Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Molecules ; 27(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234704

ABSTRACT

A one-pot synthesis of linear and cyclic ß-alkoxyselenides is developed through the iodine-mediated three-component reaction of elemental selenium with alkenes (dienes) and alcohols. Selenylation of 1,5-hexadiene gives 2,5-di(methoxymethyl)tetrahydroselenophene and 2-methoxy-6-(methoxymethyl)tetrahydro-2H-selenopyran via the 5-exo-trig and 6-endo-trig cyclization. 1,7-Octadiene affords only linear 1:2 adduct with two terminal double bonds. 1,5-Cyclooctadiene results in one diastereomer of 2,6-dialkoxy-9-selenabicyclo [3.3.1]nonanes via 6-exo-trig cyclization. With 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane, the first ring-substituted representative of a very rare class of heterocycles, 1,4,2,6-oxaselenadisilinanes, was obtained at a high yield.


Subject(s)
Iodine , Selenium , Alcohols , Alkenes/chemistry , Cyclization , Polyenes
2.
J Am Chem Soc ; 144(39): 17776-17782, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36136777

ABSTRACT

A mild and site-selective hydroaminoalkylation of activated and unactivated alkenes via dual photoredox/Ni catalysis is developed. This dual catalytic strategy enables exclusive access to α-selective products, which is complementary to previously reported photocatalytic hydroaminoalkylation of activated alkenes that provides the ß-selective products. The chain-walking of a Ni-H intermediate toward a carbonyl allows for the hydroaminoalkylation of unactivated alkenes at remote sp3 C-H sites. This method tolerates a broad substrate scope of both amines and alkenes as well as providing a streamlined synthesis of value-added ß-amino acid derivatives from readily available starting materials.


Subject(s)
Alkenes , Nickel , Alkenes/chemistry , Amines/chemistry , Amino Acids , Catalysis , Nickel/chemistry
3.
J Am Chem Soc ; 144(16): 7457-7464, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35417150

ABSTRACT

The therapeutic properties of Curcuma (ginger and turmeric's family) have long been known in traditional medicine. However, only recently have guaiane-type sesquiterpenes extracted from Curcuma phaeocaulis been submitted to biological testing, and their enhanced bioactivity was highlighted. Among these compounds, phaeocaulisin A has shown remarkable anti-inflammatory and anticancer activity, which appears to be tied to the unique bridged acetal moiety embedded in its tetracyclic framework. Prompted by the promising biological profile of phaeocaulisin A and by the absence of a synthetic route for its provision, we have implemented the first enantioselective total synthesis of phaeocaulisin A in 17 steps with 2% overall yield. Our route design builds on the identification of an enantioenriched lactone intermediate, tailored with both a ketone moiety and a conjugated alkene system. Taking advantage of the umpolung carbonyl-olefin coupling reactivity enabled by the archetypal single-electron transfer (SET) reductant samarium diiodide (SmI2), the lactone intermediate was submitted to two sequential SmI2-mediated cyclizations to stereoselectively construct the polycyclic core of the natural product. Crucially, by exploiting the innate inner-sphere nature of carbonyl reduction using SmI2, we have used a steric blocking strategy to render sites SET-unreceptive and thus achieve chemoselective reduction in a complex substrate. Our asymmetric route enabled elucidation of the naturally occurring isomer of phaeocaulisin A and provides a synthetic platform to access other guaiane-type sesquiterpenes from C. phaeocaulis─as well as their synthetic derivatives─for medicinal chemistry and drug design.


Subject(s)
Alkenes , Sesquiterpenes, Guaiane , Alkenes/chemistry , Cyclization , Electron Transport , Lactones , Sesquiterpenes, Guaiane/chemistry
4.
Molecules ; 26(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885667

ABSTRACT

Lilac aldehydes are considered as principal olfactory molecules of lilac flowers. We have designed, prepared, and evaluated a set of racemic seco-analogues of such natural products. The synthesis employs commercially available α-chloroketones as substrates that are transformed in four steps to target compounds. Their qualitative olfactory analysis revealed that the opening of the tetrahydrofuran ring leads to a vanishing of original flowery scent with the emergence of spicy aroma accompanied by green notes, and/or fruity aspects of novel seco-analogues. These results suggest the important osmophoric role of THF moiety for the generation of the typical flowery aroma associated with lilac aldehydes.


Subject(s)
Aldehydes/chemistry , Aldehydes/chemical synthesis , Biological Products/chemistry , Biological Products/chemical synthesis , Flowers/chemistry , Odorants/analysis , Plant Oils/chemistry , Smell , Syringa/chemistry , Alcohols/chemistry , Alkenes/chemistry , Furans/chemistry , Levulinic Acids/chemistry , Monoterpenes/chemistry
5.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361759

ABSTRACT

Croton ferrugineus Kunth is an endemic species of Ecuador used in traditional medicine both for wound healing and as an antiseptic. In this study, fresh Croton ferrugineus leaves were collected and subjected to hydrodistillation for extraction of the essential oil. The chemical composition of the essential oil was determined by gas chromatography equipped with a flame ionization detector and gas chromatography coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against three Gram-positive bacteria, one Gram-negative bacterium and one dermatophyte fungus. The radical scavenging properties of the essential oil was evaluated by means of DPPH and ABTS assays. The chemical analysis allowed us to identify thirty-five compounds representing more than 99.95% of the total composition. Aliphatic sesquiterpene hydrocarbon trans-caryophyllene was the main constituent with 20.47 ± 1.25%. Other main compounds were myrcene (11.47 ± 1.56%), ß-phellandrene (10.55 ± 0.02%), germacrene D (7.60 ± 0.60%), and α-humulene (5.49 ± 0.38%). The essential oil from Croton ferrugineus presented moderate activity against Candida albicans (ATCC 10231) with an MIC of 1000 µg/mL, a scavenging capacity SC50 of 901 ± 20 µg/mL with the ABTS method, and very strong antiglucosidase activity with an IC50 of 146 ± 20 µg/mL.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Croton/chemistry , Enzyme Inhibitors/chemistry , Oils, Volatile/chemistry , Plant Leaves/chemistry , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/isolation & purification , Alkenes/chemistry , Alkenes/isolation & purification , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Candida albicans/drug effects , Candida albicans/growth & development , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/isolation & purification , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Monocyclic Sesquiterpenes/chemistry , Monocyclic Sesquiterpenes/isolation & purification , Picrates/antagonists & inhibitors , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/isolation & purification , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Sulfonic Acids/antagonists & inhibitors , alpha-Glucosidases/chemistry
6.
J Oleo Sci ; 70(8): 1165-1173, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34248095

ABSTRACT

A mixture of p-toluenesulfonic acid and sulfuric acid (TsOH-H2SO4) was used as a catalyst with a good performance in transesterification of palm oil (PO) with methanol and etherification of crude glycerol with isobutylene (tandem synthesis). For TsOH-H2SO4 catalyzed biodiesel production, the reaction noticeably ran faster in comparison with TsOH or H2SO4 alone and also gave up to 99.9% of the conversion using MeOH/PO molar ratio 9:1 at 80℃, in the period of 4 h. After the whole transesterification process, the crude glycerol phase was separated and then reacted with isobutylene in the etherification process using isobutylene/glycerol molar ratio 9:1 at 80℃, in the period of 5 h reaction time, to give DTBG and TTBG (91.14%). In the case of the etherification in biodiesel, higher selectivity of DTBG and TTBG (99.39%) was obtained in comparison with an absence of biodiesel as the solvent. Furthermore, the catalyst could be reused for 6 cycles of tandem synthesis (transesterification and etherification). The TsOH-H2SO4 catalyst showed a good catalytic performance in tandem synthesis similar to TsOH and it could be recovered for reuse while TsOH could not be recovered. This process offers an attractive route for reuse homogeneous catalyst of tandem synthesis, the main by-product of biodiesel, to tert-butyl glycerol ethers - a value-added in applications as a valuable fuel additive.


Subject(s)
Benzenesulfonates/chemistry , Biofuels , Glyceryl Ethers/chemical synthesis , Sulfuric Acids/chemistry , Alkenes/chemistry , Catalysis , Esterification , Methanol/chemistry , Palm Oil/chemistry
7.
J Med Virol ; 93(5): 3143-3151, 2021 05.
Article in English | MEDLINE | ID: mdl-33580518

ABSTRACT

Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2, 2019-nCoV])-induced disease, COVID-19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti-coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit-8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin-converting enzyme 2) high-expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 µM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019-nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor-binding domain (RBD) of the 2019-nCoV with a binding constant (KD ) of (3.82 ± 0.43) e-6 M, (5.15 ± 0.64)e-7 M, and (2.19 ± 0.14)e-6 M; and bind to ACE2 with KD (4.08 ± 0.61)e-7 M, (2.95 ± 0.78)e-7 M, and (7.32 ± 0.42)e-7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019-nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 µM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019-nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019-nCoV spike protein and ACE2 protein.


Subject(s)
Alkenes/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Benzofurans/pharmacology , Caffeic Acids/pharmacology , Lactates/pharmacology , Polyphenols/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Alkenes/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Benzofurans/chemistry , Caffeic Acids/chemistry , Cell Survival , HEK293 Cells , Humans , Lactates/chemistry , Molecular Structure , Polyphenols/chemistry , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization , COVID-19 Drug Treatment
8.
Amino Acids ; 53(2): 281-294, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33559000

ABSTRACT

Complementary to hydrophobic five membered ring ß-amino acids (e.g. ACPC), ß-sugar amino acids (ß-SAAs) have found increasing application as hydrophilic building blocks of foldamers and α/ß chimeric peptides. Fmoc-protected ß-SAAs [e.g. Fmoc-RibAFU(ip)-OH] are indeed useful Lego elements, ready to use for SPPS. The removal of 1,2-OH isopropylidene protecting group increasing the hydrophilicity of such SAA is presented here. We first used N3-RibAFU(ip)-OH model compound to optimize mild deprotection conditions. The formation of the 1,2-OH free product N3-RibAFU-OH and its methyl glycoside methyl ester, N3-RibAFU(Me)-OMe were monitored by RP-HPLC and found that either 50% TFA or 8 eqv. Amberlite IR-120 H+ resin in MeOH are optimal reagents for the effective deprotection. These conditions were then successfully applied for the synthesis of chimeric oligopeptide: -GG-X-GG- [X=RibAFU(ip)]. We found the established conditions to be effective and-at the same time-sufficiently mild to remove 1,2-O-isopropylidene protection and thus, it is proposed to be used in the synthesis of oligo- and polypeptides of complex sequence combination.


Subject(s)
Alkenes/chemistry , Amino Acids/chemistry , Oligopeptides/chemistry , Sugars/chemistry , Amino Acid Sequence , Oligopeptides/chemical synthesis
9.
Molecules ; 27(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35011238

ABSTRACT

Herbs, including basil, are used to enhance the flavor of food products around the world. Its potential is influenced by the quality of fresh herbs and processing practices, wherein conditions of heat treatment play an important role. The aim of the research was to determine the effect of sous-vide heat treatment on the volatile compounds profile, sensory quality, and color of basil infusions. The material used for research was aqueous basil infusion prepared conventionally at 100 °C, and using the sous-vide method (65, 75, and 85 °C). The composition of volatile compounds was identified by GC/MS analysis, the sensory profile was assessed using a group of trained panelists, while the color was instrumentally assessed in the CIE Lab system. No significant differences were found in the intensity of the taste and aroma of basil infusions at different temperatures. Seventy headspace volatile compounds were identified in the analyzed samples, ten of which exceeded 2% of relative area percentage. The most abundant compounds were eucalyptol (27.1%), trans-ocimene (11.0%), ß-linalool (9.2%), and ß-myrcene (6.7%). Most of the identified compounds belonged to the terpenes and alcohols groups. Our findings show that the conventional herbal infusion was more like a sous-vide infusion prepared at the lowest temperature SV65, while SV75 and SV85 were similar to each other but different from the conventional. However, a smaller number of volatile compounds in the samples heated at higher temperatures of sous-vide were identified. The sous-vide samples showed a higher content of alkanes. The sous-vide method (p ≤ 0.05) resulted in darker, less green, and less yellow basil leaves than fresh and traditionally steeped ones. Long heat treatment under vacuum at higher temperatures causes a pronounced change in the aroma composition.


Subject(s)
Ocimum basilicum , Plant Extracts , Volatile Organic Compounds , Acyclic Monoterpenes/chemistry , Alkenes/chemistry , Chromatography, Gas , Eucalyptol/chemistry , Hot Temperature , Ocimum basilicum/chemistry , Odorants , Plant Extracts/chemistry , Solvents/chemistry , Taste , Vacuum , Volatile Organic Compounds/chemistry
10.
Org Lett ; 22(19): 7409-7414, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32496794

ABSTRACT

The copper-catalyzed enantioselective intramolecular hydroalkoxylation of unactivated alkenes for the synthesis of tetrahydrofurans, phthalans, isochromans, and morpholines from 4- and 5-alkenols is reported. The substrate scope is complementary to existing enantioselective alkene hydroalkoxylations and is broad with respect to substrate backbone and alkene substitution. The asymmetric induction and isotopic labeling studies support a polar/radical mechanism involving enantioselective oxycupration followed by C-[Cu] homolysis and hydrogen atom transfer. Synthesis of the antifungal insecticide furametpyr was accomplished.


Subject(s)
Alkenes/chemistry , Antifungal Agents/chemical synthesis , Benzofurans/chemical synthesis , Copper/chemistry , Ethers, Cyclic/chemistry , Ethers, Cyclic/chemical synthesis , Insecticides/chemical synthesis , Pyrazoles/chemical synthesis , Antifungal Agents/chemistry , Benzofurans/chemistry , Catalysis , Furans/chemistry , Hydrogen/chemistry , Insecticides/chemistry , Molecular Structure , Pyrazoles/chemistry , Stereoisomerism
11.
Molecules ; 25(9)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357472

ABSTRACT

In this work, we focused our attention on seleno-Michael type reactions. These were performed using zinc-selenolates generated in situ from diphenyl diselenide 1, 1,2-bis(3-phenylpropyl)diselenide 30, and protected selenocystine 31 via an efficient biphasic Zn/HCl-based reducing system. Alkenes with a variety of electron-withdrawing groups were investigated in order to gauge the scope and limitations of the process. Results demonstrated that the addition to acyclic α,ß-unsaturated ketones, aldehydes, esters amides, and acids was effectively achieved and that alkyl substituents at the reactive ß-centre can be accommodated. Similarly, cyclic enones undergo efficient Se-addition and the corresponding adducts were isolated in moderate to good yield. Vinyl sulfones, α,ß-unsaturated nitriles, and chalcones are not compatible with these reaction conditions. A recycling experiment demonstrated that the unreacted Zn/HCl reducing system can be effectively reused for seven reaction cycles (91% conversion yield at the 7° recycling rounds).


Subject(s)
Benzene Derivatives/chemistry , Organoselenium Compounds/chemistry , Selenium/chemistry , Zinc/chemistry , Aldehydes/chemistry , Alkenes/chemistry , Amides/chemistry , Catalysis , Cystine/analogs & derivatives , Cystine/chemistry , Esters , Ketones/chemistry , Oxidation-Reduction , Sulfones/chemistry
12.
Molecules ; 25(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230972

ABSTRACT

Alkene cleavage is a possibility to generate aldehydes with olfactory properties for the fragrance and flavor industry. A dye-decolorizing peroxidase (DyP) of the basidiomycete Pleurotus sapidus (PsaPOX) cleaved the aryl alkene trans-anethole. The PsaPOX was semi-purified from the mycelium via FPLC, and the corresponding gene was identified. The amino acid sequence as well as the predicted tertiary structure showed typical characteristics of DyPs as well as a non-canonical Mn2+-oxidation site on its surface. The gene was expressed in Komagataella pfaffii GS115 yielding activities up to 142 U/L using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) as substrate. PsaPOX exhibited optima at pH 3.5 and 40 °C and showed highest peroxidase activity in the presence of 100 µM H2O2 and 25 mM Mn2+. PsaPOX lacked the typical activity of DyPs towards anthraquinone dyes, but oxidized Mn2+ to Mn3+. In addition, bleaching of ß-carotene and annatto was observed. Biotransformation experiments verified the alkene cleavage activity towards the aryl alkenes (E)-methyl isoeugenol, α-methylstyrene, and trans-anethole, which was increased almost twofold in the presence of Mn2+. The resultant aldehydes are olfactants used in the fragrance and flavor industry. PsaPOX is the first described DyP with alkene cleavage activity towards aryl alkenes and showed potential as biocatalyst for flavor production.


Subject(s)
Alkenes/chemistry , Peroxidase/chemistry , Pleurotus/enzymology , beta Carotene/metabolism , Aldehydes/chemistry , Allylbenzene Derivatives , Anisoles/chemistry , Anthraquinones/chemistry , Biocatalysis , Bixaceae/metabolism , Bleaching Agents/chemistry , Bleaching Agents/metabolism , Carotenoids/metabolism , Coloring Agents/chemistry , Gene Expression , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Manganese/chemistry , Oxidation-Reduction , Peroxidase/isolation & purification , Peroxidase/metabolism , Plant Extracts/metabolism , Pleurotus/metabolism , Saccharomycetales/metabolism , Styrenes/chemistry
13.
Zhongguo Zhong Yao Za Zhi ; 45(3): 548-554, 2020 Feb.
Article in Chinese | MEDLINE | ID: mdl-32237512

ABSTRACT

Study the suitability of organic film for salvianolic acid in the ultrafiltration process of Danshen Dizhuye. UPLC was used to analyze the migration of nine phenolic active ingredients in Danshen Dizhuye during ultrafiltration of PES hollow fiber membrane and PS hollow fiber membrane. The structural composition of multi-components was analyzed by three different batches of Danshen Dizhuye before and after ultrafiltration of the two membranes. The results showed that 9 phenolic active ingredients in Danshen Dizhuye did not change significantly after ultrafiltration through PES membrane. However, after ultrafiltration through PS membrane, the content of sodium danshensu, protocatechualdehyde, caffeic acid, 3-hydroxy-4-methoxycinnamic acid and rosmarinic acid in Danshen Dizhuye did not change significantly, while salvianolic acid D, salvianolic acid B and lithospermic acid decreased by about 20%, and the content of salvianolic acid A decreased significantly. The final content in equilibrium was only about 20% of the original solution. Therefore, an in-depth study on the migration particularity of salvianolic acid A in ultrafiltration membrane was the focuse. The results showed that the loss of salvianolic acid A was caused by both membranes during ultrafiltration, and salvianolic acid A was lost more in PS membrane. When the membrane was washed and regenerated, it was found that salvianolic acid A was detected in the ethanol washing solution, but not in the washing liquid, indicating that the loss of salvianolic acid A during the ultrafiltration was mainly adsorptive action. The results suggested that the migration of phenolic active ingredients in Danshen Dizhuye during the membrane ultrafiltration process did not completely follow the molecular weight passing rule of the membrane pore size. At the same time, it may be affected by factors, such as the structure of the membrane material, and the interaction between the membrane structure and the structure of components, and exhibit different migration behaviors during the ultrafiltration of the membrane.


Subject(s)
Alkenes/chemistry , Drugs, Chinese Herbal/chemistry , Polyphenols/chemistry , Salvia miltiorrhiza/chemistry , Ultrafiltration , Chromatography, High Pressure Liquid
14.
Phytother Res ; 34(7): 1704-1720, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32185841

ABSTRACT

Microcirculation, which connects macrocirculation and cells between arterioles and venules, plays a major role in the early onset of a variety of diseases. In this article, a dextran-induced microcirculation dysfunction (MCDF) model rats were adopted to evaluate the effects and mechanism of Salvia miltiorrhiza stem-leaf extracts based on plasma and urine metabonomics. The results showed the effective components of S. miltiorrhiza stem-leaf could significantly improve the hemorheology and coagulation index of MCDF rats and callback the expression of endothelin-1 (ET-1), induciblenitric oxide synthase (iNOS), vascularendothelial growth factor (VEGF), P-Selectin, thromboxane A2, 6-keto-PGF1α , TNF-α, and interleukin-1ß to control group in MCDF rats. The decrease of microvessel density (MVD) in lung and thymus caused by MCDF was upgraded by Salvia miltiorrhiza stem-leaf. Based on the plasma and urine metabolic data, 20 potential biomarkers were identified. These biomarkers are mainly related to linoleic acid metabolism, glutathione metabolism, pantothenate and coenzyme A biosynthesis, pentose and glucuronate interconversions, pyruvate metabolism, glyoxylate and dicarboxylate metabolism, beta-alanine metabolism, and citrate cycle. The results indicated that the effective components of S. miltiorrhiza stem-leaf can improve the hemorheological disorder and vascular endothelial function. Meanwhile, the effective components can regulate potential biomarkers and correlated metabolic pathway, which can provide guidance for the research and development of new drugs for MCDF.


Subject(s)
Alkenes/chemistry , Endothelial Cells/drug effects , Flavonoids/chemistry , Hemorheology/drug effects , Microcirculation/drug effects , Plant Leaves/chemistry , Plant Stems/chemistry , Polyphenols/chemistry , Salvia miltiorrhiza/chemistry , Animals , Male , Rats , Rats, Wistar
15.
Adv Pharmacol ; 87: 1-41, 2020.
Article in English | MEDLINE | ID: mdl-32089230

ABSTRACT

Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of a number of diseases for thousands of years. More than 2000 years ago, the Chinese early pharmacy monograph "Shennong Materia Medica" recorded that Danshen could be used for the treatment of gastrointestinal diseases, cardiovascular diseases, certain gynecological diseases, etc. Since then, Danshen has been widely used clinically in many different prescriptions for many different diseases, especially for the treatment of cardiovascular diseases. Nowadays, many pharmacological studies about the water-soluble components from Danshen have been reported, especially salvianolic acids. It turned out that salvianolic acids showed strong anti-lipid peroxidation and anti-thrombic activities, and among them, SalAA and SalAB were the most potent. This review focused on the achievements in research of salvianolic acids regarding their bioactivities and pharmacological effects. These studies not only shed light on the water-soluble active components of Danshen and their mechanisms at the molecular level, but also provided theoretical information for the development of new medicines from Danshen for the treatment of cardiovascular and cerebrovascular diseases, inflammatory diseases, metabolic diseases, etc.


Subject(s)
Alkenes/analysis , Alkenes/pharmacology , Drugs, Chinese Herbal/chemistry , Polyphenols/isolation & purification , Alkenes/chemistry , Alkenes/pharmacokinetics , Animals , Apoptosis/drug effects , Humans , Medicine, Chinese Traditional , Polyphenols/analysis , Polyphenols/chemistry , Polyphenols/pharmacokinetics , Polyphenols/pharmacology , Salvia miltiorrhiza/chemistry
16.
Biomolecules ; 10(2)2020 01 21.
Article in English | MEDLINE | ID: mdl-31973079

ABSTRACT

Although the antidiabetic efficacy of Nyctanthes arbor-tristis flowers has been reported, antiproliferative and anti-obesity activities are yet to be explored. We examined the anti-obesity and antiproliferative potentials of different fractions (hexane, chloroform, ethyl acetate, methanol) of N. abor-tristis flower extract for the first time using 3T3-L1 cells, primary peripheral blood mononuclear cells (PBMC) isolated from healthy and adult acute myeloid (AML) and chronic lymphocytic leukemia (CLL) patients, recombinant Jurkat T cells, and MCF7 cell lines. The in vitro hypoglycemic activity was evaluated using the inhibition of -amylase enzyme and glucose uptake by yeast cells. The percentage glucose uptake and -amylase inhibitory activity increased in a dose-dependent manner in the crude and the tested fractions (hexane and ethyl acetate). Inhibition of the 3T3-L1 cells' differentiation was observed in the ethyl acetate and chloroform fractions, followed by the hexane fraction. Antiproliferative analyses revealed that Nyctanthes exerted a high specific activity against anti-AML and anti-CLL PBMC cells, especially by the hexane and ethyl acetate fractions. The gas chromatography/mass spectrometry analysis indicated the presence of 1-heptacosanol (hexane fraction), 1-octadecene (hexane and chloroform fractions), and other organic compounds. Molecular docking demonstrated that phenol,2,5-bis(1,1-dimethylethyl) and 4-hydroxypyridine 1-oxide compounds showed specificity toward survivin protein, indicating the feasibility of N. abor-tristis in developing new drug leads against leukemia.


Subject(s)
Adipocytes/cytology , Antineoplastic Agents, Phytogenic/pharmacology , Flowers/chemistry , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Myeloid, Acute/metabolism , Oleaceae/chemistry , Survivin/metabolism , 3T3-L1 Cells , Alkenes/chemistry , Animals , Cell Proliferation , Drug Evaluation, Preclinical , Gas Chromatography-Mass Spectrometry , Humans , Inhibitory Concentration 50 , Jurkat Cells , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Leukocytes, Mononuclear/cytology , MCF-7 Cells , Mice , Molecular Docking Simulation , Obesity/drug therapy , Plant Extracts/pharmacology
17.
Channels (Austin) ; 13(1): 344-366, 2019 12.
Article in English | MEDLINE | ID: mdl-31446830

ABSTRACT

Nociceptive Transient Receptor Potential channels such as TRPV1 are targets for treating pain. Both antagonism and agonism of TRP channels can promote analgesia, through inactivation and chronic desensitization. Since plant-derived mixtures of cannabinoids and the Cannabis component myrcene have been suggested as pain therapeutics, we screened terpenes found in Cannabis for activity at TRPV1. We used inducible expression of TRPV1 to examine TRPV1-dependency of terpene-induced calcium flux responses. Terpenes contribute differentially to calcium fluxes via TRPV1 induced by Cannabis-mimetic cannabinoid/terpenoid mixtures. Myrcene dominates the TRPV1-mediated calcium responses seen with terpenoid mixtures. Myrcene-induced calcium influx is inhibited by the TRPV1 inhibitor capsazepine and Myrcene elicits TRPV1 currents in the whole-cell patch-clamp configuration. TRPV1 currents are highly sensitive to internal calcium. When Myrcene currents are evoked, they are distinct from capsaicin responses on the basis of Imax and their lack of shift to a pore-dilated state. Myrcene pre-application and residency at TRPV1 appears to negatively impact subsequent responses to TRPV1 ligands such as Cannabidiol, indicating allosteric modulation and possible competition by Myrcene. Molecular docking studies suggest a non-covalent interaction site for Myrcene in TRPV1 and identifies key residues that form partially overlapping Myrcene and Cannabidiol binding sites. We identify several non-Cannabis plant-derived sources of Myrcene and other compounds targeting nociceptive TRPs using a data mining approach focused on analgesics suggested by non-Western Traditional Medical Systems. These data establish TRPV1 as a target of Myrcene and suggest the therapeutic potential of analgesic formulations containing Myrcene.


Subject(s)
Acyclic Monoterpenes/metabolism , Alkenes/metabolism , Cannabinoids/metabolism , Plant Extracts/metabolism , TRPA1 Cation Channel/metabolism , Acyclic Monoterpenes/chemistry , Alkenes/chemistry , Calcium/metabolism , Cannabinoids/chemistry , Cannabis/chemistry , Cell Line , Humans , Models, Molecular , Molecular Docking Simulation , Plant Extracts/chemistry , TRPA1 Cation Channel/chemistry , Terpenes/chemistry , Terpenes/metabolism
18.
J Pharmacol Exp Ther ; 371(2): 327-338, 2019 11.
Article in English | MEDLINE | ID: mdl-31420526

ABSTRACT

The enzyme geranylgeranyl diphosphate synthase (GGDPS) synthesizes the 20-carbon isoprenoid geranylgeranyl pyrophosphate, which is used in geranylgeranylation reactions. We have demonstrated that GGDPS inhibitors in multiple myeloma (MM) cells disrupt Rab geranylgeranylation, leading to inhibition of monoclonal protein trafficking, induction of the unfolded protein response pathway (UPR), and apoptosis. We have previously reported preclinical studies with the GGDPS inhibitor VSW1198, which is a mixture of homogeranyl/homoneryl triazole bisphosphonates. Additional structure-function efforts have led to development of the α-methylated derivatives RAM2093 (homogeranyl) and RAM2061 (homoneryl). As little is known regarding the impact of olefin stereochemistry on drug properties in vivo, we pursued additional preclinical evaluation of RAM2093 and RAM2061. In MM cell lines, both isomers induce activation of UPR/apoptotic markers in a concentration-dependent manner and with similar potency. Single-dose testing in CD-1 mice identified a maximum tolerated i.v. dose of 0.5 mg/kg for RAM2061 and 0.3 mg/kg for RAM2093. Liver toxicity was the primary barrier to dose escalation for both compounds. Disruption of geranylgeranylation in vivo was confirmed after multidose administration of either compound. Pharmacokinetic studies revealed plasma terminal half-lives of 29.2 ± 6 (RAM2061) and 22.1 ± 4 hours (RAM2093). Relative to RAM2061, RAM2093 levels were significantly higher in liver tissue but not in other tissues. Using MM.1S flank xenografts, we observed a significant reduction in tumor growth in mice treated with RAM2061 relative to controls. Collectively, these studies reveal olefin stereochemistry-dependent effects on GGDPS inhibitor biodistribution and confirm the in vivo efficacy of this novel therapeutic approach. SIGNIFICANCE STATEMENT: These studies reveal olefin stereochemistry-dependent effects on the in vivo properties of two novel triazole bisphosphonate inhibitors of geranylgeranyl diphosphate synthase and demonstrate the therapeutic potential of this class of inhibitors for the treatment of multiple myeloma.


Subject(s)
Alkenes/pharmacology , Diphosphonates/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Terpenes/pharmacology , Tissue Distribution/drug effects , Triazoles/pharmacology , Alkenes/chemistry , Alkenes/metabolism , Animals , Diphosphonates/chemistry , Diphosphonates/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Farnesyltranstransferase/metabolism , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Stereoisomerism , Terpenes/chemistry , Terpenes/metabolism , Tissue Distribution/physiology , Triazoles/chemistry , Triazoles/metabolism , Xenograft Model Antitumor Assays/methods
19.
Molecules ; 24(14)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331092

ABSTRACT

Hypervalent iodine reagents are of considerable relevance in organic chemistry as they can provide a complementary reaction strategy to the use of traditional transition metal chemistry. Over the past two decades, there have been an increasing number of applications including stoichiometric oxidation and catalytic asymmetric variations. This review outlines the main advances in the past 10 years in regard to alkene heterofunctionalization chemistry using achiral and chiral hypervalent iodine reagents and catalysts.


Subject(s)
Alkenes/chemistry , Iodides/chemistry , Catalysis , Oxidation-Reduction
20.
Exp Cell Res ; 375(1): 11-21, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30513337

ABSTRACT

Gliomas are lethal and aggressive form of brain tumors with resistance to conventional radiation and cytotoxic chemotherapies; inviting continuous efforts for drug discovery and drug delivery. Interestingly, small molecule hybrids are one such pharmacophore that continues to capture interest owing to their pluripotent medicinal effects. Accordingly, we earlier reported synthesis of potent Styryl-cinnamate hybrids (analogues of Salvianolic acid F) along with its plausible mode of action (MOA). We explored iTRAQ-LC/MS-MS technique to deduce differentially expressed landscape of native & phospho-proteins in treated glioma cells. Based on this, Protein-Protein Interactome (PPI) was looked into by employing computational tools and further validated in vitro. We hereby report that the Styryl-cinnamate hybrid, an analogue of natural Salvianolic acid F, alters key regulatory proteins involved in translation, cytoskeleton development, bioenergetics, DNA repair, angiogenesis and ubiquitination. Cell cycle analysis dictates arrest at G0/G1 stage along with reduced levels of cyclin D; involved in G1 progression. We discovered that Styryl-cinnamate hybrid targets glioma by intrinsically triggering metabolite-mediated stress. Various oncological circuits alleviated by the potential drug candidate strongly supports the role of such pharmacophores as anticancer drugs. Although, further analysis of SC hybrid in treating xenografts or solid tumors is yet to be explored but their candidature has gained huge impetus through this study. This study equips us better in understanding the shift in proteomic landscape after treating glioma cells with SC hybrid. It also allows us to elicit molecular targets of this potential drug before progressing to preclinical studies.


Subject(s)
Alkenes/pharmacology , Cinnamates/pharmacology , Glioma/drug therapy , Polyphenols/pharmacology , Small Molecule Libraries/pharmacology , Alkenes/chemical synthesis , Alkenes/chemistry , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cinnamates/chemical synthesis , Cinnamates/chemistry , Computational Chemistry , Cyclin D/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glioma/genetics , Glioma/pathology , Heterografts , Humans , Mice , Neoplasm Proteins/genetics , Polyphenols/chemical synthesis , Polyphenols/chemistry , Protein Interaction Maps/drug effects , Proteomics , Small Molecule Libraries/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL