Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Br J Pharmacol ; 181(12): 1768-1792, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38355288

ABSTRACT

BACKGROUND AND PURPOSE: Panax ginseng is widely applied in the adjuvant treatment of cardiometabolic diseases in clinical practice without clear mechanisms. This study aims to clearly define the efficacy and underlying mechanism of P. ginseng and its active components in protecting against atherosclerosis. EXPERIMENTAL APPROACH: The anti-atherogenic efficacy of total ginseng saponin extract (TGS) and its components was evaluated on Ldlr-/- mice. Gut microbial structure was analysed by 16S rRNA sequencing and PCR. Bile acid profiles were revealed using targeted metabolomics with LC-MS/MS analysis. The contribution of gut microbiota to atherosclerosis was assessed by co-housing experiments. KEY RESULTS: Ginsenoside Rb1, representing protopanaxadiol (PPD)-type saponins, increased intestinal Lactobacillus abundance, resulting in enhanced bile salt hydrolase (BSH) activity to promote intestinal conjugated bile acid hydrolysis and excretion, followed by suppression of enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signal, and thereby increased cholesterol 7α-hydroxylase (CYP7A1) transcriptional expression and facilitated metabolic elimination of cholesterol. Synergistically, protopanaxatriol (PPT)-type saponins, represented by ginsenoside Rg1, protected against atherogenesis-triggered gut leak and metabolic endotoxaemia. Ginsenoside Rg1 directly induced mucin production to nutritionally maintain Akkermansia muciniphila, which reciprocally inhibited gut permeation. Rb1/Rg1 combination, rather than a single compound, can largely mimic the holistic efficacy of TGS in protecting Ldlr-/- mice from atherogenesis. CONCLUSION AND IMPLICATIONS: Our study provides strong evidence supporting TGS and ginsenoside Rb1/Rg1 combinations as effective therapies against atherogenesis, via targeting different signal nodes by different components and may provide some elucidation of the holistic mode of herbal medicines.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Ginsenosides , Homeostasis , Mice, Knockout , Panax , Animals , Ginsenosides/pharmacology , Gastrointestinal Microbiome/drug effects , Homeostasis/drug effects , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Male , Mice , Panax/chemistry , Mice, Inbred C57BL , Bile Acids and Salts/metabolism , Receptors, LDL/metabolism , Fibroblast Growth Factors/metabolism , Amidohydrolases/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism
2.
Proc Natl Acad Sci U S A ; 120(24): e2302580120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37276423

ABSTRACT

AmiA and AmiB are peptidoglycan-hydrolyzing enzymes from Escherichia coli that are required to break the peptidoglycan layer during bacterial cell division and maintain integrity of the cell envelope. In vivo, the activity of AmiA and AmiB is tightly controlled through their interactions with the membrane-bound FtsEX-EnvC complex. Activation of AmiA and AmiB requires access to a groove in the amidase-activating LytM domain of EnvC which is gated by ATP-driven conformational changes in FtsEX-EnvC complex. Here, we present a high-resolution structure of the isolated AmiA protein, confirming that it is autoinhibited in the same manner as AmiB and AmiC, and a complex of the AmiB enzymatic domain bound to the activating EnvC LytM domain. In isolation, the active site of AmiA is blocked by an autoinhibitory helix that binds directly to the catalytic zinc and fills the volume expected to accommodate peptidoglycan binding. In the complex, binding of the EnvC LytM domain induces a conformational change that displaces the amidase autoinhibitory helix and reorganizes the active site for activity. Our structures, together with complementary mutagenesis work, defines the conformational changes required to activate AmiA and/or AmiB through their interaction with their cognate activator EnvC.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Peptidoglycan/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Escherichia coli/metabolism , Amidohydrolases/metabolism , Bacterial Proteins/metabolism
3.
J Ethnopharmacol ; 317: 116747, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37311500

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ramulus Cinnamomi, the dried twig of Cinnamomum cassia (L.) J.Presl., is a traditional Chinese medicine (TCM) with anti-inflammatory effects. The medicinal functions of Ramulus Cinnamomi essential oil (RCEO) have been confirmed, although the potential mechanisms by which RCEO exerts its anti-inflammatory effects have not been fully elucidated. AIM OF THE STUDY: To investigate whether N-acylethanolamine acid amidase (NAAA) mediates the anti-inflammatory effects of RCEO. MATERIALS AND METHODS: RCEO was extracted by steam distillation of Ramulus Cinnamomi, and NAAA activity was detected using HEK293 cells overexpressing NAAA. N-Palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), both of which are NAAA endogenous substrates, were detected by liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The anti-inflammatory effects of RCEO were analyzed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the cell viability was measured with a Cell Counting Kit-8 (CCK-8) kit. The nitric oxide (NO) in the cell supernatant was measured using the Griess method. The level of tumor necrosis factor-α (TNF-α) in the RAW264.7 cell supernatant was determined using an enzyme-linked immunosorbent assay (ELISA) kit. The chemical composition of RCEO was assessed by gas chromatography-mass spectroscopy (GC-MS). The molecular docking study for (E)-cinnamaldehyde and NAAA was performed by using Discovery Studio 2019 software (DS2019). RESULTS: We established a cell model for evaluating NAAA activity, and we found that RCEO inhibited the NAAA activity with an IC50 of 5.64 ± 0.62 µg/mL. RCEO significantly elevated PEA and OEA levels in NAAA-overexpressing HEK293 cells, suggesting that RCEO might prevent the degradation of cellular PEA and OEA by inhibiting the NAAA activity in NAAA-overexpressing HEK293 cells. In addition, RCEO also decreased NO and TNF-α cytokines in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, the GC-MS assay revealed that more than 93 components were identified in RCEO, of which (E)-cinnamaldehyde accounted for 64.88%. Further experiments showed that (E)-cinnamaldehyde and O-methoxycinnamaldehyde inhibited NAAA activity with an IC50 of 3.21 ± 0.03 and 9.62 ± 0.30 µg/mL, respectively, which may represent key components of RCEO that inhibit NAAA activity. Meanwhile, docking assays revealed that (E)-cinnamaldehyde occupies the catalytic cavity of NAAA and engages in a hydrogen bond interaction with the TRP181 and hydrophobic-related interactions with LEU152 of human NAAA. CONCLUSIONS: RCEO showed anti-inflammatory effects by inhibiting NAAA activity and elevating cellular PEA and OEA levels in NAAA-overexpressing HEK293 cells. (E)-cinnamaldehyde and O-methoxycinnamaldehyde, two components in RCEO, were identified as the main contributors of the anti-inflammatory effects of RCEO by modulating cellular PEA levels through NAAA inhibition.


Subject(s)
Lipopolysaccharides , Oils, Volatile , Humans , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha , Oils, Volatile/pharmacology , Tandem Mass Spectrometry , HEK293 Cells , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Amidohydrolases/metabolism
4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499556

ABSTRACT

Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.


Subject(s)
Binge-Eating Disorder , Rats , Female , Animals , Binge-Eating Disorder/genetics , Epigenesis, Genetic , Endocannabinoids/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Receptors, Cannabinoid/metabolism , Hypothalamus/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Eating
5.
Food Funct ; 13(6): 3318-3328, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35257124

ABSTRACT

Bile salt hydrolases (BSHs), a group of cysteine-hydrolases produced by gut microbes, play a crucial role in the hydrolysis of glycine- or taurine-conjugated bile acids and have been validated as key targets to modulate bile acid metabolism. This study aims to discover one or more efficacious inhibitors against a BSH produced by Lactobacillus salivarius (lsBSH) from natural products and to characterize the mechanism of the newly identified BSH inhibitor(s). Following screening of the inhibition potentials of more than 100 natural compounds against lsBSH, amentoflavone (AMF), a naturally occurring biflavone isolated from various medicinal plants, was discovered to be an efficacious BSH inhibitor (IC50 = 0.34 µM). Further investigation showed that AMF could strongly inhibit the lsBSH-catalyzed hydrolytic reaction in living gut microbes. Inhibition kinetic analyses demonstrated that AMF reversibly inhibited the lsBSH-catalyzed hydrolytic reaction in a mixed-inhibition manner, with an apparent Ki value of 0.65 µM. Fluorescence quenching assays suggested that AMF could quench the fluorescence of lsBSH via a static quenching procedure. Docking simulations suggested that AMF could be fitted into lsBSH at two distinct ligand-binding sites, mainly via hydrophobic interactions and hydrogen bonding, which explained well the mixed inhibition mode of this agent. Animal tests showed that the hydrolytic activities of BSHs in mice feces could be significantly blocked by AMF. In summary, this study reports that AMF is a strong, naturally occurring inhibitor of lsBSH, which offers a promising lead compound to develop novel agents for modulating bile acid metabolism in the host via targeting BSHs.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Biflavonoids/pharmacology , Enzyme Inhibitors/pharmacology , Ligilactobacillus salivarius/enzymology , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Animals , Biflavonoids/chemistry , Biflavonoids/metabolism , Catalytic Domain , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Feces/enzymology , Kinetics , Mice , Molecular Docking Simulation
6.
Zhongguo Zhong Yao Za Zhi ; 47(3): 745-752, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35178958

ABSTRACT

The present study analyzed the correlations between curcumin(Cur), nuclear factor E2 related factor 2(NRF2)-dimethylarginine dimethylaminohydrolase(DDAH)-asymmetric dimethylarginine(ADMA)-nitric oxide(NO) pathway, and endothelial-mesenchymal transition(EndMT) based on SD rats with cardiac fibrosis, and explored the effect and mechanism of Cur in resisting cardiac fibrosis to provide an in-depth theoretical basis for its clinical application in the treatment of heart failure. The cardiac fibrosis model was induced by subcutaneous injection of isoprenaline(Iso) in rats. Thirty-two rats were randomly divided into a control group, a model group, a low-dose Cur group(100 mg·kg~(-1)·d~(-1)), and a high-dose Cur group(200 mg·kg~(-1)·d~(-1)), with eight in each group. After 21 days of treatment, cardiac function was detected by echocardiography, degree of cardiac fibrosis by Masson staining, expression of CD31 and α-SMA by pathological staining, expression of VE-cadherin, vimentin, NRF2, and DDAH by Western blot, and ADMA level by HPLC. Compared with the model group, the Cur groups showed alleviated cardiac fibrosis, accompanied by increased CD31 and VE-cadherin expression and decreased α-SMA and vimentin expression, indicating relieved EndMT. Additionally, DDAH and NRF2 levels were elevated and ADMA and NO expression declined. Cur improves cardiac fibrosis by inhibiting EndMT presumedly through the NRF2-DDAH-ADMA-NO pathway.


Subject(s)
Curcumin , Amidohydrolases/metabolism , Animals , Fibrosis , NF-E2-Related Factor 2/genetics , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley
7.
Nutrients ; 13(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34836186

ABSTRACT

We studied whether probiotics were beneficial for hormonal change-associated dysbiosis, which may influence the enteric nervous system and GI function during early pregnancy. The study was 16 days consisting of two cycles of six daily probiotics mainly Lactobacillus and 2 days without probiotics. Daily surveys were conducted to monitor GI function and life quality. A subset of the participants who contributed fecal specimens was used for microbiota metagenomic sequencing, metabolomics, and quantification of bacterial genes to understand potential underlying mechanisms. Statistical analyses were done by generalized linear mixed-effects models. Thirty-two obstetric patients and 535 daily observations were included. The data revealed that probiotic supplementation significantly reduced the severity of nausea, vomiting, constipation, and improved life quality. Moreover, a low copy number of fecal bsh (bile salt hydrolase), which generates free bile acids, was associated with high vomiting scores and probiotic intake increased fecal bsh. In exploratory analysis without adjusting for multiplicity, a low fecal α-tocopherol, as well as a high abundance of Akkemansia muciniphila, was associated with high vomiting scores and times, respectively. The potential implications of these biomarkers in pregnancy and GI function are discussed. Probiotics likely produce free bile acids to facilitate intestinal mobility and metabolism.


Subject(s)
Dysbiosis/drug therapy , Gastrointestinal Tract/metabolism , Pregnancy Complications/drug therapy , Probiotics/administration & dosage , Quality of Life , Adult , Akkermansia , Amidohydrolases/metabolism , Bile Acids and Salts/metabolism , Feces/microbiology , Female , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Humans , Lactobacillus , Metabolomics/methods , Nausea/drug therapy , Pregnancy , Vomiting/drug therapy
8.
Nat Metab ; 3(8): 1125-1132, 2021 08.
Article in English | MEDLINE | ID: mdl-34294923

ABSTRACT

Phenylketonuria (PKU) is a rare disease caused by biallelic mutations in the PAH gene that result in an inability to convert phenylalanine (Phe) to tyrosine, elevated blood Phe levels and severe neurological complications if untreated. Most patients are unable to adhere to the protein-restricted diet, and thus do not achieve target blood Phe levels. We engineered a strain of E. coli Nissle 1917, designated SYNB1618, through insertion of the genes encoding phenylalanine ammonia lyase and L-amino acid deaminase into the genome, which allow for bacterial consumption of Phe within the gastrointestinal tract. SYNB1618 was studied in a phase 1/2a randomized, placebo-controlled, double-blind, multi-centre, in-patient study ( NCT03516487 ) in adult healthy volunteers (n = 56) and patients with PKU and blood Phe level ≥600 mmol l-1 (n = 14). Participants were randomized to receive a single dose of SYNB1618 or placebo (part 1) or up to three times per day for up to 7 days (part 2). The primary outcome of this study was safety and tolerability, and the secondary outcome was microbial kinetics. A D5-Phe tracer (15 mg kg-1) was used to study exploratory pharmacodynamic effects. SYNB1618 was safe and well tolerated with a maximum tolerated dose of 2 × 1011 colony-forming units. Adverse events were mostly gastrointestinal and of mild to moderate severity. All participants cleared the bacteria within 4 days of the last dose. Dose-responsive increases in strain-specific Phe metabolites in plasma (trans-cinnamic acid) and urine (hippuric acid) were observed, providing a proof of mechanism for the potential to use engineered bacteria in the treatment of rare metabolic disorders.


Subject(s)
Biological Therapy/methods , Escherichia coli , Phenylketonurias/therapy , Amidohydrolases/genetics , Amidohydrolases/metabolism , Biological Therapy/adverse effects , Escherichia coli/enzymology , Escherichia coli/genetics , Genetic Engineering , Humans , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phenylketonurias/blood , Phenylketonurias/genetics , Treatment Outcome
9.
PLoS One ; 16(6): e0252759, 2021.
Article in English | MEDLINE | ID: mdl-34125862

ABSTRACT

Bacterial Leaf Blight (BLB) disease is an extremely ruinous disease in rice, caused by Xanthomonas oryzae pv. oryzae (Xoo). Although various chemicals are available to manage BLB, they are toxic to the environment as well as humans. Hence there is a need to develop new pesticides as alternatives to hazardous chemicals. Therefore, a study was carried out to discover new potent natural pesticides against Xoo from different solvent extracts of Vernonia cinerea. Among all the fractions, the methanolic extract showed the highest inhibition zone. Further, to gain mechanistic insight of inhibitory action, 40 molecules of methanolic extracts were subjected for in silico study against two enzymes D-alanine-D-alanine ligase (Ddl) and Peptide deformylase (PDF). In silico study showed Rutin and Methanone, [1,4-dimethyl-7-(1- methylethyl)-2- azulenyl]phenyl have a good binding affinity with Ddl while Phenol, 2,4-bis(1-phenylethyl)- and 1,2-Benzenedicarboxylic acid, diisooctyl ester showed an excellent binding affinity to PDF. Finally, the system biology approach was applied to understand the agrochemical's effect in the cell system of bacteria against both the enzymes. Conclusively, these four-hit compounds may have strong potential against Xoo and can be used as biopesticides in the future.


Subject(s)
Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Veronica/chemistry , Xanthomonas/drug effects , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ligands , Methanol/chemistry , Molecular Docking Simulation , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Phthalic Acids/analysis , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Plant Extracts/chemistry , Protein Binding , Rutin/analysis , Rutin/chemistry , Rutin/pharmacology
10.
Molecules ; 26(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916405

ABSTRACT

The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score -912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.


Subject(s)
2S Albumins, Plant/chemistry , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Moringa oleifera/chemistry , Mustard Plant/chemistry , 2S Albumins, Plant/isolation & purification , 2S Albumins, Plant/pharmacology , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amidohydrolases/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Binding Sites , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Leaves/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs
11.
Poult Sci ; 100(2): 926-937, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518146

ABSTRACT

Herein, we investigated the effect of Chlorella vulgaris as ingredient (10% of incorporation) in broiler diets, supplemented or not with 2 formulations of Carbohydrate-Active enZymes (CAZymes; Rovabio Excel AP and a mixture of recombinant CAZymes, composed by an exo-ß-glucosaminidase, an alginate lyase, a peptidoglycan N-acetylmuramic acid deacetylase and a lysozyme), on growth performance, meat quality, fatty acid composition, oxidative stability, and sensory traits. One hundred twenty 1-day-old Ross 308 male birds were randomly assigned to one of the 4 experimental diets (n = 30): corn-soybean meal-basal diet (control), basal diet with 10% C. vulgaris (CV), CV supplemented with 0.005% of a commercial CAZyme cocktail (Rovabio Excel AP), (CV + R), and CV supplemented with 0.01% of a 4-CAZyme mixture previously selected (CV + M) during the experimental period lasted from day 21 to day 35. Body weight gain and feed conversion rate of broilers were not affected by C. vulgaris but digesta viscosity increased more than 2-fold (P < 0.001) relative to the control. In addition, neither cooking loss, shear force, juiciness, flavor nor off-flavor was impaired by dietary treatments (P > 0.05). By contrast, the dietary C. vulgaris increased tenderness, yellowness (b∗) and total carotenoids in breast and thigh meats. However, no additional protective effect against lipid oxidation was observed in meat with the inclusion of microalga. Chlorella vulgaris, independently of CAZymes, had a minor impact on meat fatty acid composition but improved the proportion of some beneficial fatty acids. In summary, our data indicate a slight improvement of broiler meat quality and lipid nutritional value, without impairment of broilers' growth performance, thus supporting the usefulness of this microalga in poultry diets, up to this high level of incorporation. By contrast, the selected CAZyme mixtures used do not significantly improve the release of microalga nutrients in poultry diets, through the disruption of microalga cell wall, which warrants further research.


Subject(s)
Chickens , Chlorella vulgaris , Lipids/analysis , Meat/standards , Amidohydrolases/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Carbohydrate Metabolism/drug effects , Diet/veterinary , Dietary Supplements , Endopeptidases/metabolism , Hexosaminidases/metabolism , Male , Meat/analysis , Muramidase/metabolism , Polysaccharide-Lyases/metabolism
12.
Lab Invest ; 101(7): 808-823, 2021 07.
Article in English | MEDLINE | ID: mdl-33574439

ABSTRACT

Dimethylarginine dimethylamino hydrolase-1 (DDAH-1) is an important regulator of nitric oxide (NO) metabolism that has been implicated in the pathogenesis of cardiovascular diseases. Nevertheless, its role in cerebral ischemia still needs to be elucidated. Herein, we examined the expression of DDAH-1 in the brain of rat by double-label immunofluorescence staining. DDAH-1 knock-out (DDAH-1-/-) and wild-type rats underwent middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, neurological scores, TTC staining and TUNEL assay were used to evaluate neurological damages. 3 and 7-days infarct outcomes were also shown. Blood-brain-barrier (BBB) permeability was examined via Evans blue extravasation and tight junction (TJ) proteins expression and mRNA levels by western blot and RT-qPCR. The levels of plasma asymmetric dimethylarginine (ADMA), NO and ADMA in brain tissue were also assessed. In addition, supplementation of L-arginine to DDAH-1-/- rats was used to explore its role in regulating NO. DDAH-1 was abundantly distributed in cerebral cortex and basal nuclei, and mainly expressed in neurons and endothelial cells. DDAH-1-/- rats showed aggravated neurological damage and BBB disruption, including decrease of TJ proteins expression but indistinguishable mRNA levels after MCAO/R. DDAH-1 depletion and neurological damages were accompanied with increased ADMA levels and decreased NO concentrations. The supplementation with L-arginine partly restored the neurological damages and BBB disruption. To sum up, DDAH-1 revealed to have a protective role in ischemia stroke (IS) and IS-induced leakage of BBB via decreasing ADMA level and possibly via preventing TJ proteins degradation.


Subject(s)
Amidohydrolases , Arginine/analogs & derivatives , Blood-Brain Barrier/physiopathology , Brain Ischemia/physiopathology , Amidohydrolases/genetics , Amidohydrolases/metabolism , Animals , Arginine/blood , Arginine/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Male , Nitric Oxide/blood , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic
13.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33507883

ABSTRACT

Omega-3 fatty acids from fish oil reduce triglyceride levels in mammals, yet the mechanisms underlying this effect have not been fully clarified, despite the clinical use of omega-3 ethyl esters to treat severe hypertriglyceridemia and reduce cardiovascular disease risk in humans. Here, we identified in bile a class of hypotriglyceridemic omega-3 fatty acid-derived N-acyl taurines (NATs) that, after dietary omega-3 fatty acid supplementation, increased to concentrations similar to those of steroidal bile acids. The biliary docosahexaenoic acid-containing (DHA-containing) NAT C22:6 NAT was increased in human and mouse plasma after dietary omega-3 fatty acid supplementation and potently inhibited intestinal triacylglycerol hydrolysis and lipid absorption. Supporting this observation, genetic elevation of endogenous NAT levels in mice impaired lipid absorption, whereas selective augmentation of C22:6 NAT levels protected against hypertriglyceridemia and fatty liver. When administered pharmacologically, C22:6 NAT accumulated in bile and reduced high-fat diet-induced, but not sucrose-induced, hepatic lipid accumulation in mice, suggesting that C22:6 NAT is a negative feedback mediator that limits excess intestinal lipid absorption. Thus, biliary omega-3 NATs may contribute to the hypotriglyceridemic mechanism of action of fish oil and could influence the design of more potent omega-3 fatty acid-based therapeutics.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Hypertriglyceridemia/diet therapy , Triglycerides/metabolism , Amidohydrolases/deficiency , Amidohydrolases/genetics , Amidohydrolases/metabolism , Animals , Bile/metabolism , Disease Models, Animal , Docosahexaenoic Acids/analogs & derivatives , Docosahexaenoic Acids/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Liver/metabolism , Fatty Liver/prevention & control , Humans , Hypertriglyceridemia/metabolism , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/metabolism , Intestinal Absorption/drug effects , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutant Proteins/genetics , Mutant Proteins/metabolism , Point Mutation , Taurine/analogs & derivatives , Taurine/metabolism
14.
Am J Physiol Heart Circ Physiol ; 319(3): H582-H603, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32762558

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by null mutations in dystrophin and characterized by muscle degeneration. Cardiomyopathy is common and often prevalent at similar frequency in female DMD carriers irrespective of whether they manifest skeletal muscle disease. Impaired muscle nitric oxide (NO) production in DMD disrupts muscle blood flow regulation and exaggerates postexercise fatigue. We show that circulating levels of endogenous methylated arginines including asymmetric dimethylarginine (ADMA), which act as NO synthase inhibitors, are elevated by acute necrotic muscle damage and in chronically necrotic dystrophin-deficient mice. We therefore hypothesized that excessive ADMA impairs muscle NO production and diminishes exercise tolerance in DMD. We used transgenic expression of dimethylarginine dimethylaminohydrolase 1 (DDAH), which degrades methylated arginines, to investigate their contribution to exercise-induced fatigue in DMD. Although infusion of exogenous ADMA was sufficient to impair exercise performance in wild-type mice, transgenic DDAH expression did not rescue exercise-induced fatigue in dystrophin-deficient male mdx mice. Surprisingly, DDAH transgene expression did attenuate exercise-induced fatigue in dystrophin-heterozygous female mdx carrier mice. Improved exercise tolerance was associated with reduced heart weight and improved cardiac ß-adrenergic responsiveness in DDAH-transgenic mdx carriers. We conclude that DDAH overexpression increases exercise tolerance in female DMD carriers, possibly by limiting cardiac pathology and preserving the heart's responses to changes in physiological demand. Methylated arginine metabolism may be a new target to improve exercise tolerance and cardiac function in DMD carriers or act as an adjuvant to promote NO signaling alongside therapies that partially restore dystrophin expression in patients with DMD.NEW & NOTEWORTHY Duchenne muscular dystrophy (DMD) carriers are at risk for cardiomyopathy. The nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) is released from damaged muscle in DMD and impairs exercise performance. Transgenic expression of dimethylarginine dimethylaminohydrolase to degrade ADMA prevents cardiac hypertrophy, improves cardiac function, and improves exercise tolerance in DMD carrier mice. These findings highlight the relevance of ADMA to muscular dystrophy and have important implications for therapies targeting nitric oxide in patients with DMD and DMD carriers.


Subject(s)
Arginine/analogs & derivatives , Cardiomyopathies/metabolism , Coronary Circulation , Exercise Tolerance , Heterozygote , Muscular Dystrophy, Duchenne/metabolism , Myocardium/metabolism , Quadriceps Muscle/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Animals , Arginine/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Transgenic , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/physiopathology , Myocardium/pathology , Necrosis , Quadriceps Muscle/pathology , Quadriceps Muscle/physiopathology , Ventricular Function, Left
15.
Enzyme Microb Technol ; 138: 109554, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32527524

ABSTRACT

Overexpression of a novel hydantoinase (hyuH) from P. aeruginosa (MCM B-887) in E. coli yielded optically pure carbamoyl amino acids. The use of optically pure carbamoyl amino acids as substrates facilitates the synthesis of non-proteinogenic amino acids. The enzyme hyuH shared a maximum of 92 % homology with proven hydantoinase protein sequences from the GenBank database, highlighting its novelty. Expression of hydantoinase gene was improved by >150 % by overexpressing it as a fusion protein in specialized E. coli CODON + host cells, providing adequate machinery for effective translation of the GC-rich gene. The presence of distinct residues in the substrate binding and active site of MCM B-887 hydantoinase enzyme explained its unique and broad substrate profile desirable for industrial applications. The purified enzyme, with a specific activity of 53U/mg of protein, was optimally active at 42 °C and pH 9.0 with a requirement of 2 mM Mn2+ ions. Supplementation of 500 mM of Na-glutamate enhanced the thermostability of the enzyme by more than 200 %.


Subject(s)
Amidohydrolases/metabolism , Amino Acids/biosynthesis , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/enzymology , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amidohydrolases/isolation & purification , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Catalytic Domain , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Manganese , Models, Molecular , Phylogeny , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Stereoisomerism , Substrate Specificity , Temperature
16.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Article in English | MEDLINE | ID: mdl-32393901

ABSTRACT

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Subject(s)
Behavior, Animal/drug effects , Enzyme Inhibitors/chemistry , Lipid Metabolism/drug effects , Phosphatidylethanolamines/metabolism , Phospholipase D/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Blood Proteins/metabolism , Brain/metabolism , Cannabinoid Receptor Antagonists/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Fear/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Receptors, Cannabinoid/metabolism , Signal Transduction
17.
J Cell Mol Med ; 24(10): 5911-5925, 2020 05.
Article in English | MEDLINE | ID: mdl-32301289

ABSTRACT

Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in atherosclerosis. DMY treatment significantly inhibits atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4-positive T cells in the vessel wall and hepatic inflammation, whereas increases nitric oxide (NO) production and improves lipid metabolism in apolipoprotein E-deficient (Apoe-/- ) mice. Yet, those protective effects are abrogated by using NOS inhibitor L-NAME in Apoe-/- mice received DMY. Mechanistically, DMY decreases microRNA-21 (miR-21) and increases its target gene dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression, an effect that reduces asymmetric aimethlarginine (ADMA) levels, and increases endothelial NO synthase (eNOS) phosphorylation and NO production in cultured HUVECs, vascular endothelium of atherosclerotic lesions and liver. In contrast, systemic delivery of miR-21 in Apoe-/- mice or miR-21 overexpression in cultured HUVECs abrogates those DMY-mediated protective effects. These data demonstrate that endothelial miR-21-inhibited DDAH1-ADMA-eNOS-NO pathway promotes the pathogenesis of atherosclerosis which can be rescued by DMY. Thus, DMY may represent a potential therapeutic adjuvant in atherosclerosis management.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/drug therapy , Flavonols/pharmacology , Flavonols/therapeutic use , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/metabolism , Nitric Oxide/biosynthesis , Amidohydrolases/metabolism , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Atherosclerosis/blood , Enzyme Activation/drug effects , Humans , Inflammation/pathology , Lipid Metabolism/drug effects , Lipids/blood , Liver/pathology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects
18.
Nitric Oxide ; 95: 17-28, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31870966

ABSTRACT

Dimethylarginine dimethylamino hydrolase-1 (DDAH-1) as an indirect regulator of nitric oxide (NO) metabolism, its role in hypoxic preconditioning (HPC) and ischemic tolerance (IT) of ischemic stroke has still been unknown and needs to be elucidated. Herein, DDAH-1 knock-out (KO) and wild-type (WT) rats underwent HPC and middle cerebral artery occlusion/reperfusion (MCAO/R) model. After 24 h, neurological severity scores, TTC staining and TUNEL assay were used to evaluate neurological damages. To explore the mechanism, the expression of hypoxia inducible factor (HIF-1α) and its target genes were assessed by Western blot and RT-qPCR. NO and ADMA contents were also tested. In addition, supplementation of l-arginine to DDAH-1 KO rats was used to explore the role of DDAH-1 in regulating NO. After HPC the ischemic outcome improved in both KO and WT rats, while KO rats showed attenuated IT exhibiting less expression of HIF-1α and its target genes, lower NO but higher ADMA content. The supplement of l-arginine to KO rats partly alleviated neurological damages accompanied with higher expression of HIF-1α. To sum up, DDAH-1 could regulate the level of NO and enhance IT following HPC and MCAO model via activating the expression of HIF-1α and its target genes.


Subject(s)
Amidohydrolases/metabolism , Brain Ischemia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/metabolism , Infarction, Middle Cerebral Artery/metabolism , Ischemic Preconditioning , Amidohydrolases/deficiency , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Rats , Rats, Sprague-Dawley
19.
Nat Commun ; 10(1): 4971, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672964

ABSTRACT

Pu-erh tea displays cholesterol-lowering properties, but the underlying mechanism has not been elucidated. Theabrownin is one of the most active and abundant pigments in Pu-erh tea. Here, we show that theabrownin alters the gut microbiota in mice and humans, predominantly suppressing microbes associated with bile-salt hydrolase (BSH) activity. Theabrownin increases the levels of ileal conjugated bile acids (BAs) which, in turn, inhibit the intestinal FXR-FGF15 signaling pathway, resulting in increased hepatic production and fecal excretion of BAs, reduced hepatic cholesterol, and decreased lipogenesis. The inhibition of intestinal FXR-FGF15 signaling is accompanied by increased gene expression of enzymes in the alternative BA synthetic pathway, production of hepatic chenodeoxycholic acid, activation of hepatic FXR, and hepatic lipolysis. Our results shed light into the mechanisms behind the cholesterol- and lipid-lowering effects of Pu-erh tea, and suggest that decreased intestinal BSH microbes and/or decreased FXR-FGF15 signaling may be potential anti-hypercholesterolemia and anti-hyperlipidemia therapies.


Subject(s)
Bile Acids and Salts/metabolism , Catechin/analogs & derivatives , Fermented Foods , Gastrointestinal Microbiome/drug effects , Hypercholesterolemia/metabolism , Tea , Adult , Amidohydrolases/metabolism , Animals , Catechin/pharmacology , Chenodeoxycholic Acid/metabolism , Cholesterol/metabolism , Diet, High-Fat , Fecal Microbiota Transplantation , Fibroblast Growth Factors/drug effects , Fibroblast Growth Factors/metabolism , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Ileum/drug effects , Ileum/metabolism , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Male , Metabolomics , Mice , Plant Extracts/pharmacology , RNA, Ribosomal, 16S , Receptors, Cytoplasmic and Nuclear/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Young Adult
20.
Oxid Med Cell Longev ; 2019: 2340392, 2019.
Article in English | MEDLINE | ID: mdl-31781327

ABSTRACT

It has been recognized that iron overload may harm the body's health. Vascular endothelial cells (VECs) are one of the main targets of iron overload injury, and the mechanism involved was thought to be related to the excessive generation of reactive oxygen species (ROS). However, the subcellular and temporal characteristics of ROS generation, potential downstream mechanisms, and target organelles in VECs injured by iron overload have not been expounded yet. In this study, we elucidated the abovementioned issues through both in vivo and in vitro experiments. Mice were fed pellet diets that were supplemented with iron for 4 consecutive months. Results showed that the thoracic aortic strips' endothelium-dependent dilation was significantly impaired and associated with inflammatory changes, noticeable under brown TUNEL-positive staining in microscopy analysis. In addition, the serum content of asymmetric dimethylarginine (ADMA) increased, whereas nitric oxide (NO) levels decreased. Furthermore, the dimethylarginine dimethylaminohydrolase II (DDAHII) expression and activity, as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) in aortic tissue, were inhibited. Human umbilical vein endothelial cells were treated with 50 µM iron dextran for 48 hours, after which the cell viability, NO content, DDAHII expression and activity, and phosphorylation of eNOS decreased and lactate dehydrogenase and caspase-3 activity, ADMA content, and apoptotic cells significantly increased. After the addition of L-arginine (L-Arg) or pAD/DDAHII, the abovementioned changes were reversed. By dynamically detecting the changes of ROS generation in the cytoplasm and mitochondria and interfering with different aspects of signaling pathways, we have confirmed for the first time that excessive ROS originates from the cytoplasm and activates the ROS-induced ROS release (RIRR) mechanism, leading to mitochondrial dysfunction. Together, our data suggested that excessive free iron ions produced excess ROS in the cytoplasm. Thus, excess ROS create one vicious circle by activating the ADMA/eNOS/DDAHII/NO pathway and another vicious circle by activation of the RIRR mechanism, which, when combined, induce a ROS burst, resulting in mitochondrial dysfunction and damaged VECs.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Iron Overload/metabolism , Mitochondria/metabolism , Signal Transduction , Amidohydrolases/metabolism , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Iron Overload/pathology , Mice , Mitochondria/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL