Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446254

ABSTRACT

Glutathione peroxidase-like enzyme is an important enzymatic antioxidant in plants. It is involved in scavenging reactive oxygen species, which can effectively prevent oxidative damage and improve resistance. GPXL has been studied in many plants but has not been reported in potatoes, the world's fourth-largest food crop. This study identified eight StGPXL genes in potatoes for the first time through genome-wide bioinformatics analysis and further studied the expression patterns of these genes using qRT-PCR. The results showed that the expression of StGPXL1 was significantly upregulated under high-temperature stress, indicating its involvement in potato defense against high-temperature stress, while the expression levels of StGPXL4 and StGPXL5 were significantly downregulated. The expression of StGPXL1, StGPXL2, StGPXL3, and StGPXL6 was significantly upregulated under drought stress, indicating their involvement in potato defense against drought stress. After MeJA hormone treatment, the expression level of StGPXL6 was significantly upregulated, indicating its involvement in the chemical defense mechanism of potatoes. The expression of all StGPXL genes is inhibited under biotic stress, which indicates that GPXL is a multifunctional gene family, which may endow plants with resistance to various stresses. This study will help deepen the understanding of the function of the potato GPXL gene family, provide comprehensive information for the further analysis of the molecular function of the potato GPXL gene family as well as a theoretical basis for potato molecular breeding.


Subject(s)
Gene Expression Regulation, Plant , Genome-Wide Association Study , Glutathione Peroxidase , Plant Proteins , Solanum tuberosum , Gene Expression Profiling , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum tuberosum/classification , Solanum tuberosum/enzymology , Solanum tuberosum/genetics , Stress, Physiological/genetics , Gene Duplication/genetics , Conserved Sequence/genetics , Amino Acid Motifs/genetics , Arabidopsis Proteins/genetics , Gene Ontology
2.
Int J Biol Macromol ; 148: 817-832, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31962068

ABSTRACT

MYB transcription factors comprise one of the largest families in plant kingdom, which play a variety of functions in plant developmental processes and defence responses, the R2R3-MYB members are the predominant form found in higher plants. In the present study, a total of 111 StR2R3-MYB transcription factors were identified and further phylogenetically classified into 31 subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that the segmental duplication events played a crucial role in the expansion of StR2R3-MYB gene family. Synteny analysis indicated that 37 and 13 StR2R3-MYB genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and these gene pairs have evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-preferential and abiotic stress-responsive StR2R3-MYB genes. We further analyzed StR2R3-MYB genes might be involved in anthocyanin biosynthesis and drought stress by using RNA-seq data of pigmented tetraploid potato cultivars and drought-sensitive and -tolerant tetraploid potato cultivars under drought stress, respectively. Moreover, EAR motifs were found in 21 StR2R3-MYB proteins and 446 pairs of proteins were predicted to interact with 21 EAR motif-containing StR2R3-MYB proteins by constructing the interaction network with medium confidence (0.4). Additionally, Gene Ontology (GO) analysis of the 21 EAR motif-containing StR2R3-MYB proteins was performed to further investigate their functions. This work will facilitate future biologically functional studies of potato StR2R3-MYB transcription factors and enrich the knowledge of MYB superfamily genes in plant species.


Subject(s)
Gene Expression Regulation, Plant/genetics , Genes, myb/genetics , Genome, Plant/genetics , Plant Proteins/genetics , Solanum tuberosum/genetics , Transcription Factors/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Arabidopsis/genetics , Droughts , Gene Expression Profiling/methods , Multigene Family/genetics , Phylogeny , Stress, Physiological/genetics
3.
Plant Mol Biol ; 102(1-2): 123-141, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31776846

ABSTRACT

KEY MESSAGE: Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.


Subject(s)
Brassica rapa/genetics , CYS2-HIS2 Zinc Fingers/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Transcription Factors/genetics , Amino Acid Motifs/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica rapa/metabolism , CYS2-HIS2 Zinc Fingers/physiology , Flowers/growth & development , Gene Expression Profiling , Glucuronidase/metabolism , Phylogeny , Plant Development/genetics , Plant Development/physiology , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Protein Interaction Maps
4.
J Cell Mol Med ; 23(5): 3683-3695, 2019 05.
Article in English | MEDLINE | ID: mdl-30907511

ABSTRACT

Salvianolic acid B (Sal B), a major bioactive component of Chinese herb, was identified as a mediator for bone metabolism recently. The aim of this study is to investigate the underlying mechanisms by which Sal B regulates osteogenesis and adipogenesis. We used MC3T3-E1 and 3T3-L1 as the study model to explore the changes of cell differentiation induced by Sal B. The results indicated that Sal B at different concentrations had no obvious toxicity effects on cell proliferation during differentiation. Furthermore, Sal B facilitated osteogenesis but inhibited adipogenesis by increasing the expression of transcriptional co-activator with PDZ-binding motif (TAZ). Accordingly, TAZ knock-down offset the effects of Sal B on cell differentiation into osteoblasts or adipocytes. Notably, the Sal B induced up-expression of TAZ was blocked by U0126 (the MEK-ERK inhibitor), rather than LY294002 (the PI3K-Akt inhibitor). Moreover, Sal B increased the p-ERK/ERK ratio to regulate the TAZ expression as well as the cell differentiation. In summary, this study suggests for the first time that Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis by activating MEK-ERK signalling pathway, which provides evidence for Sal B to be used as a potential therapeutic agent for the management of bone diseases.


Subject(s)
Adipogenesis/drug effects , Benzofurans/pharmacology , Drugs, Chinese Herbal/pharmacology , MAP Kinase Signaling System/drug effects , Osteogenesis/drug effects , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/genetics , Amino Acid Motifs/genetics , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/genetics , Gene Expression Regulation/drug effects , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Gene ; 697: 103-117, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30776460

ABSTRACT

HD-ZIP (Homeodomain leucine zipper) transcription factors play an important regulatory role in stress resistance in plants. The purpose of this study was to analyze the characteristics of the HD-ZIP genes/proteins and to study their expression profiles under high and low temperature conditions in potato (Solanum tuberosum L.). A strict homology search was used to find 43 HD-ZIP genes located on potato chromosomes 1-12. Exons/introns, protein features and conserved motifs were analyzed, and six segment duplications were identified from 43 HD-ZIP genes. Then, we analyzed the data from the PGSC (Potato Genome Sequencing Consortium) database regarding the expression of 43 HD-ZIP genes that were induced by biotic and abiotic stresses and phytohormone treatments and conducted an expression analysis for these genes across all potato life stages. Additionally, the expression levels of 13 HD-ZIP genes were analyzed under high temperature (37 °C) and low temperature (4 °C) conditions. The results showed that the transcript levels of all 13 genes changed, which indicated that these genes respond to heat and cold in plants. Especially for StHOX20, the expression significantly upregulated in roots at 37 °C and 4 °C. Our findings laid the foundation and provided clues for understanding the biological functions of HD-ZIP family genes.


Subject(s)
Homeodomain Proteins/genetics , Leucine Zippers/genetics , Solanum tuberosum/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genome, Plant/genetics , Phylogeny , Plant Proteins/genetics , Transcription Factors
6.
Plant Cell ; 29(6): 1184-1195, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28522546

ABSTRACT

When plant-pathogenic oomycetes infect their hosts, they employ a large arsenal of effector proteins to establish a successful infection. Some effector proteins are secreted and are destined to be translocated and function inside host cells. The largest group of translocated proteins from oomycetes is the RxLR effectors, defined by their conserved N-terminal Arg-Xaa-Leu-Arg (RxLR) motif. However, the precise role of this motif in the host cell translocation process is unclear. Here, detailed biochemical studies of the RxLR effector AVR3a from the potato pathogen Phytophthora infestans are presented. Mass spectrometric analysis revealed that the RxLR sequence of native AVR3a is cleaved off prior to secretion by the pathogen and the N terminus of the mature effector was found likely to be acetylated. High-resolution NMR structure analysis of AVR3a indicates that the RxLR motif is well accessible to potential processing enzymes. Processing and modification of AVR3a is to some extent similar to events occurring with the export element (PEXEL) found in malaria effector proteins from Plasmodium falciparum These findings imply a role for the RxLR motif in the secretion of AVR3a by the pathogen, rather than a direct role in the host cell entry process itself.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Phytophthora infestans/metabolism , Phytophthora infestans/pathogenicity , Solanum tuberosum/microbiology , Amino Acid Motifs/genetics , Amino Acid Motifs/physiology , Fungal Proteins/genetics , Mass Spectrometry , Phytophthora infestans/genetics
7.
Biochem J ; 474(9): 1481-1493, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28270545

ABSTRACT

TMEM165 deficiencies lead to one of the congenital disorders of glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi manganese homeostasis defect and that Mn2+ supplementation was sufficient to rescue normal glycosylation. In the present paper, we highlight TMEM165 as a novel Golgi protein sensitive to manganese. When cells were exposed to high Mn2+ concentrations, TMEM165 was degraded in lysosomes. Remarkably, while the variant R126H was sensitive upon manganese exposure, the variant E108G, recently identified in a novel TMEM165-CDG patient, was found to be insensitive. We also showed that the E108G mutation did not abolish the function of TMEM165 in Golgi glycosylation. Altogether, the present study identified the Golgi protein TMEM165 as a novel Mn2+-sensitive protein in mammalian cells and pointed to the crucial importance of the glutamic acid (E108) in the cytosolic ELGDK motif in Mn2+-induced degradation of TMEM165.


Subject(s)
Golgi Apparatus/drug effects , Lysosomes/drug effects , Manganese/pharmacology , Membrane Proteins/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Antiporters , Blotting, Western , Calcium-Transporting ATPases/genetics , Calcium-Transporting ATPases/metabolism , Cation Transport Proteins , Dose-Response Relationship, Drug , Gene Knockdown Techniques , Glutamates/genetics , Glutamates/metabolism , Glycosylation/drug effects , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Humans , Lysosomes/metabolism , Membrane Proteins/genetics , Microscopy, Confocal , Mutation , Proteolysis/drug effects
8.
Biochimie ; 132: 28-37, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27770627

ABSTRACT

Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway.


Subject(s)
Membrane Proteins/genetics , Nicotiana/genetics , Phylogeny , Plant Proteins/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Genome, Plant/genetics , Humans , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Multigene Family , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/virology , Plant Proteins/classification , Plant Proteins/metabolism , Plant Viruses/genetics , Plant Viruses/physiology , Protein Binding , RNA/genetics , RNA/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Solanum tuberosum/virology , Nicotiana/metabolism , Nicotiana/virology , Viroids/genetics , Viroids/physiology
9.
Bioinformatics ; 31(3): 332-9, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25304778

ABSTRACT

MOTIVATION: Argonaute-interacting WG/GW proteins are characterized by the presence of repeated sequence motifs containing glycine (G) and tryptophan (W). The motifs seem to be remarkably adaptive to amino acid substitutions and their sequences show non-contiguity. Our previous approach to the detection of GW domains, based on scoring their gross amino acid composition, allowed annotation of several novel proteins involved in gene silencing. The accumulation of new experimental data and more advanced applications revealed some deficiency of the algorithm in prediction selectivity. Additionally, W-motifs, though critical in gene regulation, have not yet been annotated in any available online resources. RESULTS: We present an improved set of computational tools allowing efficient management and annotation of W-based motifs involved in gene silencing. The new prediction algorithms provide novel functionalities by annotation of the W-containing domains at the local sequence motif level rather than by overall compositional properties. This approach represents a significant improvement over the previous method in terms of prediction sensitivity and selectivity. Application of the algorithm allowed annotation of a comprehensive list of putative Argonaute-interacting proteins across eukaryotes. An in-depth characterization of the domains' properties indicates its intrinsic disordered character. In addition, we created a knowledge-based portal (whub) that provides access to tools and information on RNAi-related tryptophan-containing motifs. AVAILABILITY AND IMPLEMENTATION: The web portal and tools are freely available at http://www.comgen.pl/whub. CONTACT: wmk@amu.edu.pl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Amino Acid Motifs/genetics , Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , Glycine/chemistry , Protein Binding/genetics , Repetitive Sequences, Amino Acid/genetics , Tryptophan/chemistry , Argonaute Proteins/genetics , Protein Structure, Tertiary , Software
10.
Dev Comp Immunol ; 44(1): 1-11, 2014 May.
Article in English | MEDLINE | ID: mdl-24287270

ABSTRACT

A hepcidin-like gene (cmHep) was cloned and characterized from the liver of the blotched snakehead Channa maculata. The complete cmHep cDNA was 756 bp in length, containing an open reading frame of 270 bp (encoding 89 amino acids), flanked by 210 bp and 276 bp of 5' and 3' untranslated regions, respectively. The deduced peptide of 89 amino acids consisted of 24 aa, 40 aa and 25 aa for signal peptide, prodomain and mature peptide, respectively. The mature peptide had eight cysteines at the identical conserved positions in common with most of other known hepcidins in vertebrates. cmHepc gene displayed a tripartite structure (three exons interrupted by two introns), which organisation was conserved between the blotched snakehead and other fish species. Phylogenetic analysis of hepcidins from C. maculata and other vertebrates showed that major phylogenetic grouping of fish hepcidin coincided with the current euteleosts classification, indicating the multiphyletic evolution of hepcidin in the teleosts. In the Acanthopterygii subclade, there were two distinct additional subclades named as HAMP-Ac1 and HAMP-Ac2. The blotched snakehead hepcidin was in the group HAMP-Ac1, which has the hypothetical iron regulatory sequence [Q-S/I-H-L/I-S/A] motif in N-terminal of mature peptide. The RT-PCR showed cmHep mRNA transcripts were widely distributed in all tissues tested in the blotched snakehead including the liver, gill, intestine, spleen, head kidney and peripheral white blood cell. The most abundant of cmHep mRNA was detected in liver. A significant up-regulation of cmHep expression was detected only in head kidney at 24h post-challenge with Vibrio parahaemolyticus in blotched snakehead adults, no significant differences found in liver, gill, intestine and spleen. The cmHep expression was up-regulated in spleen, head kidney and intestine at 24h post-injection with LPS in blotched snakehead juveniles, liver cmHep expression was not altered. Iron overloading and poly I:C stimulation down-regulated cmHep expression in liver, but did not significantly change cmHep expression in spleen, head kidney and intestine in blotched snakehead juveniles.


Subject(s)
Fishes , Hepcidins/metabolism , Liver/metabolism , Vibrio Infections/metabolism , Vibrio parahaemolyticus/physiology , Amino Acid Motifs/genetics , Amino Acid Sequence , Animals , DNA, Complementary/analysis , Gene Expression Regulation , Hepcidins/genetics , Liver/pathology , Molecular Sequence Data , Phylogeny , Vibrio Infections/genetics
11.
Gene ; 514(2): 75-81, 2013 Feb 10.
Article in English | MEDLINE | ID: mdl-23201414

ABSTRACT

Onion can be used in experimental observation of mitotic cell division in plant science because its chromosome is large and easy to observe. However, molecular genetic studies are difficult in onion because of its large genome size, and only limited information of onion genes has been available to date. Here we cloned and characterized an onion homologue of mitotic RAD21 gene, AcRAD21-1, to develop a molecular marker of mitosis. The N-terminal, middle, and C-terminal regions of deduced AcRAD21-1 protein sequence were conserved with Arabidopsis SYN4/AtRAD21.3 and rice OsRAD21-1, whereas three characteristic types of repetitive motifs (Repeat-1, Repeat-2/2', and Repeat-3) were observed between the conserved regions. Such inserted repetitive amino acid sequences enlarge the AcRAD21-1 protein into almost 200 kDa, which belongs to the largest class of plant proteins. Genomic organization of the AcRAD21-1 locus was also determined, and the possibility of tandem exon duplication in Repeat-2 was revealed. Subsequently, the polyclonal antiserum was raised against the N-terminal region of AcRAD21-1, and purified by affinity chromatography. Immunohistochemical analysis with the purified antibody successfully showed localization of AcRAD21-1 in onion mitosis, suggesting that it can be used as a molecular marker visualizing dynamic movement of cohesin.


Subject(s)
Mitosis/genetics , Onions/genetics , Plant Proteins/genetics , Repetitive Sequences, Amino Acid/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Base Sequence , Blotting, Western , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cloning, Molecular , Exons/genetics , Gene Expression Regulation, Plant , Introns/genetics , Molecular Sequence Data , Onions/cytology , Onions/metabolism , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid
12.
J Biol Chem ; 287(45): 38101-9, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-22977236

ABSTRACT

The mechanism of translocation of RxLR effectors from plant pathogenic oomycetes into the cytoplasm of their host is currently the object of intense research activity and debate. Here, we report the biochemical and thermodynamic characterization of the Phytophthora infestans effector AVR3a in vitro. We show that the amino acids surrounding the RxLR leader mediate homodimerization of the protein. Dimerization was considerably attenuated by a localized mutation within the RxLR motif that was previously described to prevent translocation of the protein into host. Importantly, we confirm that the reported phospholipid-binding properties of AVR3a are mediated by its C-terminal effector domain, not its RxLR leader. However, we show that the observed phospholipid interaction is attributable to a weak association with denatured protein molecules and is therefore most likely physiologically irrelevant.


Subject(s)
Phospholipids/metabolism , Phytophthora infestans/metabolism , Protein Multimerization , Virulence Factors/chemistry , Virulence Factors/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Binding Sites/genetics , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Mutation , Phospholipids/chemistry , Phytophthora infestans/genetics , Plant Diseases/microbiology , Protein Binding , Protein Sorting Signals/genetics , Solanum tuberosum/microbiology , Virulence Factors/genetics
13.
Mol Biol (Mosk) ; 46(1): 118-21, 2012.
Article in Russian | MEDLINE | ID: mdl-22642108

ABSTRACT

In the present work NBS-ARC domain sequences of Rx1 homologues of ten accessions of cultivated and wild potato species which differ in susceptibility to potato virus X were obtained and studied. Within the NBS-ARC domain different indels and nucleotide/amino acid substitutions, including substitutions in the conservative motives of the domain were detected. There were no direct associations between the mutational changes found in the conservative motives of the NBS-ARC domain and the susceptibility of the studied accessions to X virus.


Subject(s)
Plant Proteins/genetics , Protein Structure, Tertiary/genetics , Solanum/genetics , Solanum/virology , Amino Acid Motifs/genetics , Mutation , Phylogeny , Potexvirus/genetics , Sequence Homology, Amino Acid
14.
Biosci Biotechnol Biochem ; 75(7): 1317-24, 2011.
Article in English | MEDLINE | ID: mdl-21737926

ABSTRACT

Genes encoding salt-tolerant and thermostable glutaminases were isolated from Cryptococcus species. The glutaminase gene, CngahA, from C. nodaensis NISL-3771 was 2,052 bp in length and encoded a 684-amino acid protein. The gene, CagahA, from C. albidus ATCC20293 was 2,100 bp in length and encoded a 700-amino acid protein. These glutaminases showed 44% identity. By searches on public databases, we found that these glutaminases are not similar to any other characterized glutaminases, but are similar to certain hypothetical proteins. On searching the conserved domain with the basic local alignment search tool (BLAST), it was found that they have the amidase domain and are members of the amidase signature superfamily. They were expressed in Saccharomyces cerevisiae, and their activity was detected on the cell surface. This study revealed that they are a new type of glutaminase with the amidase signature sequence, and that they form a new glutaminase family.


Subject(s)
Cloning, Molecular , Cryptococcus/enzymology , Glutaminase/genetics , Glutaminase/isolation & purification , Sequence Analysis, Protein/methods , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Cryptococcus/genetics , Cryptococcus/metabolism , DNA, Complementary/chemistry , DNA, Complementary/genetics , Genes , Glutaminase/analysis , Molecular Sequence Data , Molecular Weight , Sequence Alignment
15.
J Virol ; 85(13): 6784-94, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21525344

ABSTRACT

The multifunctional helper component proteinase (HCpro) of potyviruses (genus Potyvirus; Potyviridae) shows self-interaction and interacts with other potyviral and host plant proteins. Host proteins that are pivotal to potyvirus infection include the eukaryotic translation initiation factor eIF4E and the isoform eIF(iso)4E, which interact with viral genome-linked protein (VPg). Here we show that HCpro of Potato virus A (PVA) interacts with both eIF4E and eIF(iso)4E, with interactions with eIF(iso)4E being stronger, as judged by the data of a yeast two-hybrid system assay. A bimolecular fluorescence complementation assay on leaves of Nicotiana benthamiana showed that HCpro from three potyviruses (PVA, Potato virus Y, and Tobacco etch virus) interacted with the eIF(iso)4E and eIF4E of tobacco (Nicotiana tabacum); interactions with eIF(iso)4E and eIF4E of potato (Solanum tuberosum) were weaker. In PVA-infected cells, interactions between HCpro and tobacco eIF(iso)4E were confined to round structures that colocalized with 6K2-induced vesicles. Point mutations introduced to a 4E binding motif identified in the C-terminal region of HCpro debilitated interactions of HCpro with translation initiation factors and were detrimental to the virulence of PVA in plants. The 4E binding motif conserved in HCpro of potyviruses and HCpro-initiation factor interactions suggest new roles for HCpro and/or translation factors in the potyvirus infection cycle.


Subject(s)
Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Potyvirus/enzymology , Protein Binding , Protein Isoforms/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Binding Sites , Cysteine Endopeptidases/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factors , Molecular Sequence Data , Plant Diseases/virology , Plant Leaves/virology , Plant Proteins/genetics , Plant Proteins/metabolism , Potyvirus/genetics , Potyvirus/metabolism , Protein Isoforms/genetics , Sequence Analysis, DNA , Solanum tuberosum/virology , Nicotiana/virology , Two-Hybrid System Techniques , Viral Proteins/genetics
16.
Biosci Biotechnol Biochem ; 75(3): 516-21, 2011.
Article in English | MEDLINE | ID: mdl-21389620

ABSTRACT

Mammalian thioredoxin reductases (TrxRs) contain selenium as selenocysteine (Sec) in the C-terminal redox center -Gly-Cys-Sec-Gly-OH to reduce Trx and other substrates; a Sec-to-Cys substitution in mammalian TrxR yields an almost inactive enzyme. The corresponding tetrapeptide sequence in Drosophila melanogaster TrxR (Dm-TrxR), -Ser-Cys-Cys-Ser-OH, endows the orthologous enzyme with a catalytic competence similar to mammalian selenoenzymes, but implementation of the Ser-containing tetrapeptide sequence SCCS into the mammalian enzyme does not restore the activity of the Sec-to-Cys mutant form (turnover number <2/min). MOPAC calculation suggested that the C-terminal hexapeptide Pro-Ala-Ser-Cys-Cys-Ser-OH functions as a redox center that alleviates the necessity for selenium in Dm-TrxR, and a mutant form of human lung TrxR that mimics this hexapeptide sequence showed improved catalytic turnover (17.4/min for DTNB and 13.2/min for E. coli trx) compared to the Sec-to-Cys mutant. MOPAC calculation also suggested that the dominant form of the Pro-containing hexapeptide is a C+ conformation, which perhaps has a catalytic advantage in facile reduction of the intramolecular disulfide bond between Cys497 and Cys498 by the N-terminal redox center in the neighboring subunit.


Subject(s)
Cysteine/metabolism , Drosophila melanogaster/genetics , Recombinant Proteins/genetics , Selenocysteine/metabolism , Thioredoxin-Disulfide Reductase/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Animals , Base Sequence , Binding Sites/genetics , Biocatalysis , Cysteine/genetics , Drosophila melanogaster/enzymology , Escherichia coli , Humans , Kinetics , Lung/enzymology , Models, Molecular , Molecular Sequence Data , Mutation , Oxidation-Reduction , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Selenium/metabolism , Selenocysteine/genetics , Sequence Homology, Amino Acid , Thioredoxin-Disulfide Reductase/chemistry , Thioredoxin-Disulfide Reductase/metabolism
17.
Biochemistry ; 49(37): 8105-16, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20731332

ABSTRACT

Myo10 is an unconventional myosin with important functions in filopodial motility, cell migration, and cell adhesion. The neck region of Myo10 contains three IQ motifs that bind calmodulin (CaM) or the tissue-restricted calmodulin-like protein (CLP) as light chains. However, little is known about the mechanism of light chain binding to the IQ motifs in Myo10. Binding of CaM and CLP to each IQ motif was assessed by nondenaturing gel electrophoresis and by stopped-flow experiments using fluorescence-labeled CaM and CLP. Although the binding kinetics are different in each case, there are similarities in the mechanism of binding of CaM and CLP to IQ1 and IQ2: for both IQ motifs Ca(2+) increased the binding affinity, mainly by increasing the rate of the forward steps. The general kinetic mechanism comprises a two-step process, which in some cases may involve the binding of a second IQ motif with lower affinity. For IQ3, however, the kinetics of CaM binding is very different from that of CLP. In both cases, binding in the absence of Ca(2+) is poor, and addition of Ca(2+) decreases the K(d) to below 10 nM. However, while the CaM binding kinetics are complex and best fitted by a multistep model, binding of CLP is fitted by a relatively simple two-step model. The results show that, in keeping with growing structural evidence, complexes between CaM or CaM-like myosin light chains and IQ motifs are highly diverse and depend on the specific sequence of the particular IQ motif as well as the light chain.


Subject(s)
Calmodulin/metabolism , Myosins/chemistry , Myosins/metabolism , Amino Acid Motifs/genetics , Base Sequence , Calmodulin/chemistry , Calmodulin/genetics , Kinetics , Myosin Light Chains/chemistry , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Myosins/genetics , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Proteins/genetics , Proteins/metabolism , Pseudopodia/genetics , Pseudopodia/metabolism
18.
Genomics Proteomics Bioinformatics ; 8(1): 42-56, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20451161

ABSTRACT

Phytocystatins constitute a multigene family that regulates the activity of endogenous and/or exogenous cysteine proteinases. Cereal crops like wheat are continuously threatened by a multitude of pathogens, therefore cystatins offer to play a pivotal role in deciding the plant response. In order to study the need of having diverse specificities and activities of various cystatins, we conducted comparative analysis of six wheat cystatins (WCs) with twelve rice, seven barley, one sorghum and ten corn cystatin sequences employing different bioinformatics tools. The obtained results identified highly conserved signature sequences in all the cystatins considered. Several other motifs were also identified, based on which the sequences could be categorized into groups in congruence with the phylogenetic clustering. Homology modeling of WCs revealed 3D structural topology so well shared by other cystatins. Protein-protein interaction of WCs with papain supported the notion that functional diversity is a con-sequence of existing differences in amino acid residues in highly conserved as well as relatively less conserved motifs. Thus there is a significant conservation at the sequential and structural levels; however, concomitant variations maintain the functional diversity in this protein family, which constantly modulates itself to reciprocate the diversity while counteracting the cysteine proteinases.


Subject(s)
Cystatins , Plants/metabolism , Amino Acid Motifs/genetics , Base Sequence , Conserved Sequence/genetics , Cystatins/chemistry , Cystatins/genetics , Cystatins/metabolism , Cysteine Proteases , Dietary Fats, Unsaturated/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Hordeum/genetics , Hordeum/metabolism , Multigene Family , Oryza/genetics , Oryza/metabolism , Papain/genetics , Papain/metabolism , Plant Oils/metabolism , Plants/genetics , Poaceae/genetics , Poaceae/metabolism , Protein Structure, Tertiary/genetics , Proteins/genetics , Proteins/metabolism , Research , Triticum/genetics , Triticum/metabolism , Zea mays/genetics , Zea mays/metabolism
19.
Eukaryot Cell ; 9(3): 424-37, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20038606

ABSTRACT

Aspergillus fumigatus has three zinc transporter-encoding genes whose expression is regulated by both pH and the environmental concentration of zinc. We have previously reported that the zrfA and zrfB genes of A. fumigatus are transcribed at higher levels and are required for fungal growth under acidic zinc-limiting conditions whereas they are dispensable for growth in neutral or alkaline zinc-limiting media. Here we report that the transporter of the zinc uptake system that functions in A. fumigatus growing in neutral or alkaline environments is encoded by zrfC. The transcription of zrfC occurs divergently with respect to the adjacent aspf2 gene, which encodes an immunodominant antigen secreted by A. fumigatus. The two genes-zrfC and aspf2-are required to different extents for fungal growth in alkaline and extreme zinc-limiting media. Indeed, these environmental conditions induce the simultaneous transcription of both genes mediated by the transcriptional regulators ZafA and PacC. ZafA upregulates the expression of zrfC and aspf2 under zinc-limiting conditions regardless of the ambient pH, whereas PacC represses the expression of these genes under acidic growth conditions. Interestingly, the mode of action of PacC for zrfC-aspf2 transcription contrasts with the more widely accepted model for PacC function, according to which under alkaline growth conditions PacC would activate the transcription of alkaline-expressed genes but would repress the transcription of acid-expressed genes. In sum, this report provides a good framework for investigating several important aspects of the biology of species of Aspergillus, including the repression of alkaline genes by PacC at acidic pH and the interrelationship that must exist between tissue pH, metal availability in the host tissue, and fungal virulence.


Subject(s)
Aspergillus fumigatus/physiology , Cation Transport Proteins/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/physiology , Homeostasis/physiology , Zinc/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Aspergillus fumigatus/drug effects , Cation Transport Proteins/genetics , Cell Proliferation , Cell Survival/physiology , DNA, Complementary/genetics , Down-Regulation/genetics , Fungal Proteins/genetics , Gene Components/genetics , Gene Deletion , Gene Expression/genetics , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Phylogeny , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Trans-Activators/genetics , Transcription Factors/genetics , Transfection , Up-Regulation/genetics , Zinc/deficiency , Zinc/pharmacology
20.
Biochemistry ; 48(39): 9266-77, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19705835

ABSTRACT

The chemoreceptors of Escherichia coli and Salmonella typhimurium form stable oligomers that associate with the coupling protein CheW and the histidine kinase CheA to form an ultrasensitive, ultrastable signaling lattice. Attractant binding to the periplasmic domain of a given receptor dimer triggers a transmembrane conformational change transmitted through the receptor to its cytoplasmic kinase control module, a long four-helix bundle that binds and regulates CheA kinase. The kinase control module comprises three functional regions: the adaptation region possessing the receptor adaptation sites, a coupling region that transmits signals between other regions, and the protein interaction region possessing contact sites for receptor oligomerization and for CheA-CheW binding. On the basis of the spatial clustering of known signal locking Cys substitutions and engineered disulfide bonds, this study develops the yin-yang hypothesis for signal transmission through the kinase control module. This hypothesis proposes that signals are transmitted through the four-helix bundle via changes in helix-helix packing and that the helix packing changes in the adaptation and protein interaction regions are tightly and antisymmetrically coupled. Specifically, strong helix packing in the adaptation region stabilizes the receptor on state, while strong helix packing in the protein interaction region stabilizes the off state. To test the yin-yang hypothesis, conserved sockets likely to strengthen specific helix-helix contacts via knob-in-hole packing interactions were identified in the adaptation, coupling, and protein interaction regions. For 32 sockets, the knob side chain was truncated to Ala to weaken the knob-in-hole packing and thereby destabilize the local helix-helix interaction provided by that socket. We term this approach a "knob truncation scan". Of the 32 knob truncations, 28 yielded stable receptors. Functional analysis of the signaling state of these receptors revealed seven lock-off knob truncations, all located in the adaptation region, that trap the receptor in its "off" signaling state (low kinase activity, high methylation activity). Also revealed were five lock-on knob truncations, all located in the protein interaction region, that trap the "on" state (high kinase activity, low methylation activity). These findings provide strong evidence that a yin-yang coupling mechanism generates concerted, antisymmetric helix-helix packing changes within the adaptation and protein interaction regions during receptor on-off switching. Conserved sockets that stabilize local helix-helix interactions play a central role in this mechanism: in the on state, sockets are formed in the adaptation region and disrupted in the protein interaction region, while the opposite is true in the off state.


Subject(s)
Bacterial Proteins/chemistry , Chemotaxis , Escherichia coli Proteins/chemistry , Membrane Proteins/chemistry , Models, Chemical , Point Mutation , Protein Interaction Mapping/methods , Receptors, Amino Acid/chemistry , Signal Transduction/physiology , Amino Acid Motifs/genetics , Aspartic Acid/genetics , Aspartic Acid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chemotaxis/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/physiology , Histidine Kinase , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methyl-Accepting Chemotaxis Proteins , Methyltransferases/chemistry , Mutagenesis, Site-Directed , Protein Conformation , Protein Structure, Secondary/genetics , Receptors, Amino Acid/genetics , Receptors, Amino Acid/physiology , Salmonella typhimurium/chemistry , Salmonella typhimurium/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL