Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Neurochem ; 159(1): 101-115, 2021 10.
Article in English | MEDLINE | ID: mdl-34263932

ABSTRACT

Naturally occurring compounds such as sesquiterpenes and sesquiterpenoids (SQTs) have been shown to modulate GABAA receptors (GABAA Rs). In this study, the modulatory potential of 11 SQTs at GABAA Rs was analyzed to characterize their potential neurotropic activity. Transfected HEK293 cells and primary hippocampal neurons were functionally investigated using electrophysiological whole-cell recordings. Significantly different effects of ß-caryophyllene and α-humulene, as well as their respective derivatives ß-caryolanol and humulol, were observed in the HEK293 cell system. In neurons, the concomitant presence of phasic and tonic GABAA R configurations accounts for differences in receptor modulation by SQTs. The in vivo presence of the γ2 and δ subunits is important for SQT modulation. While phasic GABAA receptors in hippocampal neurons exhibited significantly altered GABA-evoked current amplitudes in the presence of humulol and guaiol, negative allosteric potential at recombinantly expressed α1 ß2 γ2 receptors was only verified for humolol. Modeling and docking studies provided support for the binding of SQTs to the neurosteroid-binding site of the GABAA R localized between transmembrane segments 1 and 3 at the (+ α)-(- α) interface. In sum, differences in the modulation of GABAA R isoforms between SQTs were identified. Another finding is that our results provide an indication that nutritional digestion affects the neurotropic potential of natural compounds.


Subject(s)
GABA-A Receptor Antagonists/pharmacology , Molecular Docking Simulation/methods , Plant Extracts/pharmacology , Receptors, GABA-A/physiology , Sesquiterpenes/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Female , GABA-A Receptor Antagonists/chemistry , GABA-A Receptor Antagonists/isolation & purification , HEK293 Cells , Humans , Mice , Neurons/drug effects , Neurons/physiology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Pregnancy , Receptors, GABA-A/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification
2.
Biol Pharm Bull ; 43(10): 1526-1533, 2020.
Article in English | MEDLINE | ID: mdl-32999163

ABSTRACT

Imatinib-resistance is a significant concern for Bcr-Abl-positive chronic myelogenous leukemia (CML) treatment. Emodin, the predominant compound of traditional medicine rhubarb, was reported to inhibit the multidrug resistance by downregulating P-glycoprotein of K562/ADM cells with overexpression of P-glycoprotein in our previous studies. In the present study, we found that emodin can be a potential inhibitor for the imatinib-resistance in K562/G01 cells which are the imatinib-resistant subcellular line of human chronic myelogenous leukemia cells with overexpression of breakpoint cluster region-abelson (Bcr-Abl) oncoprotein. Emodin greatly enhanced cell sensitivity to imatinib, suppressed resistant cell proliferation and increased potentiated apoptosis induced by imatinib in K562/G01 cells. After treatment of emodin and imatinib together, the levels of p-Bcr-Abl and Bcr-Abl were significantly downregulated. Moreover, Bcr-Abl important downstream target, STAT5 and its phosphorylation were affected. Furthermore, the expression of Bcr-Abl and signal transducers and activators of transcription 5 (STAT5) related molecules, including c-MYC, MCL-1, poly(ADP-ribose)polymerase (PARP), Bcl-2 and caspase-3, were changed. Emodin also decreased Src expression and its phosphorylation. More importantly, emodin simultaneously targeted both the ATP-binding and allosteric sites on Bcr-Abl by molecular docking, with higher affinity with the myristoyl-binding site for enhanced Bcr-Abl kinase inhibition. Overall, these data indicated emodin might be an effective therapeutic agent for inhibiting resistance to imatinib in CML treatment.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Emodin/pharmacology , Genes, abl/drug effects , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , STAT5 Transcription Factor/antagonists & inhibitors , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/physiology , Drug Resistance, Multiple/drug effects , Drug Resistance, Multiple/physiology , Drug Resistance, Neoplasm/physiology , Emodin/therapeutic use , Genes, abl/physiology , Humans , Imatinib Mesylate/therapeutic use , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Molecular Docking Simulation/methods , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Secondary , STAT5 Transcription Factor/metabolism
3.
J Med Chem ; 63(22): 13526-13545, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32902984

ABSTRACT

GPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit 1, identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 (36). Compared with the initial hit, 36 showed improved potency in a guanosine 5'-O-[γ-thio]triphosphate assay, exhibited metabolic stability, and lacked activity against phosphodiesterase-4. This novel pharmacological tool allowed investigation of the therapeutic potential of GPR84 inhibition. At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine. The drug discovery steps leading to GLPG1205 identification, currently under phase II clinical investigation, are described herein.


