Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Sci Rep ; 14(1): 7679, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561368

ABSTRACT

Allelopathy is a process whereby a plant directly or indirectly promotes or inhibits growth of surrounding plants. Perennial sugarcane root extracts from various years significantly inhibited Bidens pilosa, Digitaria sanguinalis, sugarcane stem seedlings, and sugarcane tissue-cultured seedlings (P < 0.05), with maximum respective allelopathies of - 0.60, - 0.62, - 0.20, and - 0.29. Allelopathy increased with increasing concentrations for the same-year root extract, and inhibitory effects of the neutral, acidic, and alkaline components of perennial sugarcane root extract from different years were significantly stronger than those of the control for sugarcane stem seedlings (P < 0.05). The results suggest that allelopathic effects of perennial sugarcane root extract vary yearly, acids, esters and phenols could be a main reason for the allelopathic autotoxicity of sugarcane ratoons and depend on the type and content of allelochemicals present, and that allelopathy is influenced by other environmental factors within the rhizosphere such as the presence of old perennial sugarcane roots. This may be a crucial factor contributing to the decline of perennial sugarcane root health.


Subject(s)
Saccharum , Seedlings , Plant Roots/chemistry , Plant Weeds/physiology , Allelopathy , Plant Extracts/chemistry
2.
Ecol Appl ; 34(1): e2833, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36864716

ABSTRACT

Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-ß-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.


Subject(s)
Solidago , Water Pollutants, Chemical , Allelopathy , Durapatite/chemistry , Charcoal/chemistry , Soil , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 31(3): 4280-4289, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100025

ABSTRACT

Eucalyptus plantations are usually characterized by low biodiversity due to allelopathy effects. Wood vinegar is considered a complex growth regulator that can promote plant growth at low concentrations. However, there is information scarcity about the co-application of eucalypt leaf water extract and wood vinegar on plants. This study aimed at clarifying whether wood vinegar can protect seed germination against suppression by eucalypt-induced allelopathy. We examined germination behavior and seedling elongation characteristics in rapeseed (Brassica rapa L.) treated with different solutions of wood vinegar and eucalypt leaf water extract. The results showed that eucalypt leaf water extracts, wood vinegar solutions, and their mixture allelopathically suppressed seed germination rate. After rapeseed sprouting, eucalypt leaf water extracts promoted root elongation, stem elongation, and fresh weight elongation. Malondialdehyde content was also lower under the influence of eucalypt leaf water extract. Mixture of high concentration of eucalypt leaf water extract and lower concentration of wood vinegar significantly promoted root elongation. Therefore, both eucalypt leaf water extract and wood vinegar are complex plant growth regulators, which can be used to inhibit or stimulate plants at different ontogenic stages. During the seed germination period, both eucalypt leaf extracts and wood vinegar could be used as weed inhibitors. Conversely, during the period of sprouting (seedling establishment), low concentrations of eucalypt leaf extracts and wood vinegar can promote growth.


Subject(s)
Acetic Acid , Brassica napus , Brassica rapa , Eucalyptus , Methanol , Germination , Allelopathy , Seedlings , Plant Extracts/pharmacology , Water
4.
Braz J Biol ; 83: e272274, 2023.
Article in English | MEDLINE | ID: mdl-37851768

ABSTRACT

Allelopathy is seen as one of the possible factors that favor the invasion of exotic plants in the environment, as these species, by releasing allelochemicals, can negatively interfere with the establishment of native plants, facilitating the growth and dissemination of invasive exotic plants. This study aimed to verify the possible allelopathic effects of Leucaena leucocephala (Lam.) de Wit (leucaena) on native tree species Pterogyne nitens Tul. and Peltophorum dubium (Spreng.) Taub., via laboratory bioassays. We used Petri dishes containing seeds of native species and aqueous extract of leucaena leaves with 2, 4, 8, 10 and 20% concentrations (m/v) for germination tests and estimated the percentage, mean time, and germination speed index at the end of the germination period. For initial growth, we kept the Petri dishes containing aqueous leucaena extract and germinated seeds of native species in a germination chamber at 25 °C, and after 48 hours we obtained the length of the primary root, hypocotyl, and fresh and dry biomass of the seedlings. We obtained the a, b, and total chlorophyll and carotenoid content of seedling leaves kept in the aqueous extract at different concentrations. We verified the content of total phenolic compounds in mg/L from the aqueous leucaena extracts. Both native species showed a reduction in the percentage and germination speed index when in contact with the aqueous leucaena extracts at the highest concentrations. The initial growth of native species was also negatively affected, and P. nitens showed a reduction of all growth parameters analyzed in all concentrations of the aqueous extract. P. dubium showed a reduction in growth, especially at the highest concentrations. The effects can be associated with phenolic compounds present in leucaena extracts, and we found the highest total phenolic content in the extract with the highest concentration. The results show the allelopathic potential of leucaena, which may contribute to this plant ability to settle in natural areas.


Subject(s)
Allelopathy , Fabaceae , Seedlings , Germination , Biomass , Plant Extracts/pharmacology
5.
Microbiome ; 11(1): 109, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37211607

ABSTRACT

BACKGROUND: Allelopathy is closely associated with rhizosphere biological processes, and rhizosphere microbial communities are essential for plant development. However, our understanding of rhizobacterial communities under influence of allelochemicals in licorice remains limited. In the present study, the responses and effects of rhizobacterial communities on licorice allelopathy were investigated using a combination of multi-omics sequencing and pot experiments, under allelochemical addition and rhizobacterial inoculation treatments. RESULTS: Here, we demonstrated that exogenous glycyrrhizin inhibits licorice development, and reshapes and enriches specific rhizobacteria and corresponding functions related to glycyrrhizin degradation. Moreover, the Novosphingobium genus accounted for a relatively high proportion of the enriched taxa and appeared in metagenomic assembly genomes. We further characterized the different capacities of single and synthetic inoculants to degrade glycyrrhizin and elucidated their distinct potency for alleviating licorice allelopathy. Notably, the single replenished N (Novosphingobium resinovorum) inoculant had the greatest allelopathy alleviation effects in licorice seedlings. CONCLUSIONS: Altogether, the findings highlight that exogenous glycyrrhizin simulates the allelopathic autotoxicity effects of licorice, and indigenous single rhizobacteria had greater effects than synthetic inoculants in protecting licorice growth from allelopathy. The results of the present study enhance our understanding of rhizobacterial community dynamics during licorice allelopathy, with potential implications for resolving continuous cropping obstacle in medicinal plant agriculture using rhizobacterial biofertilizers. Video Abstract.


Subject(s)
Glycyrrhiza , Glycyrrhiza/chemistry , Allelopathy , Glycyrrhizic Acid , Metagenomics , Rhizosphere
6.
PLoS One ; 18(4): e0272842, 2023.
Article in English | MEDLINE | ID: mdl-37098009

ABSTRACT

In agriculture, barnyard grass (Echinochloa crusgalli L.) is one of the most harmful weeds in rice fields now. In order to identify active ingredients which had inhibiting effect on barnyard grass (Echinochloa crusgalli L.), we evaluated several possible natural plant essential oils. Essential oils from twelve plant species showed inhibitory activity against barnyard grass seedlings and root length. The garlic essential oil (GEO) had the most significant allelopathic effect (EC50 = 0.0126 g mL-1). Additionally, the enzyme activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) increased during the first 8 hours of treatment at a concentration of 0.1 g mL-1 and then declined. The activities of CAT, SOD and POD increased by 121%, 137% and 110% (0-8h, compared to control), and decreased (8-72h, compared to the maximum value) by 100%, 185% and 183%, respectively. The total chlorophyll content of barnyard grass seedlings decreased by 51% (0-72h) continuously with the same dosage treatment. Twenty constituents of GEO were identified by gas chromatography-mass spectrometry, and the herbicidal activity of two main components (diallyl sulfide and diallyl disulfide) was evaluated. Results showed that both components had herbicidal activity against barnyard grass. GEO had a strong inhibitory effect (~88.34% inhibition) on barnyard grass growth, but safety studies on rice showed it did not have much inhibitory effect on rice seed germination. Allelopathy of GEO provide ideas for the development of new plant-derived herbicides.


Subject(s)
Echinochloa , Garlic , Herbicides , Oils, Volatile , Oils, Volatile/pharmacology , Allelopathy , Seedlings , Herbicides/pharmacology , Phytochemicals/pharmacology , Superoxide Dismutase/pharmacology
7.
J Agric Food Chem ; 71(13): 5143-5153, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36961423

ABSTRACT

Weed management is important in modern crop protection. Chemical weed control using synthetic herbicides, however, suffers from resistance and ecotoxicity. Metabolomic investigation of allelopathy (or allelochemicals) may provide novel alternatives to synthetic herbicides. This study aimed to investigate the detailed metabolomic responses of plants to allelochemicals in Iris seed extracts. The seed extracts of Iris sanguinea showed the strongest growth inhibitory activity against alfalfa, barnyard grass, lettuce, and mustard. 3-Hydroxyirisquinone (3-[10(Z)-heptadecenyl]-2-hydroxy-5-methoxy-1,4-benzoquinone) was isolated as a major allelochemical from I. sanguinea seeds through bioassay-guided fractionation. The compound inhibited the growth of shoots and roots by browning root tips. Discriminant analysis identified 33 differentially regulated lettuce metabolites after treatment with 3-hydroxyirisquinone (3HIQ). Metabolic pathway analysis revealed that several metabolic pathways, including aromatic amino acid biosynthesis and respiratory pathways, were affected by the compounds. Differential responses of membrane lipids (accumulation of unsaturated fatty acids) and extensive formation of reactive oxygen species were observed in root tissues following treatment with 3HIQ. Overall, alkylbenzoquinone from I. sanguinea induced extensive metabolic modulation, oxidative stress, and growth inhibition. The metabolomic responses to allelochemicals may provide fundamental information for the development of allelochemical-based herbicides.


Subject(s)
Herbicides , Iris Plant , Allelopathy , Herbicides/pharmacology , Herbicides/chemistry , Lactuca , Pheromones/pharmacology , Plant Extracts/chemistry , Seeds , Metabolomics
8.
Braz J Biol ; 83: e268746, 2023.
Article in English | MEDLINE | ID: mdl-36790277

ABSTRACT

The presence of monodominant vegetative formations almost exclusively composed of Acuri palm trees (Attalea phalerata) stands out in some regions of the Pantanal Sul-Mato-Grossense. These formations are generally associated with anthropic, edaphic and/or hydrological factors. However, little is known about the effect of allelopathy on the formation and maintenance of these areas. Herein, we investigated the chemical composition of A. phalerata aqueous leaf extract and the potential allelopathic effects on germination and growth of target L. sativa, L. esculentum and S. obtusifolia species. Thus, extracts at concentrations of 0, 2.5, 5, 10, 15, and 20% were used for germination and growth bioassays with a completely randomised design in a germination chamber and greenhouse. The results showed that the A. phalerata extracts negatively affected the germination speed index and mean germination time of the target species and positively affected seedling length under controlled conditions and were also stimulated in the greenhouse. Thus, the formation of Acurizals can be related to the presence of secondary metabolites in the leaves, in addition to other environmental factors.


Subject(s)
Germination , Pheromones , Pheromones/pharmacology , Seedlings , Allelopathy , Plant Extracts/pharmacology
9.
Plant Signal Behav ; 18(1): 2163349, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36645912

ABSTRACT

Planting Elymus nutans artificial grassland to replace degraded Artemisia baimaensis grassland on the Qinghai Tibetan plateau (QTP) can effectively alleviate local grass-livestock imbalance. However, it is unknown whether the allelopathy of natural grassland plant A. baimaensis on E. nutans affects grassland establishment. Accordingly, we examined the effects of varying concentrations of aqueous extracts of A. baimaensis litter on the seed germination and early seedling growth of E. nutans, and the effects of A. baimaensis volatile organic compounds (VOCs) on the growth parameters and physiological characteristics of E. nutans. The results indicate that the aqueous extract inhibited the force, percentage, and index of germination of E. nutans and affected early seedling growth, particularly at high concentrations. Further, the VOCs significantly reduced the aboveground and root biomass of E. nutans and increased malondialdehyde concentrations. Additionally, these VOCs altered the antioxidant enzyme activities and increased the superoxide dismutase, peroxidase, ascorbic acid peroxidase, soluble sugar, and proline content but significantly decreased glutathione reductase levels. Our results indicate that the allelopathy of A. baimaensis significantly inhibited the germination and seedling growth of E. nutans . Thus, the leaching of A. baimaensis may produce allelochemicals in the soil that inhibit the germination of E. nutans seeds. Moreover, the VOCs of A. baimaensis may disrupt the growth process, resulting in a decrease in biomass and a disruption of the physiological metabolism of seedlings under field conditions.


Subject(s)
Artemisia , Elymus , Elymus/metabolism , Grassland , Allelopathy , Seedlings , Germination , Plants , Seeds , Peroxidases/metabolism , Peroxidases/pharmacology
10.
Ecotoxicology ; 32(1): 114-126, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36652123

ABSTRACT

Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.


Subject(s)
Acid Rain , Asteraceae , Solidago , Germination , Allelopathy , Seedlings , Plant Extracts
11.
PLoS One ; 18(1): e0280866, 2023.
Article in English | MEDLINE | ID: mdl-36689420

ABSTRACT

Allelopathy has been considered a good explanation for the successful invasion of some invasive plants. However, the real latitudinal and longitudinal allelopathic effects on native species have rarely been documented since many exotics have spread widely. We conducted a Petri dish experiment to determine the latitudinal and longitudinal allelopathic patterns of an invasive alligator weed (Alternanthera philoxeroides) on a common crop (Lactuca sativa) in China, and find what determines the allelopathic intensity. The results showed that the allelopathic effects of A. philoxeroides increased with the latitude while decreased with the longitude. This indicated that A. philoxeroides used its allelopathy to gain competitive advantages more in its recent invaded communities than that in its early invaded ones as A. philoxeroides is expanding from southeast China to northwest China. Furthermore, we found that the allelopathic intensity of A. philoxeroide was negatively correlated to the leaf contents of soluble carbohydrate (SC), carbon (C) and nitrogen (N), but that was positively correlated to the leaf contents of soluble protein (SP), free amino acids (FAA), plant polyphenol (PP), phosphorus (P) and potassium (K). These results suggested that the allelopathic intensity of A. philoxeroide was more determined by the limited P and K nutrients as well as the intermediate allelochemicals (SP, FAA, PP) rather than the unlimited C, N and SC. Thus, we can speculate that the negative or positive effects of plant aqueous extracts are a function of not only the extract concentrations but also the trade-offs between inhibition and promotion of all components in the extracts. Then we could reduce the allelopathic effects of A. philoxeroide by controlling the component contents in the plant tissues, by fertilization or other managements, especially in the plant recent invaded communities.


Subject(s)
Alligators and Crocodiles , Amaranthaceae , Animals , Plant Weeds , Introduced Species , Allelopathy , China , Plant Extracts
12.
Nat Prod Res ; 37(5): 769-775, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35617490

ABSTRACT

Despite its worldwide relevance as an invasive plant, there are few studies on Ulex europaeus (gorse) and its allelopathic activity is almost unexplored. The allelochemical profile of gorse was analysed through methanolic extract of pods and roots, and its phytotoxic effects on Lactuca sativa germination. The methanolic extract of pods had no effect in germination, while extract of roots resulted in a U-shaped dose-response curve: reducing the germination at concentration 0.5 mg mL-1. GC-MS analysis detected compounds with proven antimicrobial and antioxidant activities in the pods and cytotoxic compounds in the roots, which could explain the bioassay results. The quinolizidine alkaloids (QAs) composition was evaluated to predict possible biological functions. It showed the presence of QAs in gorse that are absent in their native range, indicating broad defense strategies against bacteria, fungi, plants, and insects in the Chilean ecosystem. This could explain the superiority of gorse in the invaded areas.


Subject(s)
Alkaloids , Ecosystem , Ulex/chemistry , Chile , Pheromones/pharmacology , Plants , Alkaloids/pharmacology , Plant Extracts/pharmacology , Allelopathy
13.
J Environ Manage ; 326(Pt B): 116728, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36399811

ABSTRACT

Allelopathic compounds can play a vital role in protecting the environment from pollution by synthetic herbicides. Compounds isolated from plant species with allelopathic potential can be used as natural herbicides to control weeds and help reduce environmental pollution. Elaeocarpus floribundus has been reported to contain allelopathic compounds. Aqueous methanolic extracts of the leaves of this plant showed strong growth inhibitory potential against two test species (monocotyledonous Italian ryegrass and dicotyledonous alfalfa) in plants- and dose-dependent technique. Several extensive chromatographic separations of the E. floribundus leaf extracts yielded four active compounds 1, 2, 3, and 4 (novel compound). All the identified compounds showed strong growth inhibitory potential against cress. The concentrations caused for 50% growth limitation (I50 values) of the cress seedlings were in the range 500.4-1913.1 µM. The findings indicate that the identified compounds might play a pivotal function in the allelopathic potential of E. floribundus tree. This report is the first on elaeocarpunone and its allelopathic potential.


Subject(s)
Elaeocarpaceae , Herbicides , Plant Extracts/pharmacology , Plant Extracts/chemistry , Allelopathy , Plant Weeds , Herbicides/pharmacology
14.
Braz J Biol ; 84: e263815, 2022.
Article in English | MEDLINE | ID: mdl-36350950

ABSTRACT

Withania somnifera is a wild plant that shows great activity and safety against several human diseases. The current research explored the plant's chemical composition and allelopathic effects on Rumex dentatus (recipient plant). Moreover, anticancer activity is also tested against four types of human cancer cell lines. Chemical analysis of W. somnifera showed a high percentage of saponins and tannins, while glycosides, alkaloids, and flavonoids occurred in the second order. Results of the allelopathic experiments revealed significant inhibition of the R. dentatus plumule and radicle lengths as well as their relative dry weights. In addition, significant reductions in some primary metabolites of R. dentatus, like non-reducing and total sugar as well as soluble proteins, were determined. Cytotoxic potentiality of W. somnifera was also proved against four different cancer lines, namely; human hepatocellular carcinoma cell line (HepG2), human non-small cell lung cancer cell line (A549), human breast cancer cell line (MCF7), and colon cancer cell line (CaCo2) with IC50 value of about 38, 19, 27, and 24 𝜇g/ml, respectively.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Solanaceae , Withania , Humans , Withania/chemistry , Withania/metabolism , Allelopathy , Caco-2 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Vegetables
15.
Molecules ; 27(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364122

ABSTRACT

Ziniolide, xantholide B (11α-dihydroziniolide), and 11ß-dihydroziniolide, three sesquiterpene lactones with 12,8-guaianolide skeletons, were identified as volatile metabolites from the roots of Xanthium spinosum L., an invasive plant harvested in Corsica. Essential oil, as well as hydrosol and hexane extracts, showed the presence of guaianolide analogues. The study highlights an analytical strategy involving column chromatography, GC-FID, GC-MS, NMR (1D and 2D), and the hemi-synthesis approach, to identify compounds with incomplete or even missing spectral data from the literature. Among them, we reported the 1H- and 13C-NMR data of 11ß-dihydroziniolide, which was observed as a natural product for the first time. As secondary metabolites were frequently involved in the dynamic of the dispersion of weed species, the allelopathic effects of X. spinosum root's volatile metabolites were assessed on seed germination and seedling growth (leek and radish). Essential oil, as well as hydrosol- and microwave-assisted extracts inhibited germination and seedling growth; root metabolite phytotoxicity was demonstrated. Nevertheless, the phytotoxicity of root metabolites was demonstrated with a more marked selectivity to the benefit of the monocotyledonous species compared to the dicotyledonous species. Ziniolide derivatives seem to be strongly involved in allelopathic interactions and could be the key to understanding the invasive mechanisms of weed.


Subject(s)
Oils, Volatile , Xanthium , Xanthium/chemistry , Allelopathy , Sesquiterpenes, Guaiane/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Germination , Seedlings , Plant Extracts/pharmacology , Plant Extracts/chemistry
16.
Ann Bot ; 130(6): 917-926, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36227858

ABSTRACT

BACKGROUND AND AIMS: Some plant species suppress competitors through release of chemical compounds into the environment. As the production of allelochemicals may be costly, it would be beneficial if their production would only be induced when plants experience competition. We tested whether two plant species that frequently co-occur show evidence for induced allelopathy in response to intra- and interspecific competition. METHODS: We used the annual forb Crepidiastrum sonchifolium and the perennial forb Achyranthes bidentata, which are native to China and predominantly occur in ruderal communities, as focal species. We first grew the species without competition, with intraspecific competition and in competition with each other. We chemically analysed aqueous extracts made from these plants to test for evidence that the competition treatments affected the metabolomic profiles of the species. We then tested the effects of the aqueous extracts on seed germination and seedling growth of both plant species. KEY RESULTS: Metabolomic analysis revealed that competition treatments modified the chemical profiles of the two study species. The root lengths of A. bidentata and C. sonchifolium seedlings were reduced by the aqueous plant extracts. For seedling root length of A. bidentata, heterospecific allelopathy was more negative than conspecific allelopathy, but for germination of C. sonchifolium seeds, the reverse was true. Moreover, conspecific allelopathic effects on germination of A. bidentata seeds and on seedling root length of both species were most negative when the aqueous extracts were made from plants that had experienced competition. In the case of seedling root length of A. bidentata, this effect was most negative when the plants had experienced interspecific instead of intraspecific competition. CONCLUSIONS: We showed that plants change their metabolomic profiles in response to competition, and that this correlated with allelopathic inhibition of conspecific seed germination and seedling growth. We suggest that autoallelopathy for seed germination could function as a mechanism to avoid strong competition by keeping the seeds in a dormant state.


Subject(s)
Allelopathy , Asteraceae , Seedlings , Germination , Seeds , Plant Extracts/pharmacology
17.
Chem Biodivers ; 19(10): e202200728, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36056470

ABSTRACT

Solidago canadensis L., native to North America, is now an invasive plant worldwide. Its abundant seeds, rapid vegetative reproduction ability, and allelopathy to other plants are the main reasons for its successful invasion. It has negative impacts on the ecological environment of the invaded area and causes a reduction in local biodiversity and economic losses of agriculture and stock farming. Each part of the plant contains a variety of allelochemicals (terpenoids, phenolics, and flavonoids), including a large number of essential oil components. These allelochemicals can be released in various ways to inhibit the growth of adjacent plants and promote their invasion; they can also affect soil properties and soil microorganisms. This article summarizes the allelopathic effects of S. canadensis on other plant species and the interaction mechanism between it and the ecosystem.


Subject(s)
Oils, Volatile , Solidago , Allelopathy , Ecosystem , Introduced Species , Soil/chemistry , Pheromones/pharmacology , Flavonoids , Terpenes
18.
Chemosphere ; 308(Pt 3): 136476, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36122740

ABSTRACT

Allelopathy, as environmental stress, plays a prominent role in stress ecotoxicity, and global warming directly increases freeze-thaw cycles (FTCs) frequency in the winter. Yet, the effect between FTCs environment and allelopathy stress is rarely known, and the interaction of allelopathy stresses lacks consideration. Here, we addressed interactions between artemisinin stress (AS) and A. trifida extract stress (AES) under Non-FTCs and FTCs environments. The results found that AS and AES had an antagonistic relation under Non-FTCs environment, while a strong synergism and cooperation under FTCs environment affect the growth and physiology in S. cereale seedlings. Besides, AS and AES under FTCs environment had more inhibition on the growth of roots and shoots, chlorophylls, photosynthetic parameters, and relative water content; while more promotion on malondialdehyde, soluble sugar, and soluble protein. Moreover, the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) were increased by AS and AES, showing a good resistance of S. cereale seedlings to allelopathy stress, but FTCs environment significantly weakened this resistance. Thus, the allelopathic effect of AS and AES on S. cereale seedlings was significantly emphasized by FTCs environment.


Subject(s)
Artemisinins , Seedlings , Allelopathy , Antioxidants/metabolism , Artemisinins/metabolism , Artemisinins/pharmacology , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Malondialdehyde/metabolism , Plant Extracts/pharmacology , Secale , Sugars/metabolism , Superoxide Dismutase/metabolism , Water/metabolism
19.
Sci Prog ; 105(3): 368504221118234, 2022.
Article in English | MEDLINE | ID: mdl-35938179

ABSTRACT

In sub-Saharan Africa, the invasive plant Parthenium hysterophorus (Parthenium) is threatening ecosystem integrity, biodiversity, and smallholder livelihoods. But, there is no single effective method of controlling it. Desmodium intortum, Lablab purpureus, and Medicago sativa were tested for their capacity to suppress Parthenium, as well as the allelopathic potential of Desmodium uncinatum leaf crude (DuLc) extract. While the study investigated the effect of DuLc extract concentrations on seed germination and seedling growth in laboratory, pot, field plot, it also assessed the effect of selected suppressive plants on Parthenium growth. It was found that high levels of DuLc concentrations and suppressive plants inhibited Parthenium germination and growth. When Parthenium was grown with suppressive plants, its growth was inhibited compared to when it was grown alone. When grown with all three test plants, the stem height and total fresh biomass of Parthenium seedlings were lowered by more than 60% and 59% in pots, and 40% and 45% in plots, respectively. Parthenium seed germination was decreased by 57% in plots, 60% in pots, and 73% in petri dishes at higher DuLc concentrations (i.e. 75% and 100%). Parthenium seedling stem heights were 36% (in plots) and 30% (in pots) shorter when sprayed with higher concentrations of DuLc. Overall, the findings of this study suggest that suppressive plants and those containing allelochemicals can be employed as a management tool to combat Parthenium invasion in sub-Saharan Africa, notably in Tanzania.


Subject(s)
Asteraceae , Ecosystem , Allelopathy , Plant Extracts/pharmacology , Seedlings
20.
Sci Rep ; 12(1): 13476, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931689

ABSTRACT

Plant species with allelopathic effects against weeds have emerged as a potential strategy for the development of ecologically friendly bioherbicides. In this study, the allelopathic effects of the plant species Dipteryx lacunifera Ducke, Ricinus communis L., Piper tuberculatum Jacq., and Jatropha gossypiifolia L. on the weed Bidens bipinnata L. were investigated. In vitro bioassays revealed that aqueous extracts of selected plant species were able to inhibit seed germination and seedling growth of B. bipinnata, highlighting the strongest allelopathic effect evidenced by R. communis. The phytotoxicity of the aqueous extracts was evaluated in pot experiments, which indicated that the foliar application of R. communis and P. tuberculatum extracts on B. bipinnata plants caused yellowing of leaves, affecting the chlorophyll content and reducing growth. The discrimination of the plant extracts by attenuated total reflectance Fourier transform mid-infrared (ATR FT-MIR) spectroscopy combined with principal component analysis (PCA) indicated the presence of allelochemical compounds, such as phenolics and terpenoids, which may be associated with allelopathic activity. Overall, this study provides valuable information about the substantial allelopathic inhibitory effects of the plant species R. communis and P. tuberculatum on the weed B. bipinnata, which may be used for the development of eco-friendly bioherbicides.


Subject(s)
Allelopathy , Bidens , Herbicides , Bidens/drug effects , Germination , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Weeds/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL