testosterone-induced BPH in rats by downregulating AR and the expression of androgen-associated genes, supporting the hypothesis that AOS might be of potential use for the treatment of BPH.


Subject(s)
Prostatic Hyperplasia , Male , Rats , Humans , Animals , Aged , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/drug therapy , Testosterone , Androgens/therapeutic use , Alginates/pharmacology , Alginates/therapeutic use , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Dihydrotestosterone
18.
Acta Biomater ; 158: 151-162, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36610609

ABSTRACT

Immunoisolation of pancreatic-islets in alginate-microcapsules is applied to treat diabetes. However, long-term islet function is limited, which might be due to damaged and lack of contact with pancreatic extracellular matrix (ECM) components. Herein we investigated the impact of collagen IV combined with laminin sequences, either RGD, LRE, or PDSGR, on graft-survival of microencapsulated bioluminescent islets in vivo. Collagen IV with RGD had the most pronounced effect. It enhanced after 8-week implantation in immune-incompetent mice the bioluminescence of allogeneic islets by 3.2-fold, oxygen consumption rate by 14.3-fold and glucose-induced insulin release by 9.6-fold. Transcriptomics demonstrated that ECM enhanced canonical pathways involving insulin-secretion and that it suppressed pathways related to inflammation and hypoxic stress. Also, 5.8-fold fewer capsules were affected by fibrosis. In a subsequent longevity study in immune-competent mice, microencapsulated allografts containing collagen IV and RGD had a 2.4-fold higher functionality in the first week after implantation and remained at least 2.1-fold higher during the study. Islets in microcapsules containing collagen IV and RGD survived 211 ± 24.1 days while controls survived 125 ± 19.7 days. Our findings provide in vivo evidence for the efficacy of supplementing immunoisolating devices with specific ECM components to enhance functionality and longevity of islet-grafts in vivo. STATEMENT OF SIGNIFICANCE: Limitations in duration of survival of immunoisolated pancreatic islet grafts is a major obstacle for application of the technology to treat diabetes. Accumulating evidence supports that incorporation of extracellular matrix (ECM) molecules in the capsules enhances longevity of pancreatic islets. After selection of the most efficacious laminin sequence in vitro, we show in vivo that inclusion of collagen IV and RGD in alginate-based microcapsules enhances survival, insulin secretion function, and mitochondrial function. It also suppresses fibrosis by lowering proinflammatory cytokines secretion. Moreover, transcriptomic analysis shows that ECM-inclusion promotes insulin-secretion related pathways and attenuates inflammation and hypoxic stress related pathways in islets. We show that inclusion of ECM in immunoisolating devices is a promising strategy to promote long-term survival of islet-grafts.


Subject(s)
Diabetes Mellitus , Islets of Langerhans Transplantation , Islets of Langerhans , Mice , Animals , Laminin/pharmacology , Capsules , Alginates/pharmacology , Islets of Langerhans/metabolism , Insulin/metabolism , Extracellular Matrix/metabolism , Diabetes Mellitus/metabolism , Collagen Type IV/metabolism , Oligopeptides/metabolism , Fibrosis , Allografts/metabolism
19.
Int J Biol Macromol ; 232: 123283, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36657541

ABSTRACT

Hydrogels have emerged as a versatile platform for a numerous biomedical application due to their ability to absorb a huge quantity of biofluids. In order to design hydrogels, natural polymers are an attractive option owing to their biocompatibility and biodegradability. Due to abundance in occurrence, cost effectiveness, and facile crosslinking approaches, alginate has been extensively investigated to fabricate hydrogel matrix. Management of cancer and chronic wounds have always been a challenge for pharmaceutical and healthcare sector. In both cases, curcumin have been shown significant improvement and effectiveness. However, the innate restraints like poor bioavailability, hydrophobicity, and rapid systemic clearance associated with curcumin have restricted its clinical translations. The current review explores the cascade of research around curcumin encapsulated alginate hydrogel matrix for wound healing and cancer therapy. The focus of the review is to emphasize the mechanistic effects of curcumin with its fate inside the cells. Further, the review discusses different approaches to designed curcumin loaded alginate hydrogels along with the parameters that regulates their release behavior. Finally, the review is concluded with emphasize on some key aspect on increasing the efficacy of these hydrogels along with novel strategies to further develop curcumin loaded alginate hydrogel matrix with multifacet applications.


Subject(s)
Curcumin , Neoplasms , Hydrogels/pharmacology , Curcumin/pharmacology , Curcumin/therapeutic use , Alginates/pharmacology , Wound Healing , Polymers/pharmacology
20.
Macromol Biosci ; 23(1): e2200235, 2023 01.
Article in English | MEDLINE | ID: mdl-36239160

ABSTRACT

Accelerating the coagulation process and preventing wound infection are major challenges in the wound care process. Therefore, new multifunctional wound dressings with procoagulant, antibacterial, and antioxidant properties have enormous potential for clinical application. In this work, biodegradable hydrogels containing herbal extracts are prepared for wound dressings. First, the active ingredients are extracted from Amaranthus spinosus (A. spinosus) and Rubia cordifolia (R. cordifolia) and added to the hydrogels prepared from microcrystalline cellulose (MCC), carrageenan, and sodium alginate. Then the composite hydrogels are air-dried to obtain the wound dressings. The wound dressings prepared in this work have good biocompatibility and moisture retention. The mechanical properties of the wound dressings are further improved with the addition of MCC. Besides, the wound dressings have excellent procoagulant, antibacterial, and antioxidant properties due to the presence of R. cordifolia extract. Overall, the most effective group of wound dressings with different ingredient formulations reduces clotting time by 75% and largely inhibits bacterial growth. The wound dressings perform well in the animal wound models to promote wound healing. These results indicate that the hydrogel wound dressings prepared in this work have great potential for medical applications.


Subject(s)
Alginates , Hydrogels , Animals , Carrageenan/pharmacology , Hydrogels/pharmacology , Hydrogels/chemistry , Alginates/pharmacology , Alginates/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Wound Healing , Blood Coagulation , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cellulose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL