Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 357
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Ethnopharmacol ; 329: 118145, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38582153

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic famous prescription that has been utilized for centuries to address dementia. New investigations have shown that the anti-dementia effect of KXS is connected with improved neuroinflammation. Nevertheless, the underlying mechanism is not well elucidated. AIM OF THE STUDY: We propose to discover the ameliorative impact of KXS on Alzheimer's disease (AD) and its regulatory role on the mitochondrial autophagy-nod-like receptor protein 3 (NLRP3) inflammasome pathway. MATERIALS AND METHODS: The Y maze, Morris water maze, and new objection recognition tests were applied to ascertain the spatial learning and memory capacities of amyloid precursor protein/presenilin 1 (APP/PS1) mice after KXS-treatment. Meanwhile, the biochemical indexes of the hippocampus were detected by reagent kits. The pathological alterations and mitochondrial autophagy in the mice' hippocampus were detected utilizing hematoxylin and eosin (H&E), immunohistochemistry, immunofluorescence staining, and transmission electron microscopy. Besides, the PTEN-induced putative kinase 1 (PINK1)/Parkin and NLRP3 inflammasome pathways protein expressions were determined employing the immunoblot analysis. RESULTS: The results of behavioral tests showed that KXS significantly enhanced the AD mice' spatial learning and memory capacities. Furthermore, KXS reversed the biochemical index levels and reduced amyloid-ß protein deposition in AD mice brains. Besides, H&E staining showed that KXS remarkably ameliorated the neuronal damage in AD mice. Concurrently, the results of transmission electron microscopy suggest that KXS ameliorated the mitochondrial damage in microglia and promoted mitochondrial autophagy. Moreover, the immunofluorescence outcomes exhibited that KXS promoted the expression of protein 1 light chain 3B (LC3B) associated with microtubule and the generation of autophagic flux. Notably, the immunofluorescence co-localization results confirmed the presence of mitochondrial autophagy in microglia. Finally, KXS promoted the protein expressions of the PINK1/Parkin pathway and reduced the activation of NLRP3 inflammasome. Most importantly, these beneficial effects of KXS were attenuated by the mitochondrial autophagy inhibitor chloroquine. CONCLUSION: KXS ameliorates AD-related neuropathology and cognitive impairment in APP/PS1 mice by enhancing the mitochondrial autophagy and suppressing the NLRP3 inflammasome pathway.


Subject(s)
Alzheimer Disease , Autophagy , Cognitive Dysfunction , Drugs, Chinese Herbal , Inflammasomes , Mice, Transgenic , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Autophagy/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Disease Models, Animal , Presenilin-1/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Signal Transduction/drug effects , Maze Learning/drug effects , Mice, Inbred C57BL , Protein Kinases
2.
J Tradit Chin Med ; 44(2): 289-302, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504535

ABSTRACT

OBJECTIVE: To discuss the influence of Sailuotong (, SLT) on the Neurovascular Unit (NVUs) of amyloid precursor protein (APP)/presenilin-1(PS1) mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease (AD). METHODS: The mice were allocated into the following nine groups: (a) the C57 Black (C57BL) sham-operated group (control group), (b) ischaemic treatment in C57BL mice (the C57 ischaemic group), (c) the APP/PS1 sham surgery group (APP/PS1 model group), (d) ischaemic treatment in APP/PS1 mice (APP/PS1 ischaemic group), (e) C57BL mice treated with aspirin following ischaemic treatment (C57BL ischaemic + aspirin group), (f) C57BL mice treated with SLT following ischaemic treatment (C57BL ischaemic + SLT group), (g) APP/PS1 mice treated with SLT (APP/PS1 + SLT group), (h) APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment (APP/PS1 ischaemic + donepezil hydrochloride group) and (i) APP/PS1 mice treated with SLT following ischaemic treatment (APP/PS1 ischaemic + SLT group). The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism. The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice. The hippocampus of each mouse was observed by haematoxylin and eosin (HE) and Congo red staining. The ultrastructure of NVUs in each group was observed by electron microscopy, and various biochemical indicators were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression level was detected by Western blot. The mRNA expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice, which were restored by SLT. The results of HE staining showed that SLT restored the pathological changes of the NVUs. The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex and hippocampus of the APP/PS1 and APP/PS1 ischaemic mice. Furthermore, SLT significantly reduced the content of Aß, improved the vascular endothelium and repaired the mitochondrial structures. The ELISA detection, western blot detection and qRT-PCR showed that SLT significantly increased the vascular endothelial growth factor (VEGF), angiopoietin and basic fibroblast growth factor, as well as the levels of gene and protein expression of low-density lipoprotein receptor-related protein-1 (LRP-1) and VEGF in brain tissue. CONCLUSIONS: By increasing the expression of VEGF, SLT can promote vascular proliferation, up-regulate the expression of LRP-1, promote the clearance of Aß and improve the cognitive impairment of APP/PS1 mice. These results confirm that SLT can improve AD by promoting vascular proliferation and Aß clearance to protect the function of NVUs.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Drugs, Chinese Herbal , Mice , Animals , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice, Transgenic , Vascular Endothelial Growth Factor A , Donepezil , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Congo Red , Mice, Inbred C57BL , Aspirin , Disease Models, Animal
3.
J Ethnopharmacol ; 328: 118113, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38548119

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a progressive neurodegenerative disease. Tianma-Gouteng Pair (TGP), commonly prescribed as a pair-herbs, can be found in many Chinese medicine formulae to treat brain diseases. However, the neuroprotective effects and molecular mechanisms of TGP remained unexplored. AIM OF THE STUDY: This study investigated the difference between the TgCRND8 and 5 × FAD transgenic mice, the anti-AD effects of TGP, and underlying molecular mechanisms of TGP against AD through the two mouse models. METHODS: Briefly, three-month-old TgCRND8 and 5 × FAD mice were orally administered with TGP for 4 and 6 months, respectively. Behavioral tests were carried out to determine the neuropsychological functions. Moreover, immunofluorescence and western blotting assays were undertaken to reveal the molecular mechanisms of TGP. RESULTS: Although TgCRND8 and 5 × FAD mice had different beta-amyloid (Aß) burdens, neuroinflammation status, and cognition impairments, TGP exerted neuroprotective effects against AD in the two models. In detail, behavioral tests revealed that TGP treatment markedly ameliorated the anxiety-like behavior, attenuated the recognition memory deficits, and increased the spatial learning ability as well as the reference memory of TgCRND8 and 5 × FAD mice. Moreover, TGP treatment could regulate the beta-amyloid precursor protein (APP) processing by inhibiting the Aß production enzymes such as ß- and γ-secretases and activating Aß degrading enzyme to reduce Aß accumulation. In addition, TGP reduced the Aß42 level, the ratio of Aß42/Αß40, Aß accumulation, and tau hyperphosphorylation in both the 5 × FAD and TgCRND8 mouse models. Furthermore, TGP ameliorated neuroinflammation by decreasing the densities of activated microglia and astrocytes, and inhibiting the production of inflammatory cytokines. TGP upregulated the SIRT1 and AMPK, and downregulated sterol response element binding protein 2 (SREBP2) in the brain of TgCRND8 mice and deactivation of the EPhA4 and c-Abl in the brain tissues of 5 × FAD mice. CONCLUSION: Our experiments for the first time revealed the neuroprotective effects and molecular mechanism of TGP on 5 × FAD and TgCRND8 transgenic mouse models of different AD stages. TGP decreased the level of Aß aggregates, improved the tauopathy, and reduced the neuroinflammation by regulation of the SIRT1/AMPK/SREBP2 axis and deactivation of EPhA4/c-Abl signaling pathway in the brains of TgCRND8 and 5 × FAD mice, respectively. All these findings unequivocally confirmed that the TGP would be promising in developing into an anti-AD therapeutic pharmaceutical.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mice, Transgenic , Sirtuin 1 , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroinflammatory Diseases , AMP-Activated Protein Kinases , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Cognition , Disease Models, Animal
4.
Front Endocrinol (Lausanne) ; 15: 1336854, 2024.
Article in English | MEDLINE | ID: mdl-38370359

ABSTRACT

Diabetic Peripheral Neuropathy (DPN) poses an escalating threat to public health, profoundly impacting well-being and quality of life. Despite its rising prevalence, the pathogenesis of DPN remains enigmatic, and existing clinical interventions fall short of achieving meaningful reversals of the condition. Notably, neurostimulation techniques have shown promising efficacy in alleviating DPN symptoms, underscoring the imperative to elucidate the neurobiochemical mechanisms underlying DPN. This study employs an integrated multi-omics approach to explore DPN and its response to neurostimulation therapy. Our investigation unveiled a distinctive pattern of vesicular glutamate transporter 2 (VGLUT2) expression in DPN, rigorously confirmed through qPCR and Western blot analyses in DPN C57 mouse model induced by intraperitoneal Streptozotocin (STZ) injection. Additionally, combining microarray and qPCR methodologies, we revealed and substantiated variations in the expression of the Amyloid Precursor Protein (APP) family in STZ-induced DPN mice. Analyzing the transcriptomic dataset generated from neurostimulation therapy for DPN, we intricately explored the differential expression patterns of VGLUT2 and APPs. Through correlation analysis, protein-protein interaction predictions, and functional enrichment analyses, we predicted the key biological processes involving VGLUT2 and the APP family in the pathogenesis of DPN and during neurostimulation therapy. This comprehensive study not only advances our understanding of the pathogenesis of DPN but also provides a theoretical foundation for innovative strategies in neurostimulation therapy for DPN. The integration of multi-omics data facilitates a holistic view of the molecular intricacies of DPN, paving the way for more targeted and effective therapeutic interventions.


Subject(s)
Amyloid beta-Protein Precursor , Diabetes Mellitus, Experimental , Vesicular Glutamate Transport Protein 2 , Animals , Mice , Amyloid beta-Protein Precursor/metabolism , Blotting, Western , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Quality of Life , Streptozocin , Vesicular Glutamate Transport Protein 2/metabolism
5.
Brain Res ; 1823: 148683, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37992796

ABSTRACT

Recently, the underlying mechanisms of acupuncture on the effects of Alzheimer's disease (AD) treatment have not been fully elucidated. Defects in ALP (autophagy-lysosomal pathway) and TFEB (transcription factor EB) play critical roles in AD. Our previous studies have demonstrated that electroacupuncture (EA) can ameliorate both ß-amyloid (Aß) pathology and cognitive function in APP/PS1 mice. However, the effects of EA on the expression of ALP and TFEB and their potential mechanisms require further investigation. Twenty-eight male APP/PS1 mice were randomly divided into Tg and Tg + EA groups, and 14 C57BL/6 mice served as the wild-type (WT) group. After 1 week of adaptation to the living environment, mice in the Tg + EA group were restrained in mouse bags and received manual acupuncture at Baihui (GV20) acupoint and EA stimulation at bilateral Yongquan (KI1) acupoints, using the same restraint method for WT and Tg groups. The intervention was applied for 15 min each time, every other day, lasting for six weeks. After intervention, the spatial learning and memory of the mice was assessed using the Morris water maze test. Hippocampal Aß expression was detected by immunohistochemistry and ELISA. Transmission electron microscopy (TEM) was used to observe autophagic vacuoles and autolysosomes in the hippocampus. Immunofluorescence method was applied to examine the expression of TFEB in CA1 region of the hippocampus and the co-localization of CTSD or LAMP1 with Aß. Western blot analysis was performed to evaluate the changes of LC3, p62, CTSD, LAMP1, TFEB and n-TFEB (nuclear TFEB) in the hippocampus. The findings of behavioral assessment indicated that EA alleviated the cognitive impairment of APP/PS1 mice. Compared with the WT group, the Tg group showed significant cognitive decline and abnormalities in ALP and TFEB function (P < 0.01 or P < 0.05). However, these abnormal changes were alleviated in the Tg + EA group (P < 0.01 or P < 0.05). The Tg group also showed more senile plaques and ALP dysfunction features, compared with the WT group, and these changes were alleviated by EA. In conclusion, this study highlights that EA ameliorated Aß pathology-related cognitive impairments in the APP/PS1 model associated with ALP and TFEB dysfunction.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Electroacupuncture , Animals , Male , Mice , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Transgenic
6.
Brain Res ; 1823: 148681, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37992797

ABSTRACT

In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-ß peptide oligomers (Aß). It has become clear that Aß disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aß peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aß residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aß. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARÉ£-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aß peptide deposits, as well as other markers of the etiology of SAD.


Subject(s)
Alzheimer Disease , Fatty Acids, Omega-3 , Humans , Animals , Mice , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/metabolism , Fatty Acids, Omega-3/metabolism , Estradiol/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Mice, Transgenic
7.
J Ethnopharmacol ; 321: 117569, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38086513

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease among old adults. As a traditional Chinese medicine, the herbal decoction Tian-Si-Yin consists of Morinda officinalis How. and Cuscuta chinensis Lam., which has been widely used to nourish kidney. Interestingly, Tian-Si-Yin has also been used to treat dementia, depression and other neurological conditions. However, its therapeutic potential for neurodegenerative diseases such as AD and the underlying mechanisms remain unclear. AIM OF THE STUDY: To evaluate the therapeutic effect of the herbal formula Tian-Si-Yin against AD and to explore the underlying mechanisms. MATERIALS AND METHODS: The N2a cells treated with amyloid ß (Aß) peptide or overexpressing amyloid precursor protein (APP) were used to establish cellular models of AD. The in vivo anti-AD effects were evaluated by using Caenorhabditis elegans and 3 × Tg-AD mouse models. Tian-Si-Yin was orally administered to the mice for 8 weeks at a dose of 10, 15 or 20 mg/kg/day, respectively. Its protective role on memory deficits of mice was examined using the Morris water maze and fear conditioning tests. Network pharmacology, proteomic analysis and ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) were used to explore the underlying molecular mechanisms, which were further investigated by Western blotting and immunohistochemistry. RESULTS: Tian-Si-Yin was shown to improve cell viability of Aß-treated N2a cells and APP-expressing N2a-APP cells. Tian-Si-Yin was also found to reduce ROS level and extend lifespan of transgenic AD-like C. elegans model. Oral administration of Tian-Si-Yin at medium dose was able to effectively rescue memory impairment in 3 × Tg mice. Tian-Si-Yin was further shown to suppress neuroinflammation by inhibition of glia cell activation and downregulation of inflammatory cytokines, diminishing tau phosphoralytion and Aß deposition in the mice. Using UHPLC-MS/MS and network pharmacology technologies, 17 phytochemicals from 68 components of Tian-Si-Yin were identified as potential anti-AD components. MAPK1, BRAF, TTR and Fyn were identified as anti-AD targets of Tian-Si-Yin from network pharmacology and mass spectrum. CONCLUSIONS: This study has established the protective effect of Tian-Si-Yin against AD and demonstrates that Tian-Si-Yin is capable of improving Aß level, tau pathology and synaptic disorder by regulating inflammatory response.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroinflammatory Diseases , Neurodegenerative Diseases/drug therapy , Caenorhabditis elegans/metabolism , Proteomics , Tandem Mass Spectrometry , Mice, Transgenic , Maze Learning , Amyloid beta-Protein Precursor/metabolism , Memory Disorders/drug therapy , Disease Models, Animal
8.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959001

ABSTRACT

Cannabidiol (CBD), a major non-psychoactive component of the cannabis plant, has shown therapeutic potential in Alzheimer's disease (AD). In this study, we identified potential CBD targets associated with AD using a drug-target binding affinity prediction model and generated CBD analogs using a genetic algorithm combined with a molecular docking system. As a result, we identified six targets associated with AD: Endothelial NOS (ENOS), Myeloperoxidase (MPO), Apolipoprotein E (APOE), Amyloid-beta precursor protein (APP), Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), and Presenilin-1 (PSEN1). Furthermore, we generated CBD analogs for each target that optimize for all desired drug-likeness properties and physicochemical property filters, resulting in improved pIC50 values and docking scores compared to CBD. Molecular dynamics (MD) simulations were applied to analyze each target's CBD and highest-scoring CBD analogs. The MD simulations revealed that the complexes of ENOS, MPO, and ADAM10 with CBD exhibited high conformational stability, and the APP and PSEN1 complexes with CBD analogs demonstrated even higher conformational stability and lower interaction energy compared to APP and PSEN1 complexes with CBD. These findings demonstrated the capable binding of the six identified targets with CBD and the enhanced binding stability achieved with the developed CBD analogs for each target.


Subject(s)
Alzheimer Disease , Cannabidiol , Humans , Alzheimer Disease/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Molecular Docking Simulation , Amyloid beta-Protein Precursor/metabolism , Molecular Dynamics Simulation
9.
Nutrients ; 15(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37836528

ABSTRACT

The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer's disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear. The present study explored the effects of the supplementation of MCTs combined with DHA in improving brain glucose metabolism and decreasing AD-related protein expression levels in APP/PS1 mice. The mice were assigned into four dietary treatment groups: the control group, MCTs group, DHA group, and MCTs + DHA group. The corresponding diet of the respective groups was fed to mice from the age of 3 to 11 months. The results showed that the supplementation of MCTs combined with DHA could increase serum octanoic acid (C8:0), decanoic acid (C10:0), DHA, and ß-hydroxybutyrate (ß-HB) levels; improve glucose metabolism; and reduce nerve cell apoptosis in the brain. Moreover, it also aided with decreasing the expression levels of amyloid beta protein (Aß), amyloid precursor protein (APP), ß-site APP cleaving enzyme-1 (BACE1), and presenilin-1 (PS1) in the brain. Furthermore, the supplementation of MCTs + DHA was significantly more beneficial than that of MCTs or DHA alone. In conclusion, the supplementation of MCTs combined with DHA could improve energy metabolism in the brain of APP/PS1 mice, thus decreasing nerve cell apoptosis and inhibiting the expression of Aß.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Docosahexaenoic Acids/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Mice, Transgenic , Aspartic Acid Endopeptidases/metabolism , Disease Models, Animal , Alzheimer Disease/drug therapy , Brain/metabolism , Dietary Supplements , Triglycerides/metabolism
10.
J Neuroinflammation ; 20(1): 240, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864249

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Impaired autophagy in plaque-associated microglia (PAM) has been reported to accelerate amyloid plaque deposition and cognitive impairment in AD pathogenesis. Recent evidence suggests that the transcription factor EB (TFEB)-mediated activation of the autophagy-lysosomal pathway is a promising treatment approach for AD. Moreover, the complementary therapy of intermittent hypoxia therapy (IHT) has been shown to upregulate autophagy and impart beneficial effects in patients with AD. However, the effect of IHT on PAM remains unknown. METHODS: 8-Month-old APP/PS1 mice were treated with IHT for 28 days. Spatial learning memory capacity and anxiety in mice were investigated. AD pathology was determined by the quantity of nerve fibers and synapses density, numbers of microglia and neurons, Aß plaque deposition, pro-inflammatory factors, and the content of Aß in the brain. TFEB-mediated autophagy was determined by western blot and qRT-PCR. Primary microglia were treated with oligomeric Aß 1-42 (oAß) combined with IHT for mechanism exploration. Differential genes were screened by RNA-seq. Autophagic degradation process of intracellular oAß was traced by immunofluorescence. RESULTS: In this study, we found that IHT ameliorated cognitive function by attenuating neuronal loss and axonal injury in an AD animal model (APP/PS1 mice) with beta-amyloid (Aß) pathology. In addition, IHT-mediated neuronal protection was associated with reduced Aß accumulation and plaque formation. Using an in vitro PAM model, we further confirmed that IHT upregulated autophagy-related proteins, thereby promoting the Aß autophagic degradation by PAM. Mechanistically, IHT facilitated the nuclear localization of TFEB in PAM, with TFEB activity showing a positive correlation with Aß degradation by PAM in vivo and in vitro. In addition, IHT-induced TFEB activation was associated with the inhibition of the AKT-MAPK-mTOR pathway. CONCLUSIONS: These results suggest that IHT alleviates neuronal damage and neuroinflammation via the upregulation of TFEB-dependent Aß clearance by PAM, leading to improved learning and memory in AD mice. Therefore, IHT may be a promising non-pharmacologic therapy in complementary medicine against AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Infant , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Mice, Transgenic
11.
Acta Pharmacol Sin ; 44(11): 2151-2168, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37420104

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 µM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aß generation by inhibiting the ß-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aß plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aß generation in early AD, which is a potential therapeutic intervention for early AD treatment.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neurodegenerative Diseases , Mice , Humans , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Mice, Transgenic , Retina/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
12.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298634

ABSTRACT

Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aß) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aß accumulation in AD neurodegeneration.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Energy Metabolism , Disease Models, Animal , Amyloid Precursor Protein Secretases/metabolism , tau Proteins/metabolism , Mice, Transgenic
13.
Inorg Chem ; 62(27): 10780-10791, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37369063

ABSTRACT

Amyloid precursor protein (APP) is the biological precursor of ß-amyloids, a known histopathological hallmark associated with Alzheimer's disease (AD). The function of APP is of great interest yet remains elusive. One of the extracellular domains of APP, the E2 domain, has been proposed to possess ferroxidase activity and affect neuronal iron homeostasis. However, contradicting evidence has been reported, and its precise role remains inconclusive. Here, we studied the Cu-binding site of the E2 domain using extended X-ray absorption fine structure (EXAFS), UV-vis, and electron paramagnetic resonance (EPR) and discovered that a new labile water ligand coordinates to the Cu(II) cofactor in addition to the four known histidines. We explored the proposed ferroxidase activity of the Cu(II)-E2 domain through reactions with ferrous iron and observed single-turnover ferrous oxidation activity with a rate up to 1.0 × 102 M-1 s-1. Cu(I)-E2 reacted with molecular oxygen at a rate of only 5.3 M-1 s-1, which would restrict any potential multiturnover ferroxidase activity to this slow rate and prevents observation of activity under multiturnover conditions. The positive electrostatic potential surface of the protein indicates possible reactivity with negatively charged small substrates such as superoxide radicals (O2•-) and peroxynitrite (ONOO-) that are major contributors to the oxidative stress prevalent in the extracellular environment. Our assays showed that Cu(I)-E2 can remove O2•- at a rate of 1.6 × 105 M-1 s-1, which is slower than the rates of native SODs. However, the reaction between Cu(I)-E2 and ONOO- achieved a rate of 1.1 × 105 M-1 s-1, comparable to native ONOO- scavenger peroxiredoxins (105-107 M-1 s-1). Therefore, the E2 domain of APP can serve as an enzymatic site that may function as a ferroxidase under substrate-limiting conditions, a supplemental O2•- scavenger, and an ONOO- remover in the vicinity of the cellular iron efflux channel and protect neuron cells from reactive oxygen species (ROS) and reactive nitrogen species (RNS) damage.


Subject(s)
Amyloid beta-Protein Precursor , Ceruloplasmin , Ceruloplasmin/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Superoxides , Peroxynitrous Acid/metabolism , Iron/metabolism
14.
J Ethnopharmacol ; 313: 116554, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37137453

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Buxue decoction (DBD) is a classic herbal decoction consisting of Astragali Radix (AR) and Angelica Sinensis Radix (ASR) with a 5:1 wt ratio, which can supplement 'blood' and 'qi' (vital energy) for the treatment of clinical diseases. According to Traditional Chinese Medicine (TCM) theory, dementia is induced by Blood deficiency and Qi weakness, which causes a decline in cognition. However, the underlying mechanisms of DBD improving cognition deficits in neurodegenerative disease are no clear. AIM OF THE STUDY: This study aims at revealing the underlying mechanisms of DBD plays a protective role in the cognitive deficits and pathology process of Alzheimer's disease (AD). MATERIALS AND METHODS: The APP/PS1 (Mo/HuAPP695swe/PS1-dE9) double transgenic mice were adopted as an experimental model of AD. Qualitative and quantitative analysis of 3 compounds in DBT was analyzed by HPLC. Morris water maze test, Golgi staining and electrophysiology assays were used to evaluate the effects of DBD on cognitive function and synaptic plasticity in APP/PS1 mice. Western blot, immunofluorescence and Thioflavin S staining were used for the pathological evaluation of AD. Monitoring the level of ATP, mitochondrial membrane potential, SOD and MDA to evaluate the mitochondrial function, and with the usage of qPCR and CHIP for the changes of histone post-translational modification. RESULTS: In the current study, we found that DBD could effectively attenuate memory impairments and enhance long-term potentiation (LTP) with concurrent increased expression of memory-associated proteins. DBD markedly decreased Aß accumulation in APP/PS1 mice by decreasing the phosphorylation of APP at the Thr668 level but not APP, PS1 or BACE1. Further studies demonstrated that DBD restored mitochondrial biogenesis deficits and mitochondrial dysfunction. Finally, the restored mitochondrial biogenesis and cognitive deficits are under HADC2-mediated histone H4 lysine 12 (H4K12) acetylation at the peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) and N-methyl-D-aspartate receptor type 2B (GluN2B) promoters. CONCLUSIONS: These findings reveal that DBD could ameliorate mitochondrial biogenesis and cognitive deficits by improving H4K12 acetylation. DBD might be a promising complementary drug candidate for AD treatment.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Histones/metabolism , Lysine/metabolism , Lysine/therapeutic use , Amyloid Precursor Protein Secretases , Acetylation , Organelle Biogenesis , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/therapeutic use , Alzheimer Disease/drug therapy , Mice, Transgenic , Cognition , Protein Processing, Post-Translational , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal
15.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834781

ABSTRACT

Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aß) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aß were noted.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Humans , Animals , Infant , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Mice, Transgenic , Cognitive Dysfunction/pathology , Disease Models, Animal , Amyloid beta-Protein Precursor/metabolism , Mammals/metabolism
16.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677642

ABSTRACT

As aging progresses, ß-amyloid (Aß) deposition and the resulting oxidative damage are key causes of aging diseases such as senior osteoporosis (SOP). Humulus lupulus L. (hops) is an important medicinal plant widely used in the food, beverage and pharmaceutical industries due to its strong antioxidant ability. In this study, APP/PS1 mutated transgenic mice and Aß-injured osteoblasts were used to evaluate the protective effects of hops extracts (HLE) on SOP. Mice learning and memory levels were assessed by the Morris water maze. Mice femurs were prepared for bone micro-structures and immunohistochemistry experiments. The deposition of Aß in the hippocampus, cortex and femurs were determined by Congo red staining. Moreover, protein expressions related to antioxidant pathways were evaluated by Western blotting. It was found that HLE markedly improved learning abilities and ameliorated memory impairment of APP/PS1 mice, as well as regulated antioxidant enzymes and bone metabolism proteins in mice serum. Micro-CT tests indicated that HLE enhanced BMD and improved micro-architectural parameters of mice femur. More importantly, it was discovered that HLE significantly reduced Aß deposition both in the brain and femur. Further in vitro results showed HLE increased the bone mineralization nodule and reduced the ROS level of Aß-injured osteoblasts. Additionally, HLE increased the expression of antioxidant related proteins Nrf2, HO-1, NQO1, FoxO1 and SOD-2. These results indicated that Humulus lupulus L. extract could protect against senior osteoporosis through inhibiting Aß deposition and oxidative stress, which provides a reference for the clinical application of hops in the prevention and treatment of SOP.


Subject(s)
Alzheimer Disease , Humulus , Osteoporosis , Plant Extracts , Animals , Mice , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Antioxidants/metabolism , Disease Models, Animal , Humulus/chemistry , Mice, Transgenic , Osteoblasts/metabolism , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Oxidative Stress , Presenilin-1/genetics , Presenilin-1/metabolism , Plant Extracts/pharmacology
17.
Phytother Res ; 37(2): 611-626, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36325883

ABSTRACT

We have previously reported that Gypenoside LXXV (GP-75), a novel natural PPARγ agonist isolated from Gynostemma pentaphyllum, ameliorated cognitive deficits in db/db mice. In this study, we further investigated the beneficial effects on cognitive impairment in APP/PS1 mice and a mouse model of diabetic AD (APP/PS1xdb/db mice). Interestingly, intragastric administration of GP-75 (40 mg/kg/day) for 3 months significantly attenuated cognitive deficits in APP/PS1 and APP/PS1xdb/db mice. GP-75 treatment markedly reduced the levels of glucose, HbA1c and insulin in serum and improved glucose tolerance and insulin sensitivity in APP/PS1xdb/db mice. Notably, GP-75 treatment decreased the ß-amyloid (Aß) burden, as measured by 11 C-PIB PET imaging. Importantly, GP-75 treatment increased brain glucose uptake as measured by 18 F-FDG PET imaging. Moreover, GP-75 treatment upregulated PPARγ and increased phosphorylation of Akt (Ser473) and GLUT4 expression levels but decreased phosphorylation of IRS-1 (Ser616) in the hippocampi of both APP/PS1 and APP/PS1xdb/db mice. Furthermore, GP-75-induced increases in GLUT4 membrane translocation in primary hippocampal neurons from APP/PS1xdb/db mice was abolished by cotreatment with the selective PPARγ antagonist GW9662 or the PI3K inhibitor LY294002. In summary, GP-75 ameliorated cognitive deficits in APP/PS1 and APP/PS1xdb/db mice by enhancing glucose uptake via activation of the PPARγ/Akt/GLUT4 signaling pathways.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diabetes Mellitus , Mice , Animals , Alzheimer Disease/metabolism , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Cognitive Dysfunction/drug therapy , Brain , Glucose/metabolism , Cognition , Amyloid beta-Protein Precursor/metabolism
18.
Phytother Res ; 37(2): 410-423, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36114804

ABSTRACT

The present study aims to investigate the cognition-enhancing effect of 3, 14, 19-Triacetyl andrographolide (ADA) on learning and memory deficits in 3 × Tg-AD mice and to explore its underlying mechanism. Eight-month-old 3 × Tg-AD mice and C57BL/6J mice were randomly divided into three groups, namely wild-type group, 3 × Tg-AD group, and 3 × Tg-AD+ADA group (5 mg/kg, for 21 days, i.p.). We found that ADA significantly improved learning and cognition impairment, inhibited the loss of Nissl body, and reduced Aß load in the brains of 3 × Tg-AD mice. In addition, ADA enhanced the levels of PSD95 and SYP, which were closely associated with synaptic plasticity. Accumulated autophagosomes, LC3II, and P62 in hippocampus and cortex of 3 × Tg-AD mice were decreased by ADA treatment. Furthermore, ADA administration further down-regulated the expressions of p-AKT and p-mTOR, reduced the level of CTSB, and increased the co-localization of LC3 and LAMP1 in the brains of 3 × Tg-AD mice, implying that ADA-induced autophagy initiation and also promoted the degradation process. In Aß25-35 -induced HT22 cells, ADA displayed similar effects on autophagy flux as observed in 3 × Tg-AD mice. Our finding verified that ADA could improve synaptic plasticity and cognitive function, which is mainly attributed to the key roles of ADA in autophagy induction and degradation.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Cognition , Cognitive Dysfunction/drug therapy , Autophagy , Disease Models, Animal , Amyloid beta-Peptides/metabolism
19.
Life Sci ; 310: 121052, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36220370

ABSTRACT

AIMS: Alzheimer's disease (AD) is a common and irreversible neurodegenerative disease accompanied by extensive synaptic loss. Previous studies found that moxibustion had good therapeutic effects on AD. We here investigated whether moxibustion could alleviate the cognitive impairment of AD by promoting the "astrocyte-neuron" interaction and enhancing synaptic plasticity. MATERIALS AND METHODS: Moxibustion treatment was administrated to Baihui (GV20) and Yongquan (KI1) in APP/PS1 mice. We first evaluated the behavior of APP/PS1 mice with Morris water maze test, and observed the synaptic structure before and after moxibustion intervention. Then, the transcriptome characteristics (TC) and "astrocyte-neuron" interaction were evaluated by spatial transcriptomics (ST). CD38 and its ligand Pecam1, one of the energy shuttle pathways between neurons and astrocytes, were also be detected. KEY FINDINGS: The results supported that moxibustion increased learning and memory ability and synaptic structure. ST showed that the TC were more similar between the moxibustion and control groups. Moxibustion enhanced the number of ligand - receptor pairs between astrocytes and neurons. And the score of interaction intensity and the proportion of interaction were also increased. Meanwhile, the energy of astrocytes and neurons was significantly altered. Additionally, moxibustion could significantly improve the function of CD38 and its ligand Pecam1 which were previously reported having the function of transporting mitochondria from astrocytes to neurons, and then providing energy for neurons. SIGNIFICANCE: Our study provides new evidences for the use of moxibustion to increase the "astrocyte - neuron" interaction thus to enhance synaptic plasticity of APP/PS1 mice.


Subject(s)
Alzheimer Disease , Moxibustion , Neurodegenerative Diseases , Mice , Animals , Astrocytes/metabolism , Transcriptome , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Ligands , Disease Models, Animal , Hippocampus/metabolism , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Neurons/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism
20.
J Neuroinflammation ; 19(1): 253, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217178

ABSTRACT

BACKGROUND: The immune system has been implicated in synaptic plasticity, inflammation, and the progression of Alzheimer's disease (AD). However, there were few studies on improving the niche microenvironment of neural stem cells (NSCs) in the brain of AD to promote adult hippocampal neurogenesis (AHN) by regulating the function of non-parenchymal immune cells. METHODS: The lymph nodes of amyloid precursor protein/presenilin 1 (APP/PS1) and 3xTg (APP/PS1/tau) mouse models of AD were treated with photobiomodulation therapy (PBMT) for 10 J/cm2 per day for 1 month (10 min for each day), T lymphocytes isolated from these two AD models were treated with PBMT for 2 J/cm2 (5 min for each time). The NSCs isolated from hippocampus of these two AD models at E14, and the cells were co-cultivated with PBMT-treated T lymphocyte conditioned medium for NSCs differentiation. RESULTS: Our results showed that PBMT treatment could promote AHN and reverse cognitive deficits in AD mouse model. The expression of interferon-γ (IFN-γ) and interleukin-10 (IL-10) was upregulated in the brain of these two AD models after PBMT treated, which was induced by the activation of Janus kinase 2 (JAK2)-mediated signal transducer and activator of transcription 4 (STAT4)/STAT5 signaling pathway in CD4+ T cells. In addition, elevated CD4+ T cell levels and upregulated transforming growth factor-ß1 (TGFß1)/insulin-like growth factors-1 (IGF-1)/brain-derived neurotrophic factor (BDNF) protein expression levels were also detected in the brain. More importantly, co-cultivated the PBMT-treated T lymphocyte conditioned medium with NSCs derived from these two AD models was shown to promote NSCs differentiation, which was reflected in the upregulation of both neuronal class-III ß-tubulin (Tuj1) and postsynaptic density protein 95 (PSD95), but the effects of PBMT was blocked by reactive oxygen species (ROS) scavenger or JAK2 inhibitor. CONCLUSION: Our research suggests that PBMT exerts a beneficial neurogenesis modulatory effect through activating the JAK2/STAT4/STAT5 signaling pathway to promote the expression of IFN-γ/IL-10 in non-parenchymal CD4+ T cells, induction of improvement of brain microenvironmental conditions and alleviation of cognitive deficits in APP/PS1 and 3xTg-AD mouse models.


Subject(s)
Alzheimer Disease , Low-Level Light Therapy , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cognition , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Insulin-Like Growth Factor I/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Janus Kinase 2/metabolism , Mice , Mice, Transgenic , Neurogenesis/physiology , Presenilin-1/genetics , Presenilin-1/metabolism , Reactive Oxygen Species/metabolism , STAT4 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/pharmacology , T-Lymphocytes/metabolism , Transforming Growth Factor beta1/metabolism , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL