Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Alzheimers Dis ; 98(1): 33-51, 2024.
Article in English | MEDLINE | ID: mdl-38427477

ABSTRACT

Background: Alzheimer's disease (AD) is a complex condition that affects various aspects of a patient's life. Music therapy may be considered a beneficial supplementary tool to traditional therapies, that not fully address the range of AD manifestations. Objective: The purpose of this systematic review is to investigate whether music therapy can have a positive impact on AD patients and on which symptoms. Methods: The main research databases employed have been PubMed and Cochrane, using the keywords "dementia", "music therapy", "Alzheimer", "fMRI", "music", and "EEG". Results: After removing duplicates and irrelevant studies, 23 were screened using set criteria, resulting in the final inclusion of 15 studies. The total number of participants included in these studies has been of 1,196 patients. For the fMRI analysis the search resulted in 28 studies on PubMed, two of which were included in the research; the total number of participants was of 124 individuals. The studies conducted with EEG were found using PubMed. The initial search resulted in 15 studies, but after a more accurate evaluation only 2 have been included in the analysis. Conclusions: Even though the data currently available is not sufficient to draw conclusions supported by robust statistical power, the impact of music therapy on AD neuropsychiatric symptoms deserves great interest. Further research should be ushered, possibly multicentric studies, led with neuroimaging and other recent techniques, which can eventually open views on the music role in improving the cognitive status in AD.


Subject(s)
Alzheimer Disease , Music Therapy , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy
2.
Neuroscience ; 544: 28-38, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38423162

ABSTRACT

Our previous study revealed that acupuncture may exhibit therapeutic effects on Alzheimer's disease (AD) through the activation of metabolism in memory-related brain regions. However, the underlying functional mechanism remains poorly understood and warrants further investigation. In this study, we used resting-state functional magnetic resonance imaging (rsfMRI) to explore the potential effect of electroacupuncture (EA) on the 5xFAD mouse model of AD. We found that the EA group exhibited significant improvements in the number of platforms crossed and the time spent in the target quadrant when compared with the Model group (p < 0.05). The functional connectivity (FC) of left hippocampus (Hip) was enhanced significantly among 12 regions of interest (ROIs) in the EA group (p < 0.05). Based on the left Hip as the seed point, the rsfMRI analysis of the entire brain revealed increased FC between the limbic system and the neocortex in the 5xFAD mice after EA treatment. Additionally, the expression of amyloid-ß(Aß) protein and deposition in the Hip showed a downward trend in the EA group compared to the Model group (p < 0.05). In conclusion, our findings indicate that EA treatment can improve the learning and memory abilities and inhibit the expression of Aß protein and deposition of 5xFAD mice. This improvement may be attributed to the enhancement of the resting-state functional activity and connectivity within the limbic-neocortical neural circuit, which are crucial for cognition, motor function, as well as spatial learning and memory abilities in AD mice.


Subject(s)
Alzheimer Disease , Electroacupuncture , Neocortex , Mice , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Electroacupuncture/methods , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Neocortex/diagnostic imaging , Neocortex/metabolism , Spatial Learning , Disease Models, Animal , Mice, Transgenic
3.
Zhongguo Zhen Jiu ; 43(12): 1351-1357, 2023 Dec 12.
Article in English, Chinese | MEDLINE | ID: mdl-38092531

ABSTRACT

OBJECTIVES: To analyze the effect of acupuncture at the acupoints for Yizhi Tiaoshen (benefiting the intelligence and regulating the spirit) on the functional connectivity between the hippocampus and the whole brain in the patients with Alzheimer's disease (AD), and reveal the brain function mechanism of acupuncture in treatment of AD using resting state functional magnetic resonance imaging (rs-fMRI). METHODS: Sixty patients with mild to moderate AD were randomly divided into an acupuncture + medication group (30 cases, 3 cases dropped out) and a western medication group (30 cases, 2 cases dropped out). In the western medication group, the donepezil hydrochloride tablets were administered orally, 2.5 mg to 5 mg each time, once daily; and adjusted to be 10 mg each time after 4 weeks of medication. Besides the therapy as the western medication group, in the acupuncture + medication group, acupuncture was supplemented at the acupoints for Yizhi Tiaoshen, i.e. Baihui (GV 20), Sishencong (EX-HN 1), and bilateral Shenmen (HT 7), Neiguan (PC 6), Zusanli (ST 36), Sanyinjiao (SP 6) and Xuanzhong (GB 39). The needles were retained for 30 min in one treatment, once daily; and 6 treatments were required weekly. The duration of treatment was 6 weeks in each group. The general cognitive function was assessed by the mini-mental state examination (MMSE) and Alzheimer's disease assessment scale-cognitive part (ADAS-Cog) before and after treatment in the two groups. Using the rs-fMRI, the changes in the functional connectivity (FC) of the left hippocampus and the whole brain before and after treatment were analyzed in the patients of the two groups (11 cases in the acupuncture + medication group and 12 cases in the western medication group). RESULTS: After treatment, compared with those before treatment, MMSE scores increased and ADAS-Cog scores decreased in the two groups (P<0.05); MMSE score was higher, while the ADAS-Cog score was lower in the acupuncture + medication group when compared with those in the western medication group (P≤0.05). After treatment, in the western medication group, FC of the left hippocampus was enhanced with the left fusiform gyrus, the inferior frontal gyrus of the left triangular region, the bilateral superior temporal gyrus and the right superior parietal gyrus (P<0.05), while FC was weakened with the left inferior temporal gyrus, the left middle frontal gyrus and the right dorsolateral superior frontal gyrus when compared with that before treatment (P<0.05). After treatment, in the acupuncture + medication group, FC of the left hippocampus was increased with the right gyrus rectus, the left inferior occipital gyrus, the right superior temporal gyrus and the left middle occipital gyrus (P<0.05), and it was declined with the left thalamus (P<0.05) when compared with those before treatment. After treatment, in the acupuncture + medication group, FC of the left hippocampus was strengthened with the bilateral inferior temporal gyrus, the bilateral middle temporal gyrus, the right gyrus rectus, the bilateral superior occipital gyrus, the left lenticular nucleus putamen, the left calcarine fissure and surrounding cortex, the inferior frontal gyrus of the left insulae operculum, the left medial superior frontal gyrus and the right posterior central gyrus (P<0.05) compared with that of the western medication group. CONCLUSIONS: Acupuncture at the acupoints for Yizhi Tiaoshen improves the cognitive function of AD patients, and its main brain functional mechanism is related to intensifying the functional connectivity of the left hippocampus with the default network (inferior temporal gyrus, middle temporal gyrus and superior frontal gyrus, gyrus rectus), as well as with the sensory (posterior central gyrus) and visual (calcarine fissure and surrounding cortex and superior occipital gyrus) brain regions.


Subject(s)
Acupuncture Therapy , Alzheimer Disease , Humans , Acupuncture Points , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiology , Hippocampus/diagnostic imaging
4.
Neuroimage Clin ; 40: 103507, 2023.
Article in English | MEDLINE | ID: mdl-37703605

ABSTRACT

Brain imaging research studies increasingly use "de-facing" software to remove or replace facial imagery before public data sharing. Several works have studied the effects of de-facing software on brain imaging biomarkers by directly comparing automated measurements from unmodified vs de-faced images, but most research brain images are used in analyses of correlations with cognitive measurements or clinical statuses, and the effects of de-facing on these types of imaging-to-cognition correlations has not been measured. In this work, we focused on brain imaging measures of amyloid (A), tau (T), neurodegeneration (N), and vascular (V) measures used in Alzheimer's Disease (AD) research. We created a retrospective sample of participants from three age- and sex-matched clinical groups (cognitively unimpaired, mild cognitive impairment, and AD dementia, and we performed region- and voxel-wise analyses of: hippocampal volume (N), white matter hyperintensity volume (V), amyloid PET (A), and tau PET (T) measures, each from multiple software pipelines, on their ability to separate cognitively defined groups and their degrees of correlation with age and Clinical Dementia Rating (CDR)-Sum of Boxes (CDR-SB). We performed each of these analyses twice: once with unmodified images and once with images de-faced with leading de-facing software mri_reface, and we directly compared the findings and their statistical strengths between the original vs. the de-faced images. Analyses with original and with de-faced images had very high agreement. There were no significant differences between any voxel-wise comparisons. Among region-wise comparisons, only three out of 55 correlations were significantly different between original and de-faced images, and these were not significant after correction for multiple comparisons. Overall, the statistical power of the imaging data for AD biomarkers was almost identical between unmodified and de-faced images, and their analyses results were extremely consistent.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Retrospective Studies , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Positron-Emission Tomography/methods , Biomarkers , Amyloid beta-Peptides/metabolism , Magnetic Resonance Imaging , tau Proteins
5.
Neuroimage ; 280: 120357, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37661080

ABSTRACT

A sensitive and accurate imaging technique capable of tracking the disease progression of Alzheimer's Disease (AD) driven amnestic dementia would be beneficial. A currently available method for pathology detection in AD with high accuracy is Positron Emission Tomography (PET) imaging, despite certain limitations such as low spatial resolution, off-targeting error, and radiation exposure. Non-invasive MRI scanning with quantitative magnetic susceptibility measurements can be used as a complementary tool. To date, quantitative susceptibility mapping (QSM) has widely been used in tracking deep gray matter iron accumulation in AD. The present work proposes that by compartmentalizing quantitative susceptibility into paramagnetic and diamagnetic components, more holistic information about AD pathogenesis can be acquired. Particularly, diamagnetic component susceptibility (DCS) can be a powerful indicator for tracking protein accumulation in the gray matter (GM), demyelination in the white matter (WM), and relevant changes in the cerebrospinal fluid (CSF). In the current work, voxel-wise group analysis of the WM and the CSF regions show significantly lower |DCS| (the absolute value of DCS) value for amnestic dementia patients compared to healthy controls. Additionally, |DCS| and τ PET standardized uptake value ratio (SUVr) were found to be associated in several GM regions typically affected by τ deposition in AD. Therefore, we propose that the separated diamagnetic susceptibility can be used to track pathological neurodegeneration in different tissue types and regions of the brain. With the initial evidence, we believe the usage of compartmentalized susceptibility demonstrates substantive potential as an MRI-based technique for tracking AD-driven neurodegeneration.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cerebral Cortex , Disease Progression , Gray Matter/diagnostic imaging
6.
Hum Brain Mapp ; 44(15): 5167-5179, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37605825

ABSTRACT

In this article, we focus on estimating the joint relationship between structural magnetic resonance imaging (sMRI) gray matter (GM), and multiple functional MRI (fMRI) intrinsic connectivity networks (ICNs). To achieve this, we propose a multilink joint independent component analysis (ml-jICA) method using the same core algorithm as jICA. To relax the jICA assumption, we propose another extension called parallel multilink jICA (pml-jICA) that allows for a more balanced weight distribution over ml-jICA/jICA. We assume a shared mixing matrix for both the sMRI and fMRI modalities, while allowing for different mixing matrices linking the sMRI data to the different ICNs. We introduce the model and then apply this approach to study the differences in resting fMRI and sMRI data from patients with Alzheimer's disease (AD) versus controls. The results of the pml-jICA yield significant differences with large effect sizes that include regions in overlapping portions of default mode network, and also hippocampus and thalamus. Importantly, we identify two joint components with partially overlapping regions which show opposite effects for AD versus controls, but were able to be separated due to being linked to distinct functional and structural patterns. This highlights the unique strength of our approach and multimodal fusion approaches generally in revealing potentially biomarkers of brain disorders that would likely be missed by a unimodal approach. These results represent the first work linking multiple fMRI ICNs to GM components within a multimodal data fusion model and challenges the typical view that brain structure is more sensitive to AD than fMRI.


Subject(s)
Functional Neuroimaging , Gray Matter , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Rest , Magnetic Resonance Imaging/methods , Humans , Gray Matter/diagnostic imaging , Male , Female , Middle Aged , Aged , Aged, 80 and over , Hippocampus/diagnostic imaging , Thalamus/diagnostic imaging , Functional Neuroimaging/methods
7.
J Alzheimers Dis ; 95(1): 149-159, 2023.
Article in English | MEDLINE | ID: mdl-37482992

ABSTRACT

BACKGROUND: Yoga may be an ideal early intervention for those with modifiable risk factors for Alzheimer's disease (AD) development. OBJECTIVE: To examine the effects of Kundalini yoga (KY) training versus memory enhancement training (MET) on the resting-state connectivity of hippocampal subregions in women with subjective memory decline and cardiovascular risk factors for AD. METHODS: Participants comprised women with subjective memory decline and cardiovascular risk factors who participated in a parent randomized controlled trial (NCT03503669) of 12-weeks of KY versus MET and completed pre- and post-intervention resting-state magnetic resonance imaging scans (yoga: n = 11, age = 61.45±6.58 years; MET: n = 11, age = 64.55±6.41 years). Group differences in parcellated (Cole-anticevic atlas) hippocampal connectivity changes (post- minus pre-intervention) were evaluated by partial least squares analysis, controlling for age. Correlations between hippocampal connectivity and perceived stress and frequency of forgetting (assessed by questionnaires) were also evaluated. RESULTS: A left anterior hippocampal subregion assigned to the default mode network (DMN) in the Cole-anticevic atlas showed greater increases in connectivity with largely ventral visual stream regions with KY than with MET (p < 0.001), which showed associations with lower stress (p < 0.05). Several posterior hippocampal subregions assigned to sensory-based networks in the Cole-anticevic atlas showed greater increases in connectivity with regions largely in the DMN and frontoparietal network with MET than with KY (p < 0.001), which showed associations with lower frequency of forgetting (p < 0.05). CONCLUSION: KY training may better target stress-related hippocampal connectivity, whereas MET may better target hippocampal sensory-integration supporting better memory reliability, in women with subjective memory decline and cardiovascular risk factors.


Subject(s)
Alzheimer Disease , Yoga , Humans , Female , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Reproducibility of Results , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging , Memory Disorders/diagnostic imaging , Memory Disorders/etiology
8.
Eur J Neurosci ; 58(1): 2406-2425, 2023 07.
Article in English | MEDLINE | ID: mdl-37203306

ABSTRACT

Alzheimer's disease (AD) is a neurological ailment that primarily affects the elderly and necessitates an efficient treatment regimen backed up by extensive care. Despite advancement in the in vivo imaging techniques focussing on early diagnosis of reliable biomarkers using novel magnetic resonance imaging (MRI) and positron emission topography (PET) scans, AD remains largely unexplained and effective preventative and treatment strategies are still lacking. Consequently, research groups are constantly attempting to improve its early detection, using both invasive and non-invasive techniques with established core markers like Aß and Tau (t-tau and p-tau) proteins. Unfortunately, African American and other black races are facing an increasing burden of closely associated risk factors, and only a few attempts have been made to find effective complementary and alternative therapies for AD cure and management. A greater epidemiology and natural product research are required to deal with the concurrent rise of dementia among quickly ageing African population, which so far have largely been ignored in addition to a disparity in the AD risk factors. We have tried to bring attention to the issue by reviewing up on this predisposition while generating a perspective on how race may affect AD risk and expression. This article also puts emphasis on finding new research leads from African phytodiversity while presenting several of the important species along with their biological agents found helpful in dementia related symptoms.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , tau Proteins , Magnetic Resonance Imaging , Biomarkers , Early Diagnosis , Amyloid beta-Peptides , Positron-Emission Tomography
9.
Ann Clin Transl Neurol ; 10(6): 918-932, 2023 06.
Article in English | MEDLINE | ID: mdl-37088544

ABSTRACT

OBJECTIVE: In Alzheimer's disease (AD), the presence of circadian dysfunction is well-known and may occur early in the disease course. The melanopsin retinal ganglion cell (mRGC) system may play a relevant role in contributing to circadian dysfunction. In this study, we aimed at evaluating, through a multimodal approach, the mRGC system in AD at an early stage of disease. METHODS: We included 29 mild-moderate AD (70.9 ± 11 years) and 26 (70.5 ± 8 years) control subjects. We performed an extensive neurophtalmological evaluation including optical coherence tomography with ganglion cell layer segmentation, actigraphic evaluation of the rest-activity rhythm, chromatic pupillometry analyzed with a new data-fitting approach, and brain functional MRI combined with light stimuli assessing the mRGC system. RESULTS: We demonstrated a significant thinning of the infero-temporal sector of the ganglion cell layer in AD compared to controls. Moreover, we documented by actigraphy the presence of a circadian-impaired AD subgroup. Overall, circadian measurements worsened by age. Chromatic pupillometry evaluation highlighted the presence of a pupil-light response reduction in the rod condition pointing to mRGC dendropathy. Finally, brain fMRI showed a reduced occipital cortex activation with blue light particularly for the sustained responses. INTERPRETATION: Overall, the results of this multimodal innovative approach clearly document a dysfunctional mRGC system at early stages of disease as a relevant contributing factor for circadian impairment in AD providing also support to the use of light therapy in AD.


Subject(s)
Alzheimer Disease , Retinal Ganglion Cells , Humans , Alzheimer Disease/diagnostic imaging , Retina , Rod Opsins
10.
BMC Complement Med Ther ; 23(1): 63, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823586

ABSTRACT

BACKGROUND: Acupuncture effectively improves cognitive function in Alzheimer's disease (AD). Many neuroimaging studies have found significant brain alterations after acupuncture treatment of AD, but the underlying central modulation mechanism is unclear. OBJECTIVE: This review aims to provide neuroimaging evidence to understand the central mechanisms of acupuncture in patients with AD. METHODS: Relevant neuroimaging studies about acupuncture for AD were retrieved from eight English and Chinese medicine databases (PubMed, Embase, Cochrane Library, Web of Science, SinoMed, CNKI, WF, VIP) and other resources from inception of databases until June 1, 2022, and their methodological quality was assessed using RoB 2.0 and ROBINS - I. Brain neuroimaging information was extracted to investigate the potential neural mechanism of acupuncture for AD. Descriptive statistics were used for data analysis. RESULTS: Thirteen neuroimaging studies involving 275 participants were included in this review, and the overall methodological quality of included studies was moderate. The approaches applied included task-state functional magnetic resonance imaging (ts-fMRI; n = 9 studies) and rest-state functional magnetic resonance imaging (rs-fMRI; n = 4 studies). All studies focused on the instant effect of acupuncture on the brains of AD participants, including the cingulate gyrus, middle frontal gyrus, and cerebellum, indicating that acupuncture may regulate the default mode, central executive, and frontoparietal networks. CONCLUSION: This study provides evidence of the neural mechanisms underlying the effect of acupuncture on AD involving cognitive- and motor-associated networks. However, this evidence is still in the preliminary investigation stage. Large-scale, well-designed, multimodal neuroimaging trials are still required to provide comprehensive insight into the central mechanism underlying the effect of acupuncture on AD. (Systematic review registration at PROSPERO, No. CRD42022331527).


Subject(s)
Acupuncture Therapy , Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Neuroimaging , Brain/diagnostic imaging , Acupuncture Therapy/methods , Magnetic Resonance Imaging
11.
Analyst ; 147(21): 4701-4723, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36190126

ABSTRACT

Nowadays, it is still quite challenging to achieve an early diagnosis of the Alzheimer disease (AD) in clinics. The burgeoning near-infrared fluorescence (NIRF) imaging fulfills the requirements for a precise diagnosis with good sensitivity and a high signal-to-background ratio and offers opportunities for the efficient AD diagnosis. As the pathogenesis of AD is quite complex, there is an ongoing exploration of advanced probes to specifically target AD biomarkers (e.g., amyloid-ß (Aß) plaques, neurofibrillary tangles, viscosity, peroxynitrite (ONOO-), reactive oxygen species, and methylglyoxal). To this end, a great number of small molecular fluorescent probes with good water solubility, blood-brain barrier crossing capability, and ease in tuning photophysical and biological properties have been studied for the AD diagnosis. Herein, we systematically update the progress of NIRF AD probes in the last three years. The special focus is on the mechanisms for the targeted diagnosis and the relationship between the structure and properties of the probes. Importantly, NIRF probes with complementary functions such as dual-responsiveness and multimodal imaging and even therapeutics are discussed. Moreover, the challenges and perspectives of the AD probes are briefly elucidated. We hope that this review provides guidance for researchers and expedites the preclinical and clinical study of the NIRF AD probes.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Fluorescence , Fluorescent Dyes/chemistry , Reactive Oxygen Species , Peroxynitrous Acid , Pyruvaldehyde , Amyloid beta-Peptides , Plaque, Amyloid , Water
12.
Am J Clin Nutr ; 116(6): 1492-1506, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36253968

ABSTRACT

BACKGROUND: The association between omega-3 (ω-3) PUFAs and cognition, brain imaging and biomarkers is still not fully established. OBJECTIVES: The aim was to analyze the cross-sectional and retrospective longitudinal associations between erythrocyte ω-3 index and cognition, brain imaging, and biomarkers among older adults. METHODS: A total of 832 Alzheimer's Disease Neuroimaging Initiative 3 (ADNI-3) participants, with a mean (SD) age of 74.0 (7.9) y, 50.8% female, 55.9% cognitively normal, 32.7% with mild cognitive impairment, and 11.4% with Alzheimer disease (AD) were included. A low ω-3 index (%EPA + %DHA) was defined as the lowest quartile (≤3.70%). Cognitive tests [composite score, AD Assessment Scale Cognitive (ADAS-Cog), Wechsler Memory Scale (WMS), Trail Making Test, Category Fluency, Mini-Mental State Examination, Montreal Cognitive Assessment] and brain variables [hippocampal volume, white matter hyperintensities (WMHs), positron emission tomography (PET) amyloid-ß (Aß) and tau] were considered as outcomes in regression models. RESULTS: Low ω-3 index was not associated with cognition, hippocampal, and WMH volume or brain Aß and tau after adjustment for demographics, ApoEε4, cardiovascular disease, BMI, and total intracranial volume in the cross-sectional analysis. In the retrospective analysis, low ω-3 index was associated with greater Aß accumulation (adjusted ß = 0.02; 95% CI: 0.01, 0.03; P = 0.003). The composite cognitive score did not differ between groups; however, low ω-3 index was significantly associated with greater WMS-delayed recall cognitive decline (adjusted ß = -1.18; 95% CI: -2.16, -0.19; P = 0.019), but unexpectedly lower total ADAS-Cog cognitive decline. Low ω-3 index was cross-sectionally associated with lower WMS performance (adjusted ß = -1.81, SE = 0.73, P = 0.014) and higher tau accumulation among ApoE ε4 carriers. CONCLUSIONS: Longitudinally, low ω-3 index was associated with greater Aß accumulation and WMS cognitive decline but unexpectedly with lower total ADAS-Cog cognitive decline. Although no associations were cross-sectionally found in the whole population, low ω-3 index was associated with lower WMS cognition and higher tau accumulation among ApoE ε4 carriers. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is registered at clinicaltrials.gov as NCT00106899.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Fatty Acids, Omega-3 , Female , Humans , Aged , Male , Alzheimer Disease/diagnostic imaging , Cross-Sectional Studies , Apolipoprotein E4/genetics , Retrospective Studies , Neuroimaging/methods , Amyloid beta-Peptides , Cognition , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Biomarkers , Positron-Emission Tomography , Erythrocytes
13.
J Alzheimers Dis ; 87(2): 569-581, 2022.
Article in English | MEDLINE | ID: mdl-35275541

ABSTRACT

BACKGROUND: Female sex, subjective cognitive decline (SCD), and cardiovascular risk factors (CVRFs) are known risk factors for developing Alzheimer's disease (AD). We previously demonstrated that yoga improved depression, resilience, memory and executive functions, increased hippocampal choline concentrations, and modulated brain connectivity in older adults with mild cognitive impairment. OBJECTIVE: In this study (NCT03503669), we investigated brain gray matter volume (GMV) changes in older women with SCD and CVRFs following three months of yoga compared to memory enhancement training (MET). METHODS: Eleven women (mean age = 61.45, SD = 6.58) with CVRF and SCD completed twelve weeks of Kundalini Yoga and Kirtan Kriya (KY + KK) while eleven women (mean age = 64.55, SD = 6.41) underwent MET. Anxiety, resilience, stress, and depression were assessed at baseline and 12 weeks, as were T1-weighted MRI scans (Siemens 3T Prisma scanner). We used Freesurfer 6.0 and tested group differences in GMV change, applying Monte-Carlo simulations with alpha = 0.05. Region-of-interest analysis was performed for hippocampus and amygdala. RESULTS: Compared to KY + KK, MET showed reductions in GMV in left prefrontal, pre- and post-central, supramarginal, superior temporal and pericalcarine cortices, right paracentral, postcentral, superior and inferior parietal cortices, the banks of the superior temporal sulcus, and the pars opercularis. Right hippocampal volume increased after yoga but did not survive corrections. CONCLUSION: Yoga training may offer neuroprotective effects compared to MET in preventing neurodegenerative changes and cognitive decline, even over short time intervals. Future analyses will address changes in functional connectivity in both groups.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Yoga , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Atrophy/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/prevention & control , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging
14.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4945-4959, 2022 09.
Article in English | MEDLINE | ID: mdl-33729958

ABSTRACT

It is of great significance to apply deep learning for the early diagnosis of Alzheimer's disease (AD). In this work, a novel tensorizing GAN with high-order pooling is proposed to assess mild cognitive impairment (MCI) and AD. By tensorizing a three-player cooperative game-based framework, the proposed model can benefit from the structural information of the brain. By incorporating the high-order pooling scheme into the classifier, the proposed model can make full use of the second-order statistics of holistic magnetic resonance imaging (MRI). To the best of our knowledge, the proposed Tensor-train, High-order pooling and Semisupervised learning-based GAN (THS-GAN) is the first work to deal with classification on MR images for AD diagnosis. Extensive experimental results on Alzheimer's disease neuroimaging initiative (ADNI) data set are reported to demonstrate that the proposed THS-GAN achieves superior performance compared with existing methods, and to show that both tensor-train and high-order pooling can enhance classification performance. The visualization of generated samples also shows that the proposed model can generate plausible samples for semisupervised learning purpose.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Neuroimaging
15.
Cereb Cortex ; 32(15): 3159-3174, 2022 07 21.
Article in English | MEDLINE | ID: mdl-34891164

ABSTRACT

Early diagnosis of mild cognitive impairment (MCI) fascinates screening high-risk Alzheimer's disease (AD). White matter is found to degenerate earlier than gray matter and functional connectivity during MCI. Although studies reveal white matter degenerates in the limbic system for MCI, how other white matter degenerates during MCI remains unclear. In our method, regions of interest with a high level of resting-state functional connectivity with hippocampus were selected as seeds to track fibers based on diffusion tensor imaging (DTI). In this way, hippocampus-temporal and thalamus-related fibers were selected, and each fiber's DTI parameters were extracted. Then, statistical analysis, machine learning classification, and Pearson's correlations with behavior scores were performed between MCI and normal control (NC) groups. Results show that: 1) the mean diffusivity of hippocampus-temporal and thalamus-related fibers are significantly higher in MCI and could be used to classify 2 groups effectively. 2) Compared with normal fibers, the degenerated fibers detected by the DTI indexes, especially for hippocampus-temporal fibers, have shown significantly higher correlations with cognitive scores. 3) Compared with the hippocampus-temporal fibers, thalamus-related fibers have shown significantly higher correlations with depression scores within MCI. Our results provide novel biomarkers for the early diagnoses of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Alzheimer Disease/diagnostic imaging , Brain , Cognitive Dysfunction/diagnostic imaging , Diffusion Tensor Imaging/methods , Hippocampus/diagnostic imaging , Humans , Thalamus/diagnostic imaging , White Matter/diagnostic imaging
16.
Aging (Albany NY) ; 13(17): 20935-20961, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34499614

ABSTRACT

Vascular dysfunction is entwined with aging and in the pathogenesis of Alzheimer's disease (AD) and contributes to reduced cerebral blood flow (CBF) and consequently, hypoxia. Hyperbaric oxygen therapy (HBOT) is in clinical use for a wide range of medical conditions. In the current study, we exposed 5XFAD mice, a well-studied AD model that presents impaired cognitive abilities, to HBOT and then investigated the therapeutical effects using two-photon live animal imaging, behavioral tasks, and biochemical and histological analysis. HBOT increased arteriolar luminal diameter and elevated CBF, thus contributing to reduced hypoxia. Furthermore, HBOT reduced amyloid burden by reducing the volume of pre-existing plaques and attenuating the formation of new ones. This was associated with changes in amyloid precursor protein processing, elevated degradation and clearance of Aß protein and improved behavior of 5XFAD mice. Hence, our findings are consistent with the effects of HBOT being mediated partially through a persistent structural change in blood vessels that reduces brain hypoxia. Motivated by these findings, we exposed elderly patients with significant memory loss at baseline to HBOT and observed an increase in CBF and improvement in cognitive performances. This study demonstrates HBOT efficacy in hypoxia-related neurological conditions, particularly in AD and aging.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Hyperbaric Oxygenation , Aged , Alzheimer Disease/diagnostic imaging , Amyloid beta-Protein Precursor/metabolism , Animals , Behavior, Animal , Cerebrovascular Circulation , Cognitive Dysfunction/metabolism , Female , Humans , Male , Memory Disorders/metabolism , Mice , Mice, Transgenic , Middle Aged , Plaque, Amyloid/metabolism
17.
Anat Rec (Hoboken) ; 304(11): 2521-2530, 2021 11.
Article in English | MEDLINE | ID: mdl-34469051

ABSTRACT

Alzheimer's disease (AD) is a fatal neurodegenerative disease for which currently no cure is available. Electroacupuncture (EA) has been widely used in China as an alternative therapeutic approach for neurological diseases. The cognitive decline in patients with AD has been reported to be closely related to the deposition of amyloid-ß (Aß) in the hippocampus of the brain, and the Morris water maze (MWM) test is a widely used method for assessing the behavior of animal models. In this study, the MWM test was performed to evaluate the effects of EA treatment on cognitive function and memory, and the micro-positron emission tomography scan was used to assess the hippocampal Aß deposition. The results showed that the cognitive function of APP/PS1 mice was significantly improved and the rate of [18F]AV-45 uptake was reduced in the EA group, compared with the AD group. Our study suggested that EA can exert a therapeutic effect in AD by improving spatial learning and memory and inhibiting the hippocampal Aß deposition.


Subject(s)
Alzheimer Disease , Electroacupuncture , Neurodegenerative Diseases , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Electroacupuncture/methods , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics
18.
Neuropharmacology ; 196: 108676, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34216585

ABSTRACT

The mouse model of beta-amyloid (Aß) deposition, APP/PS1-21, exhibits high brain uptake of the tau-tracer (S)-[18F]THK5117, although no neurofibrillary tangles are present in this mouse model. For this reason we investigated (S)-[18F]THK5117 off-target binding to Aß plaques and MAO-B enzyme in APP/PS1-21 transgenic (TG) mouse model of Aß deposition. APP/PS1-21 TG and wild-type (WT) control mice in four different age groups (2-26 months) were imaged antemortem by positron emission tomography with (S)-[18F]THK5117, and then brain autoradiography. Additional animals were used for immunohistochemical staining and MAO-B enzyme blocking study with deprenyl pre-treatment. Regional standardized uptake value ratios for the cerebellum revealed a significant temporal increase in (S)-[18F]THK5117 uptake in aged TG, but not WT, brain. Immunohistochemical staining revealed a similar increase in Aß plaques but not endogenous hyper-phosphorylated tau or MAO-B enzyme, and ex vivo autography showed that uptake of (S)-[18F]THK5117 co-localized with the amyloid pathology. Deprenyl hydrochloride pre-treatment reduced the binding of (S)-[18F]THK5117 in the neocortex, hippocampus, and thalamus. This study's findings suggest that increased (S)-[18F]THK5117 binding in aging APP/PS1-21 TG mice is mainly due to increasing Aß deposition, and to a lesser extent binding to MAO-B enzyme, but not hyper-phosphorylated tau.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Monoamine Oxidase/metabolism , Plaque, Amyloid/diagnostic imaging , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Aniline Compounds , Animals , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Hippocampus/diagnostic imaging , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Mice, Transgenic , Monoamine Oxidase Inhibitors/pharmacology , Neocortex/diagnostic imaging , Neocortex/drug effects , Neocortex/metabolism , Plaque, Amyloid/metabolism , Positron-Emission Tomography , Presenilin-1/genetics , Quinolines , Radiopharmaceuticals , Selegiline/pharmacology , Thalamus/diagnostic imaging , Thalamus/drug effects , Thalamus/metabolism
19.
Theranostics ; 11(14): 6644-6667, 2021.
Article in English | MEDLINE | ID: mdl-34093845

ABSTRACT

Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aß) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aß, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aß accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aß plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aß plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aß plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Magnetic Resonance Spectroscopy , Plaque, Amyloid/metabolism , Positron-Emission Tomography , tau Proteins/metabolism , Aging/metabolism , Aging/physiology , Alzheimer Disease/pathology , Animals , Behavior Rating Scale , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Female , Fluorine Radioisotopes , Frontal Lobe/metabolism , Frontal Lobe/pathology , Gliosis/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Immunohistochemistry , Inflammation/metabolism , Locomotion/genetics , Locomotion/physiology , Male , Neurons/metabolism , Neurons/pathology , Rats , Rats, Transgenic , Receptors, Cholinergic/metabolism , Thalamus/metabolism , Thalamus/pathology
20.
Analyst ; 146(13): 4135-4145, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33949430

ABSTRACT

Amyloid aggregation, formed by aberrant proteins, is a pathological hallmark for neurodegenerative diseases, including Alzheimer's disease and Huntington's disease. High-resolution holistic mapping of the fine structures from these aggregates should facilitate our understanding of their pathological roles. Here, we achieved label-free high-resolution imaging of the polyQ and the amyloid-beta (Aß) aggregates in cells and tissues utilizing a sample-expansion stimulated Raman strategy. We further focused on characterizing the Aß plaques in 5XFAD mouse brain tissues. 3D volumetric imaging enabled visualization of the whole plaques, resolving both the fine protein filaments and the surrounding components. Coupling our expanded label-free Raman imaging with machine learning, we obtained specific segmentation of aggregate cores, peripheral filaments together with cell nuclei and blood vessels by pre-trained convolutional neural network models. Combining with 2-channel fluorescence imaging, we achieved a 6-color holistic view of the same sample. This ability for precise and multiplex high-resolution imaging of the protein aggregates and their micro-environment without the requirement of labeling would open new biomedical applications.


Subject(s)
Alzheimer Disease , Protein Aggregates , Alzheimer Disease/diagnostic imaging , Amyloid , Amyloid beta-Peptides , Animals , Mice , Plaque, Amyloid
SELECTION OF CITATIONS
SEARCH DETAIL