Subject(s)
Drug Discovery/methods , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Acetates/chemistry , Acetates/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Caco-2 Cells , Cells, Cultured , Dogs , Drug Evaluation, Preclinical/methods , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley
4.
Neuropharmacology ; 178: 108240, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32768418

ABSTRACT

Previous studies have shown that injection of the mGlu5 receptor positive allosteric modulator (PAM) VU0360172 into either the thalamus or somatosensory cortex markedly reduces the frequency of spike-and-wave discharges (SWDs) in the WAG/Rij model of absence epilepsy. Here we have investigated the effects of VU0360172 on GABA transport in the thalamus and somatosensory cortex, as possible modes of action underlying the suppression of SWDs. Systemic VU0360172 injections increase GABA uptake in thalamic synaptosomes from epileptic WAG/Rij rats. Consistent with this observation, VU0360172 could also enhance thalamic GAT-1 protein expression, depending on the dosing regimen. This increase in GAT-1 expression was also observed in the thalamus from non-epileptic rats (presymptomatic WAG/Rij and Wistar) and appeared to occur selectively in neurons. The tonic GABAA receptor current present in ventrobasal thalamocortical neurons was significantly reduced by VU0360172 consistent with changes in GAT-1 and GABA uptake. The in vivo effects of VU0360172 (reduction in tonic GABA current and increase in GAT-1 expression) could be reproduced in vitro by treating thalamic slices with VU0360172 for at least 1 h and appeared to be dependent on the activation of PLC. Thus, the effects of VU0360172 do not require an intact thalamocortical circuit. In the somatosensory cortex, VU0360172 reduced GABA uptake but did not cause significant changes in GAT-1 protein levels. These findings reveal a novel mechanism of regulation mediated by mGlu5 receptors, which could underlie the powerful anti-absence effect of mGlu5 receptor enhancers in animal models.


Subject(s)
GABA Plasma Membrane Transport Proteins/metabolism , Niacinamide/analogs & derivatives , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/metabolism , Thalamus/metabolism , gamma-Aminobutyric Acid/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Dose-Response Relationship, Drug , Male , Niacinamide/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Rats, Wistar , Receptors, GABA-A/metabolism , Thalamus/drug effects , gamma-Aminobutyric Acid/pharmacology
5.
Biochem Pharmacol ; 174: 113834, 2020 04.
Article in English | MEDLINE | ID: mdl-32027884

ABSTRACT

Acid-sensing ion channels (ASICs) are voltage-independent cation channels that detect decreases in extracellular pH. Dysregulation of ASICs underpins a number of pathologies. Of particular interest is ASIC3, which is recognised as a key sensor of acid-induced pain and is important in the establishment of pain arising from inflammatory conditions, such as rheumatoid arthritis. Thus, the identification of new ASIC3 modulators and the mechanistic understanding of how these compounds modulate ASIC3 could be important for the development of new strategies to counteract the detrimental effects of dysregulated ASIC3 activity in inflammation. Here, we report the identification of novel ASIC3 modulators based on the ASIC3 agonist, 2-guanidine-4-methylquinazoline (GMQ). Through a GMQ-guided in silico screening of Food and Drug administration (FDA)-approved drugs, 5 compounds were selected and tested for their modulation of rat ASIC3 (rASIC3) using whole-cell patch-clamp electrophysiology. Of the chosen drugs, guanabenz (GBZ), an α2-adrenoceptor agonist, produced similar effects to GMQ on rASIC3, activating the channel at physiological pH (pH 7.4) and potentiating its response to mild acidic (pH 7) stimuli. Sephin1, a GBZ derivative that lacks α2-adrenoceptor activity, has been proposed to act as a selective inhibitor of a regulatory subunit of the stress-induced protein phosphatase 1 (PPP1R15A) with promising therapeutic potential for the treatment of multiple sclerosis. However, we found that like GBZ, sephin1 activates rASIC3 at pH 7.4 and potentiates its response to acidic stimulation (pH 7), i.e. sephin1 is a novel modulator of rASIC3. Furthermore, docking experiments showed that, like GMQ, GBZ and sephin1 likely interact with the nonproton ligand sensor domain of rASIC3. Overall, these data demonstrate the utility of computational analysis for identifying novel ASIC3 modulators, which can be validated with electrophysiological analysis and may lead to the development of better compounds for targeting ASIC3 in the treatment of inflammatory conditions.


Subject(s)
Acid Sensing Ion Channels/metabolism , Computer Simulation , Guanabenz/analogs & derivatives , Guanabenz/metabolism , Guanidines/metabolism , Quinazolines/metabolism , Acid Sensing Ion Channels/chemistry , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Guanabenz/chemistry , Guanabenz/pharmacology , Guanidines/chemistry , Guanidines/pharmacology , Protein Structure, Secondary , Quinazolines/chemistry , Quinazolines/pharmacology
6.
Neuron ; 105(1): 46-59.e3, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31735403

ABSTRACT

Non-selective antagonists of metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) exert rapid antidepressant-like effects by enhancing prefrontal cortex (PFC) glutamate transmission; however, the receptor subtype contributions and underlying mechanisms remain unclear. Here, we leveraged newly developed negative allosteric modulators (NAMs), transgenic mice, and viral-assisted optogenetics to test the hypothesis that selective inhibition of mGlu2 or mGlu3 potentiates PFC excitatory transmission and confers antidepressant efficacy in preclinical models. We found that systemic treatment with an mGlu2 or mGlu3 NAM rapidly activated biophysically unique PFC pyramidal cell ensembles. Mechanistic studies revealed that mGlu2 and mGlu3 NAMs enhance thalamocortical transmission and inhibit long-term depression by mechanistically distinct presynaptic and postsynaptic actions. Consistent with these actions, systemic treatment with either NAM decreased passive coping and reversed anhedonia in two independent chronic stress models, suggesting that both mGlu2 and mGlu3 NAMs induce antidepressant-like effects through related but divergent mechanisms of action.


Subject(s)
Allosteric Regulation/physiology , Cerebral Cortex/physiology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Thalamus/physiology , Adaptation, Psychological/drug effects , Anhedonia/drug effects , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Cerebral Cortex/metabolism , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , Long-Term Synaptic Depression/drug effects , Male , Mice , Mice, Knockout , Mice, Transgenic , Neural Pathways/physiology , Neuronal Plasticity/physiology , Optogenetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Pyramidal Cells/physiology , Thalamus/metabolism
7.
Br J Pharmacol ; 175(4): 708-725, 2018 02.
Article in English | MEDLINE | ID: mdl-29214652

ABSTRACT

BACKGROUND AND PURPOSE: Benzodiazepines, non-selective positive allosteric modulators (PAMs) of GABAA receptors, have significant side effects that limit their clinical utility. As many of these side effects are mediated by the α1 subunit, there has been a concerted effort to develop α2/3 subtype-selective PAMs. EXPERIMENTAL APPROACH: In vitro screening assays were used to identify molecules with functional selectivity for receptors containing α2/3 subunits over those containing α1 subunits. In vivo receptor occupancy (RO) was conducted, prior to confirmation of in vivo α2/3 and α1 pharmacology through quantitative EEG (qEEG) beta frequency and zolpidem drug discrimination in rats respectively. PF-06372865 was then progressed to Phase 1 clinical trials. KEY RESULTS: PF-06372865 exhibited functional selectivity for those receptors containing α2/3/5 subunits, with significant positive allosteric modulation (90-140%) but negligible activity (≤20%) at GABAA receptors containing α1 subunits. PF-06372865 exhibited concentration-dependent occupancy of GABAA receptors in preclinical species. There was an occupancy-dependent increase in qEEG beta frequency and no generalization to a GABAA α1 cue in the drug-discrimination assay, clearly demonstrating the lack of modulation at the GABAA receptors containing an α1 subtype. In a Phase 1 single ascending dose study in healthy volunteers, evaluation of the pharmacodynamics of PF-06372865 demonstrated a robust increase in saccadic peak velocity (a marker of α2/3 pharmacology), increases in beta frequency qEEG and a slight saturating increase in body sway. CONCLUSIONS AND IMPLICATIONS: PF-06372865 has a unique clinical pharmacology profile and a highly predictive translational data package from preclinical species to the clinical setting.


Subject(s)
GABA Modulators/pharmacology , Receptors, GABA-A/physiology , Translational Research, Biomedical/methods , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , GABA Modulators/chemistry , HEK293 Cells , Humans , Male , Positron-Emission Tomography/methods , Rats , Rats, Sprague-Dawley
8.
Biochem J ; 474(22): 3705-3717, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28963347

ABSTRACT

Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 ŠX-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.


Subject(s)
Bryopsida , Chorismate Mutase/chemistry , Chorismate Mutase/genetics , Plant Extracts/chemistry , Plant Extracts/genetics , Selaginellaceae , Allosteric Regulation/physiology , Amino Acid Sequence , Arabidopsis , Chorismate Mutase/isolation & purification , Crystallography, X-Ray/methods , Evolution, Molecular , Plant Extracts/isolation & purification , Protein Structure, Secondary , Protein Structure, Tertiary
9.
Neuropharmacology ; 115: 60-72, 2017 03 15.
Article in English | MEDLINE | ID: mdl-27392634

ABSTRACT

Allosteric modulators, that exhibit no intrinsic agonist activity, offer the advantage of spatial and temporal fine-tuning of endogenous agonist activity, allowing the potential for increased selectivity, reduced adverse effects and improved clinical outcomes. Some allosteric ligands can differentially activate and/or modulate distinct signaling pathways arising from the same receptor, phenomena referred to as 'biased agonism' and 'biased modulation'. Emerging evidence for CNS disorders with glutamatergic dysfunction suggests the metabotropic glutamate receptor subtype 5 (mGlu5) is a promising target. Current mGlu5 allosteric modulators have largely been classified based on modulation of intracellular calcium (iCa2+) responses to orthosteric agonists alone. We assessed eight mGlu5 allosteric modulators previously classified as mGlu5 PAMs or PAM-agonists representing four distinct chemotypes across multiple measures of receptor activity, to explore their potential for engendering biased agonism and/or modulation. Relative to the reference orthosteric agonist, DHPG, the eight allosteric ligands exhibited distinct biased agonism fingerprints for iCa2+ mobilization, IP1 accumulation and ERK1/2 phosphorylation in HEK293A cells stably expressing mGlu5 and in cortical neuron cultures. VU0424465, DPFE and VU0409551 displayed the most disparate biased signaling fingerprints in both HEK293A cells and cortical neurons that may account for the marked differences observed previously for these ligands in vivo. Select mGlu5 allosteric ligands also showed 'probe dependence' with respect to their cooperativity with different orthosteric agonists, as well as biased modulation for the magnitude of positive cooperativity observed. Unappreciated biased agonism and modulation may contribute to unanticipated effects (both therapeutic and adverse) when translating from recombinant systems to preclinical models. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.


Subject(s)
Drug Discovery/trends , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Receptor, Metabotropic Glutamate 5/physiology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Calcium Signaling/drug effects , Calcium Signaling/physiology , Dose-Response Relationship, Drug , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/trends , Female , HEK293 Cells , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors
10.
Anesth Analg ; 121(5): 1369-77, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26280585

ABSTRACT

BACKGROUND: Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. METHODS: We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant-induced inflammatory pain, and the chronic constriction injury-induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid-induced aversion by using the conditioned place aversion test. RESULTS: We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed antiinflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and antiinflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid-induced aversion in the conditioned place aversion assay. CONCLUSIONS: These findings suggest that the administration of PAM-2, a new α7-selective type II PAM, reduces the neuropathic and inflammatory pain sensory and affective behaviors in the mouse. Thus, this drug may have therapeutic applications in the treatment and management of chronic pain.


Subject(s)
Acrylamides/therapeutic use , Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Furans/therapeutic use , Pain/drug therapy , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/physiology , Acrylamides/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Furans/pharmacology , Male , Mice , Mice, Inbred ICR , Pain/pathology
11.
Neurochem Res ; 39(6): 1032-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24715673

ABSTRACT

By binding to the benzodiazepine site, diazepam binding inhibitor (DBI) is associated with negative allosteric modulation (NAM) of GABAA receptors (Costa and Guidotti in Life Sci 49:325-344, 1991). However, the demonstration of a true physiological role of DBI and its fragments has only recently been reported. Based on DBI gain- and loss-of-function experiments in vivo, DBI and its fragment ODN were found to promote neurogenesis in the subventricular zone in vivo. Acting as NAM on GABAA receptors of precursor cells, DBI counteracted the inhibitory effect of GABA and thereby enhanced the proliferation of these cells (Alfonso et al. in Cell Stem Cell 10:76-87, 2012). Conversely and most remarkably, in similar gain- and loss-of-function experiments in the thalamus, the DBI gene products acted as positive allosteric modulators (PAM) of GABAA receptors in prolonging the duration of IPSCs, an effect which was specific for GABA transmission within the reticular nucleus (nRT) (Christian et al. in Neuron 78:1063-1074, 2013). Since intra-nRT potentiation of GABA transmission by benzodiazepine drugs exerts powerful anti-oscillatory effects, DBI might be endogenously effective by modulating seizure susceptibility. It remains to be seen by which mechanism both NAM and PAM activity can arise from the Dbi gene. Nevertheless, the results open new perspectives on the regionally distinct endogenous modulation of GABA transmission via the benzodiazepine site.


Subject(s)
Benzodiazepines/metabolism , Diazepam Binding Inhibitor/metabolism , Inhibitory Postsynaptic Potentials/physiology , Neurogenesis/physiology , Peptides/metabolism , Thalamus/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Binding Sites/drug effects , Binding Sites/physiology , Humans , Inhibitory Postsynaptic Potentials/drug effects , Ligands , Neurogenesis/drug effects , Thalamus/drug effects
12.
Expert Opin Investig Drugs ; 23(6): 809-21, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24673358

ABSTRACT

INTRODUCTION: In recent times, there has been much interest in the development of pharmacological kinase inhibitors that treat NSCLC. Furthermore, treatment options have been guided by the development of a wide panel of synthetic small molecule kinase inhibitors. Most of the molecules developed belong to the type I class of inhibitors that target the ATP-binding site in its active conformation. The high sequence similarity in the ATP-binding site among members of the kinase families often results in low selectivity and additional toxicities. Also, second mutations in the ATP-binding site, such as threonine to methionine at position 790, have been described as a mechanism of resistance to ATP-competitive kinase inhibitors. For these reasons, alternative drug development approaches targeting sites other than the ATP cleft are being pursued. The class III or allosteric inhibitors, which bind outside the ATP-binding site, have been shown to negatively modulate kinase activity. AREAS COVERED: In this review, the authors discuss the most well-characterised allosteric inhibitors that have reached clinical development in NSCLC. EXPERT OPINION: Great progress has made in developing inhibitors with entirely new modes of action. That being said, it is important to highlight that despite their apparent simplicity, biochemical assays will remain at the core of drug discovery activities to better explore these new opportunities.


Subject(s)
Allosteric Regulation/physiology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Adenosine Triphosphate/metabolism , Animals , Clinical Trials as Topic , Double-Blind Method , Drug Evaluation, Preclinical , Humans , Prospective Studies , Randomized Controlled Trials as Topic
13.
Neuropharmacology ; 66: 202-14, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22551786

ABSTRACT

Evidence suggests that 30-50% of patients suffering from major depressive disorder (MDD) are classified as suffering from treatment resistant depression (TRD) as they have an inadequate response to standard antidepressants. A key feature of this patient population is the increased incidence of co-morbid symptoms like anxiety and pain. Recognizing that current standards of care are largely focused on monoaminergic mechanisms of action (MOAs), innovative approaches to drug discovery for TRD are targeting glutamate hyperfunction. Here we describe the in vitro and in vivo profile of GRN-529, a novel negative allosteric modulator (NAM) of metabotropic glutamate receptor 5 (mGluR5). In cell based pharmacology assays, GRN-529 is a high affinity (Ki 5.4 nM), potent (IC50 3.1 nM) and selective (>1000-fold selective vs mGluR1) mGluR5 NAM. Acute administration of GRN-529 (0.1-30 mg/kg p.o.) had dose-dependent efficacy across a therapeutically relevant battery of animal models, comprising depression (decreased immobility time in tail suspension and forced swim tests) and 2 of the co-morbid symptoms overrepresented in TRD, namely anxiety (attenuation of stress-induced hyperthermia, and increased punished crossings in the four plate test) and pain (reversal of hyperalgesia due to sciatic nerve ligation or inflammation). The potential side effect liability of GRN-529 was also assessed using preclinical models: GRN-529 had no effect on rat sexual behavior or motor co-ordination (rotarod), however it impaired cognition in mice (social odor recognition). Efficacy and side effects of GRN-529 were compared to standard of care agents (antidepressant, anxiolytic or analgesics) and the tool mGluR5 NAM, MTEP. To assess the relationship between target occupancy and efficacy, ex vivo receptor occupancy was measured in parallel with efficacy testing. This revealed a strong correlation between target engagement, exposure and efficacy across behavioral endpoints, which supports the potential translational value of PET imaging to dose selection in patients. Collectively this broad spectrum profile of efficacy of GRN-529 supports our hypothesis that negative allosteric modulation of mGluR5 could represent an innovative therapeutic approach to the treatment of TRD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Subject(s)
Allosteric Regulation/drug effects , Depressive Disorder, Treatment-Resistant/drug therapy , Excitatory Amino Acid Antagonists/therapeutic use , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Allosteric Regulation/physiology , Analgesics/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Benzamides/adverse effects , Benzamides/pharmacology , Benzamides/therapeutic use , Calcium/metabolism , Depressive Disorder, Treatment-Resistant/metabolism , Depressive Disorder, Treatment-Resistant/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/psychology , Excitatory Amino Acid Antagonists/adverse effects , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/pharmacology , HEK293 Cells , Humans , Mice , Pyridines/adverse effects , Pyridines/pharmacology , Pyridines/therapeutic use , Radioligand Assay/methods , Rats , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/physiology
14.
ACS Chem Neurosci ; 3(7): 538-45, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22860223

ABSTRACT

Allosteric modulators of the serotonin (5-HT) 5-HT(2C) receptor (5-HT(2C)R) present a unique drug design strategy to augment the response to endogenous 5-HT in a site- and event-specific manner with great potential as novel central nervous system probes and therapeutics. To date, PNU-69176E is the only reported selective positive allosteric modulator for the 5-HT(2C)R. For the first time, an optimized synthetic route to readily access PNU-69176E (1) and its diastereomer 2 has been established in moderate to good overall yields over 10 steps starting from commercially available picolinic acid. This synthetic approach not only enables a feasible preparation of a sufficient amount of 1 for use as a reference compound for secondary pharmacological studies, but also provides an efficient synthesis of key intermediates to develop novel and simplified 5-HT(2C)R allosteric modulators. Compound 1 and its diastereomer 2 were functionally characterized in Chinese hamster ovary (CHO) cells stably transfected with the 5-HT(2C)R using an intracellular calcium (Ca(i) (2+)) release assay. Compound 1 demonstrated efficacy and potency as an allosteric modulator for the 5-HT(2C)R with no intrinsic agonist activity. Compound 1 did not alter 5-HT-evoked Ca(i) (2+) in CHO cells stably transfected with the highly homologous 5-HT(2A)R. In contrast, the diastereomer 2 did not alter 5-HT-evoked Ca(i) (2+) release in 5-HT(2A)R-CHO or 5-HT(2C)R-CHO cells or exhibit intrinsic agonist activity.


Subject(s)
Galactosides/chemical synthesis , Galactosides/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Drug Evaluation, Preclinical/methods , Galactosides/chemistry , Humans , Piperidines/chemistry , Receptor, Serotonin, 5-HT2C/physiology , Stereoisomerism
15.
Plant Cell ; 21(11): 3610-22, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19948793

ABSTRACT

The acquisition of nutrients requires tight regulation to ensure optimal supply while preventing accumulation to toxic levels. Ammonium transporter/methylamine permease/rhesus (AMT/Mep/Rh) transporters are responsible for ammonium acquisition in bacteria, fungi, and plants. The ammonium transporter AMT1;1 from Arabidopsis thaliana uses a novel regulatory mechanism requiring the productive interaction between a trimer of subunits for function. Allosteric regulation is mediated by a cytosolic C-terminal trans-activation domain, which carries a conserved Thr (T460) in a critical position in the hinge region of the C terminus. When expressed in yeast, mutation of T460 leads to inactivation of the trimeric complex. This study shows that phosphorylation of T460 is triggered by ammonium in a time- and concentration-dependent manner. Neither Gln nor l-methionine sulfoximine-induced ammonium accumulation were effective in inducing phosphorylation, suggesting that roots use either the ammonium transporter itself or another extracellular sensor to measure ammonium concentrations in the rhizosphere. Phosphorylation of T460 in response to an increase in external ammonium correlates with inhibition of ammonium uptake into Arabidopsis roots. Thus, phosphorylation appears to function in a feedback loop restricting ammonium uptake. This novel autoregulatory mechanism is capable of tuning uptake capacity over a wide range of supply levels using an extracellular sensory system, potentially mediated by a transceptor (i.e., transporter and receptor).


Subject(s)
Arabidopsis/metabolism , Cation Transport Proteins/metabolism , Feedback, Physiological/physiology , Phosphorus/metabolism , Phosphotransferases/metabolism , Plant Proteins/metabolism , Quaternary Ammonium Compounds/metabolism , Allosteric Regulation/physiology , Amino Acid Sequence/physiology , Arabidopsis/genetics , Autoreceptors/metabolism , Cation Transport Proteins/chemistry , Conserved Sequence/physiology , Homeostasis/physiology , Phosphorylation , Plant Proteins/chemistry , Plant Roots/metabolism , Protein Structure, Tertiary/physiology , Protein Subunits/metabolism , Threonine/metabolism , Time Factors
16.
J Biol Chem ; 282(13): 9517-9525, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17284438

ABSTRACT

The calcium-sensing receptor (CaR), a member of G protein-coupled receptor family C, regulates systemic calcium homeostasis by activating G(q)- and G(i)-linked signaling in the parathyroid, kidney, and intestine. CaR is ubiquitinated by the E3 ligase dorfin and degraded via the endoplasmic reticulum-associated degradation pathway (Huang, Y., Niwa, J., Sobue, G., and Breitwieser, G. E. (2006) J. Biol. Chem. 281, 11610-11617). Here we provide evidence for a conformational or functional checkpoint in CaR biogenesis using two complementary approaches. First we characterized the sensitivity of loss- or gain-of-function CaR mutants to proteasome inhibition by MG132. The stabilization of loss-of-function mutants and insensitivity of gain-of-function mutants to MG132 suggests that receptor sensitivity to calcium influences susceptibility to proteasomal degradation. Second, we used the allosteric activator NPS R-568 and antagonist NPS 2143 to promote the active and inactive conformations of wild type CaR, respectively. Overnight culture in NPS R-568 increased expression of CaR, whereas NPS 2143 had the opposite effect. NPS R-568 and NPS 2143 differentially regulated maturation and cell surface expression of wild type CaR, directly affecting maximal signaling responses. NPS R-568 rescued expression of loss-of-function CaR mutants, increasing plasma membrane expression and ERK1/2 phosphorylation in response to 5 mM Ca(2+). Disorders of calcium homeostasis caused by CaR mutations may therefore result from altered receptor biogenesis independent of receptor function, i.e. a protein folding disorder. The allosteric modulators NPS R-568 and NPS 2143 not only alter CaR sensitivity to calcium and hence signaling but also modulate receptor expression.


Subject(s)
Mutagenesis, Site-Directed , Point Mutation , Receptors, Calcium-Sensing/biosynthesis , Receptors, Calcium-Sensing/genetics , Allosteric Regulation/genetics , Allosteric Regulation/physiology , Cell Line , Humans , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/physiology , Protein Conformation , Protein Folding
17.
Mol Pharmacol ; 68(2): 487-501, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15901849

ABSTRACT

Extracellular Ca(2+) robustly potentiates the acetylcholine response of alpha4beta2 nicotinic receptors. Rat orthologs of five mutations linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE)-alpha4(S252F), alpha4(S256L), alpha4(+L264), beta2(V262L), and beta2(V262M)-reduced 2 mM Ca(2+) potentiation of the alpha4beta2 1 mM acetylcholine response by 55 to 74%. To determine whether altered allosteric Ca(2+) activation or enhanced Ca(2+) block caused this reduction, we coexpressed the rat ADNFLE mutations with an alpha4 N-terminal mutation, alpha4(E180Q), that abolished alpha4beta2 allosteric Ca(2+) activation. In each case, Ca(2+) inhibition of the double mutants was less than that expected from a Ca(2+) blocking mechanism. In fact, the effects of Ca(2+) on the ADNFLE mutations near the intracellular end of the M2 region-alpha4(S252F) and alpha4(S256L)-were consistent with a straightforward allosteric mechanism. In contrast, the effects of Ca(2+) on the ADNFLE mutations near the extracellular end of the M2 region-alpha4(+L264)beta2, beta2(V262L), and beta2(V262M)-were consistent with a mixed mechanism involving both altered allosteric activation and enhanced block. However, the effects of 2 mM Ca(2+) on the alpha4beta2, alpha4(+L264)beta2, and alpha4beta2(V262L) single-channel conductances, the effects of membrane potential on the beta2(V262L)-mediated reduction in Ca(2+) potentiation, and the effects of eliminating the negative charges in the extracellular ring on this reduction failed to provide any direct evidence of mutant-enhanced Ca(2+) block. Moreover, analyses of the alpha4beta2, alpha4(S256L), and alpha4(+L264) Ca(2+) concentration-potentiation relations suggested that the ADNFLE mutations reduce Ca(2+) potentiation of the alpha4beta2 acetylcholine response by altering allosteric activation rather than by enhancing block.


Subject(s)
Calcium/pharmacology , Epilepsy, Frontal Lobe/genetics , Mutation , Receptors, Nicotinic/genetics , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Amino Acid Sequence , Animals , Dose-Response Relationship, Drug , Epilepsy, Frontal Lobe/metabolism , Female , Molecular Sequence Data , Rats , Receptors, Nicotinic/metabolism , Xenopus laevis
18.
Eur J Med Chem ; 39(10): 855-65, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15464619

ABSTRACT

2-Amino-3-benzoylthiophenes are allosteric enhancers of agonist binding to the adenosine A(1) receptor. New compounds bearing an heteroaroyl instead of the benzoyl moiety at the 3-position of the thiophene were synthesized. The phenyl ring was replaced with heterocycles that possess heteroatoms able to form hydrogen bonds (2-furanyl, 2-benzofuranyl, 2-pyridinyl in compounds 2-13) or with a thienyl moiety as isoster of the phenyl ring (2-thienyl, 3-thienyl and 5-halo-2-thienyl in compounds 14-29). The effect of several alkyl substituents at positions 4 and 5 of the thiophene ring to increase enhancer activity was determined. The ability of the new molecules to reduce the cAMP content in CHO cells expressing the human adenosine A(1) receptor was evaluated. Compounds 2-13 with hydrogen bond-forming heteroatoms did not show significant activity as allosteric enhancers. On the other hand, compounds 15-16 and 19-20 with an unsubstituted thienyl moiety as replacement for the phenyl ring were nearly as efficacious as PD 81,723, the prototypical A(1) allosteric enhancer. Alkyl substituents at positions 4 and 5 of the thiophene ring were tolerated while a substituted piperidine ring was not tolerated. We conclude that hydrogen bonds could not be formed in the domain of the receptor that accommodates the phenyl ring of 2-amino-3-benzoylthiophene derivatives, indicating that this domain is hydrophobic.


Subject(s)
Receptor, Adenosine A1/metabolism , Thiophenes/chemical synthesis , Thiophenes/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cricetinae , Drug Evaluation, Preclinical/methods , Humans , Male , Protein Binding/drug effects , Protein Binding/physiology , Rats , Rats, Wistar , Thiophenes/pharmacology
19.
Plant Physiol ; 135(1): 137-44, 2004 May.
Article in English | MEDLINE | ID: mdl-15122037

ABSTRACT

The allosteric enzyme ADP-Glc pyrophosphorylase (AGPase) catalyzes the synthesis of ADP-Glc, a rate-limiting step in starch synthesis. Plant AGPases are heterotetramers, most of which are activated by 3-phosphoglyceric acid (3-PGA) and inhibited by phosphate. The objectives of these studies were to test a hypothesis concerning the relative roles of the two subunits and to identify regions in the subunits important in allosteric regulation. We exploited an Escherichia coli expression system and mosaic AGPases composed of potato (Solanum tuberosum) tuber and maize (Zea mays) endosperm subunit fragments to pursue this objective. Whereas potato and maize subunits have long been separated by speciation and evolution, they are sufficiently similar to form active mosaic enzymes. Potato tuber and maize endosperm AGPases exhibit radically different allosteric properties. Hence, comparing the kinetic properties of the mosaics to those of the maize endosperm and potato tuber AGPases has enabled us to identify regions important in regulation. The data herein conclusively show that both subunits are involved in the allosteric regulation of AGPase. Alterations in the small subunit condition drastically different allosteric properties. In addition, extent of 3-PGA activation and extent of 3-PGA affinity were found to be separate entities, mapping to different regions in both subunits.


Subject(s)
Nucleotidyltransferases/genetics , Solanum tuberosum/enzymology , Zea mays/enzymology , Adenosine Diphosphate Glucose/biosynthesis , Allosteric Regulation/genetics , Allosteric Regulation/physiology , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glucose-1-Phosphate Adenylyltransferase , Glyceric Acids/metabolism , Kinetics , Nucleotidyltransferases/metabolism , Phosphates/antagonists & inhibitors , Phosphates/metabolism , Plant Tubers/enzymology , Plant Tubers/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Seeds/enzymology , Seeds/genetics , Solanum tuberosum/genetics , Zea mays/genetics
20.
Eur J Pharmacol ; 471(2): 77-84, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12818694

ABSTRACT

The ability of 2,6 Di-tert-butyl-4-(-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930), a positive allosteric modulator of GABA(B) receptors, to regulate GABA(B) receptor-induced stimulation and inhibition of adenylyl cyclase activity in rat brain was investigated. In olfactory bulb granule cell layer and in frontal cortex, CGP7930 potentiated the stimulatory effects of (-)-baclofen and gamma-aminobutyric acid (GABA) on basal and corticotropin-releasing hormone-stimulated adenylyl cyclase activities, respectively. In these stimulatory responses, CGP7930 enhanced both agonist potencies and maximal effects. When GABA(B) receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase activity of frontal cortex was examined, CGP7930 increased the agonist potencies but failed to affect the maximal effect of (-)-baclofen and modestly increased that of GABA. Similar results were obtained for the inhibition of Ca(2+)/calmodulin-stimulated adenylyl cyclase in striatum and cerebellum. Western blot analysis of each membrane preparation showed the presence of GABA(B2) receptor subunit, a putative site of action of CGP7930. These data indicate that CGP7930 positively modulates brain GABA(B) receptors coupled to either stimulation or inhibition of cyclic AMP signalling.


Subject(s)
Allosteric Regulation/drug effects , Cyclic AMP/metabolism , Phenols/pharmacokinetics , Receptors, GABA-B/drug effects , Receptors, GABA-B/metabolism , Adenylyl Cyclases/metabolism , Allosteric Regulation/physiology , Animals , Baclofen/administration & dosage , Baclofen/pharmacokinetics , Calmodulin/antagonists & inhibitors , Calmodulin/pharmacokinetics , Colforsin/pharmacokinetics , Corpus Striatum/cytology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/pharmacokinetics , Cyclic AMP/biosynthesis , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Drug Synergism , Frontal Lobe/cytology , Frontal Lobe/drug effects , Frontal Lobe/enzymology , Gene Expression , Male , Olfactory Bulb/cytology , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Phenols/administration & dosage , Rats , Rats, Sprague-Dawley , Receptors, GABA/biosynthesis , Receptors, GABA/immunology , Signal Transduction , gamma-Aminobutyric Acid/administration & dosage , gamma-Aminobutyric Acid/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL