Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Phytomedicine ; 126: 155283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422652

ABSTRACT

BACKGROUND: Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE: The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS: The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS: DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION: PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.


Subject(s)
Colitis, Ulcerative , Colitis , Plant Extracts , Pomegranate , Animals , Mice , Interleukin-6/metabolism , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/metabolism , Colon/pathology , Cytokines/metabolism , Body Weight , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Colitis, Ulcerative/drug therapy , Sulfate Transporters/metabolism , Sulfate Transporters/pharmacology , Sulfate Transporters/therapeutic use , Antiporters/adverse effects , Antiporters/metabolism
2.
BMC Genomics ; 25(1): 144, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317113

ABSTRACT

BACKGROUND: The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS: A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS: This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Protons , Sodium Chloride/pharmacology , Antiporters/genetics , Antiporters/metabolism , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Cations/metabolism , Stress, Physiological/genetics
3.
Transl Res ; 266: 57-67, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38013006

ABSTRACT

TMEM165-CDG has first been reported in 2012 and manganese supplementation was shown highly efficient in rescuing glycosylation in isogenic KO cells. The unreported homozygous missense c.928G>C; p.Ala310Pro variant leading to a functional but unstable protein was identified. This patient was diagnosed at 2 months and displays a predominant bone phenotype and combined defects in N-, O- and GAG glycosylation. We administered for the first time a combined D-Gal and Mn2+ therapy to the patient. This fully suppressed the N-; O- and GAG hypoglycosylation. There was also striking improvement in biochemical parameters and in gastrointestinal symptoms. This study offers exciting therapeutic perspectives for TMEM165-CDG.


Subject(s)
Cation Transport Proteins , Congenital Disorders of Glycosylation , Humans , Manganese/metabolism , Galactose , Antiporters/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Cation Transport Proteins/metabolism , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166717, 2023 08.
Article in English | MEDLINE | ID: mdl-37062452

ABSTRACT

Golgi cation homeostasis is known to be crucial for many cellular processes including vesicular fusion events, protein secretion, as well as for the activity of Golgi glycosyltransferases and glycosidases. TMEM165 was identified in 2012 as the first cation transporter related to human glycosylation diseases, namely the Congenital Disorders of Glycosylation (CDG). Interestingly, divalent manganese (Mn) supplementation has been shown to suppress the observed glycosylation defects in TMEM165-deficient cell lines, thus suggesting that TMEM165 is involved in cellular Mn homeostasis. This paper demonstrates that the origin of the Golgi glycosylation defects arises from impaired Golgi Mn homeostasis in TMEM165-depleted cells. We show that Mn supplementation fully rescues the Mn content in the secretory pathway/organelles of TMEM165-depleted cells and hence the glycosylation process. Strong cytosolic and organellar Mn accumulations can also be observed in TMEM165- and SPCA1-depleted cells upon incubation with increasing Mn concentrations, thus demonstrating the crucial involvement of these two proteins in cellular Mn homeostasis. Interestingly, our results show that the cellular Mn homeostasis maintenance in control cells is correlated with the presence of TMEM165 and that the Mn-detoxifying capacities of cells, through the activity of SPCA1, rely on the Mn-induced degradation mechanism of TMEM165. Finally, this paper highlights that TMEM165 is essential in secretory pathway/organelles Mn homeostasis maintenance to ensure both Golgi glycosylation enzyme activities and cytosolic Mn detoxification.


Subject(s)
Cation Transport Proteins , Manganese , Humans , Manganese/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Antiporters/metabolism , Golgi Apparatus/metabolism , Homeostasis
5.
Kidney Int ; 102(6): 1259-1275, 2022 12.
Article in English | MEDLINE | ID: mdl-36063875

ABSTRACT

Vascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD). Cell death such as apoptosis plays a critical role in vascular calcification. Ferroptosis is a type of iron-catalyzed and regulated cell death resulting from excessive iron-dependent reactive oxygen species and lipid peroxidation. However, it is unclear whether ferroptosis of vascular smooth muscle cells (VSMCs) regulates vascular calcification in CKD. Our results showed that high calcium and phosphate concentrations induced ferroptosis in rat VSMCs in vitro. Inhibition of ferroptosis by ferrostatin-1 dose-dependently reduced mineral deposition in rat VSMCs under pro-osteogenic conditions, as indicated by alizarin red staining and quantification of calcium content. In addition, gene expression analysis revealed that ferrostatin-1 inhibited osteogenic differentiation of rat VSMCs. Similarly, ferrostatin-1 remarkably attenuated calcification of rat and human arterial rings ex vivo and aortic calcification in vitamin D3-overloaded mice in vivo. Moreover, inhibition of ferroptosis by either ferrostatin-1 or deferoxamine attenuated aortic calcification in rats with CKD. Mechanistically, high calcium and phosphate downregulated expression of SLC7A11 (a cystine-glutamate antiporter), and reduced glutathione (GSH) content in VSMCs. Additionally, GSH depletion induced by erastin (a small molecule initiating ferroptotic cell death) significantly promoted calcification of VSMCs under pro-osteogenic conditions, whereas GSH supplement by N-acetylcysteine reduced calcification of VSMCs. Consistently, knockdown of SLC7A11 by siRNA markedly promoted VSMC calcification. Furthermore, high calcium and phosphate downregulated glutathione peroxidase 4 (GPX4) expression, and reduced glutathione peroxidase activity. Inhibition of GPX4 by RSL3 promoted VSMC calcification. Thus, repression of the SLC7A11/GSH/GPX4 axis triggers ferroptosis of VSMCs to promote vascular calcification under CKD conditions, providing a novel targeting strategy for vascular calcification.


Subject(s)
Ferroptosis , Renal Insufficiency, Chronic , Vascular Calcification , Humans , Rats , Mice , Animals , Phospholipid Hydroperoxide Glutathione Peroxidase , Muscle, Smooth, Vascular , Osteogenesis , Calcium/metabolism , Antiporters/metabolism , Myocytes, Smooth Muscle/metabolism , Vascular Calcification/genetics , Vascular Calcification/prevention & control , Iron/metabolism , Glutathione/metabolism , Renal Insufficiency, Chronic/pathology , Phosphates/metabolism , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism
6.
Environ Sci Technol ; 56(19): 14146-14153, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36121644

ABSTRACT

Selenate enhances arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated molecular mechanisms are unclear. Here, we investigated the mechanisms of selenate-induced arsenic accumulation by exposing P. vittata to 50 µM arsenate (AsV50) and 1.25 (Se1.25) or 5 µM (Se5) selenate in hydroponics. After 2 weeks, plant biomass, plant As and Se contents, As speciation in plant and growth media, and important genes related to As detoxification in P. vittata were determined. These genes included P transporters PvPht1;3 and PvPht1;4 (AsV uptake), arsenate reductases PvHAC1 and PvHAC2 (AsV reduction), and arsenite (AsIII) antiporters PvACR3 and PvACR3;2 (AsIII translocation) in the roots, and AsIII antiporters PvACR3;1 and PvACR3;3 (AsIII sequestration) in the fronds. The results show that Se1.25 was more effective than Se5 in increasing As accumulation in both P. vittata roots and fronds, which increased by 27 and 153% to 353 and 506 mg kg-1. The As speciation analyses show that selenate increased the AsIII levels in P. vittata, with 124-282% more AsIII being translocated into the fronds. The qPCR analyses indicate that Se1.25 upregulated the gene expression of PvHAC1 by 1.2-fold, and PvACR3 and PvACR3;2 by 1.0- to 2.5-fold in the roots, and PvACR3;1 and PvACR3;3 by 0.6- to 1.1-fold in the fronds under AsV50 treatment. Though arsenate enhanced gene expression of P transporters PvPht1;3 and PvPht1;4, selenate had little effect. Our results indicate that selenate effectively increased As accumulation in P. vittata, mostly by increasing reduction of AsV to AsIII in the roots, AsIII translocation from the roots to fronds, and AsIII sequestration into the vacuoles in the fronds. The results suggest that selenate may be used to enhance phytoremediation of As-contaminated soils using P. vittata.


Subject(s)
Arsenic , Arsenites , Pteris , Selenium , Soil Pollutants , Antiporters/metabolism , Antiporters/pharmacology , Arsenate Reductases/genetics , Arsenate Reductases/metabolism , Arsenates , Arsenic/metabolism , Arsenites/metabolism , Biodegradation, Environmental , Plant Roots/metabolism , Pteris/genetics , Pteris/metabolism , Selenic Acid , Selenium/metabolism , Soil , Soil Pollutants/metabolism
7.
Plant Physiol Biochem ; 185: 101-111, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35667317

ABSTRACT

Uranium, a heavy metal and primordial radionuclide, is present in surface waters and soils both naturally and due to industrial activities. Uranium is known to be toxic to plants and its uptake and toxicity can be influenced by multiple factors such as pH and the presence of different ions. However, the precise role of the different ions in uranium uptake is not yet known. Here we investigated whether calcium influences uranium uptake and toxicity in the terrestrial plant Arabidopsis thaliana. To this end, A. thaliana plants were exposed to different calcium and uranium concentrations and furthermore, calcium channels were blocked using the calcium channel blocker lanthanum chloride (LaCl3). Fresh weight, relative growth rate, concentration of nutrients and uranium and gene expression of oxidative stress-related genes and calcium transporters were determined in roots and shoots. Calcium affected plant growth and oxidative stress in both control (no uranium) and uranium-exposed plants. In shoots, this was influenced by the total calcium concentration, but not by the different tested uranium concentrations. Uranium in turn did influence calcium uptake and distribution. Uranium-exposed plants grown in a medium with a higher calcium concentration showed an increase in gene expression of NADPH oxidases RBOHC and RBOHE and calcium transporter CAX7 after uranium exposure. In roots, these calcium-dependent responses in gene expression were not observed. This indicates that calcium indeed affects uranium toxicity, but only in shoots. In addition, a clear influence of uranium and LaCl3 (separately and combined) on the expression of calcium transporters was observed.


Subject(s)
Arabidopsis , Calcium , Uranium , Antiporters/genetics , Antiporters/metabolism , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Calcium Channels/metabolism , Drug Interactions , Gene Expression Regulation, Plant/drug effects , Lanthanum/pharmacology , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Uranium/toxicity
8.
Cell Death Dis ; 13(1): 11, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930890

ABSTRACT

TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFß and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.


Subject(s)
Antiporters/deficiency , Antiporters/metabolism , Cation Transport Proteins/deficiency , Cation Transport Proteins/metabolism , Cell Differentiation/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , Chondroitin Sulfates/biosynthesis , Dwarfism/metabolism , Heparan Sulfate Proteoglycans/biosynthesis , Signal Transduction/genetics , Animals , Antiporters/genetics , Case-Control Studies , Cation Transport Proteins/genetics , Cell Line, Tumor , Chondrogenesis/genetics , Dwarfism/pathology , Fibroblasts/metabolism , Gene Knockout Techniques/methods , Glycosylation , HEK293 Cells , Humans , Hypertrophy/metabolism , Mice , Transfection
9.
JCI Insight ; 6(11)2021 06 08.
Article in English | MEDLINE | ID: mdl-34100381

ABSTRACT

SLC26A6 (also known as putative anion transporter 1 [PAT1]) is a Cl-/HCO3- exchanger expressed at the luminal membrane of enterocytes where it facilitates intestinal Cl- and fluid absorption. Here, high-throughput screening of 50,000 synthetic small molecules in cells expressing PAT1 and a halide-sensing fluorescent protein identified several classes of inhibitors. The most potent compound, the pyrazolo-pyrido-pyrimidinone PAT1inh-B01, fully inhibited PAT1-mediated anion exchange (IC50 ~350 nM), without inhibition of the related intestinal transporter SLC26A3 (also known as DRA). In closed midjejunal loops in mice, PAT1inh-B01 inhibited fluid absorption by 50%, which increased to >90% when coadministered with DRA inhibitor DRAinh-A270. In ileal loops, PAT1inh-B01 blocked fluid absorption by >80%, whereas DRAinh-A270 was without effect. In colonic loops, PAT1inh-B01 was without effect, whereas DRAinh-A270 completely blocked fluid absorption. In a loperamide constipation model, coadministration of PAT1inh-B01 with DRAinh-A270 increased stool output compared with DRAinh-A270 alone. These results provide functional evidence for complementary and region-specific roles of PAT1 and DRA in intestinal fluid absorption, with PAT1 as the predominant anion exchanger in mouse ileum. We believe that PAT1inh-B01 is a novel tool to study intestinal ion and fluid transport and perhaps a drug candidate for small intestinal hyposecretory disorders such as cystic fibrosis-related meconium ileus and distal intestinal obstruction syndrome.


Subject(s)
Antiporters/antagonists & inhibitors , Colon/drug effects , Ileum/drug effects , Intestinal Absorption/drug effects , Jejunum/drug effects , Sulfate Transporters/antagonists & inhibitors , Animals , Antidiarrheals/pharmacology , Antiporters/metabolism , Colon/metabolism , Constipation/chemically induced , Constipation/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Ileum/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Jejunum/metabolism , Loperamide/pharmacology , Mice , Small Molecule Libraries , Sulfate Transporters/metabolism
10.
Proc Natl Acad Sci U S A ; 117(37): 22974-22983, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32873649

ABSTRACT

Medium-chain fatty alcohols (MCFOHs, C6 to C12) are potential substitutes for fossil fuels, such as diesel and jet fuels, and have wide applications in various manufacturing processes. While today MCFOHs are mainly sourced from petrochemicals or plant oils, microbial biosynthesis represents a scalable, reliable, and sustainable alternative. Here, we aim to establish a Saccharomyces cerevisiae platform capable of selectively producing MCFOHs. This was enabled by tailoring the properties of a bacterial carboxylic acid reductase from Mycobacterium marinum (MmCAR). Extensive protein engineering, including directed evolution, structure-guided semirational design, and rational design, was implemented. MmCAR variants with enhanced activity were identified using a growth-coupled high-throughput screening assay relying on the detoxification of the enzyme's substrate, medium-chain fatty acids (MCFAs). Detailed characterization demonstrated that both the specificity and catalytic activity of MmCAR was successfully improved and a yeast strain harboring the best MmCAR variant generated 2.8-fold more MCFOHs than the strain expressing the unmodified enzyme. Through deletion of the native MCFA exporter gene TPO1, MCFOH production was further improved, resulting in a titer of 252 mg/L for the final strain, which represents a significant improvement in MCFOH production in minimal medium by S. cerevisiae.


Subject(s)
Fatty Alcohols/metabolism , Oxidoreductases/metabolism , Antiporters/metabolism , Biofuels , Fatty Acids/metabolism , Metabolic Engineering/methods , Organic Cation Transport Proteins/genetics , Oxidoreductases/physiology , Protein Engineering/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
11.
Biochimie ; 174: 159-170, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32335229

ABSTRACT

TMEM165 is a Golgi protein whose deficiency causes a Congenital Disorder of Glycosylation (CDG). We have demonstrated that Mn2+ supplementation could suppress the glycosylation defects observed in TMEM165-deficient cells and that TMEM165 was a Mn2+-sensitive protein. In the Golgi, the other transmembrane protein capable to regulate Mn2+/Ca2+ homeostasis is SPCA1, encoded by the ATP2C1 gene. A loss of one copy of the ATP2C1 gene leads to Hailey-Hailey Disease (HHD), an acantholytic skin disorder in Humans. Our latest results suggest an unexpected functional link between SPCA1 and TMEM165. In order to clarify this link in case of partial SPCA1 deficiency, HHD fibroblasts were used to assess TMEM165 expression, subcellular localization and Mn2+-induced degradation. No differences were observed regarding TMEM165 expression and localization in HHD patients' fibroblasts compared to control fibroblasts. Nevertheless, we demonstrated both for fibroblasts and keratinocytes that TMEM165 expression is more sensitive to MnCl2 exposure in HHD cells than in control cells. We linked, using ICP-MS and GPP130 as a Golgi Mn2+ sensor, this higher Mn2+-induced sensitivity to a cytosolic Mn accumulation in MnCl2 supplemented HHD fibroblasts. Altogether, these results link the function of SPCA1 to the stability of TMEM165 in a pathological context of Hailey-Hailey disease.


Subject(s)
Antiporters/metabolism , Calcium-Transporting ATPases/metabolism , Cation Transport Proteins/metabolism , Fibroblasts/metabolism , Keratinocytes/metabolism , Pemphigus, Benign Familial/metabolism , Cell Line , Fibroblasts/pathology , Humans , Keratinocytes/pathology , Manganese/metabolism
12.
J Ethnopharmacol ; 252: 112581, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-31968215

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The herbs of Aconitum are the essential Traditional Chinese medicine and have played an indispensable role in many Asian countries for thousands of years to treat critical illnesses, and chronic, stubborn diseases. However, Aconitum may induce severe neurotoxicity and even death. So far the mechanism of Aconitum penetrating the blood-brain barrier (BBB) is still unclear. AIM OF THE STUDY: To determine whether influx transporters contribute to the brain uptake of the highly toxic alkaloids in Aconitum including aconitine (AC), mesaconitine (MA) and hypaconitine (HA). MATERIALS AND METHODS: The uptake of AC, MA and HA was characterized using in vitro hCMEC/D3 model and in situ mouse brain perfusion. In hCMEC/D3 cells, the effect of incubation temperature, time, initial drug concentration, energy (NaN3), extracellular and intracellular pH (FCCP and NH4Cl), the prototypical substrates/inhibitors of known organic cation transporting carriers and trans-stimulation (pre-incubating with pyrilamine and diphenhydramine) on the cellular uptake were studied. In addition, the effect of silencing OCTN1, OCTN2 and PMAT by specific siRNA was investigated. In mice, the contribution of the proton-coupled antiporter on the brain uptake of Aconitum was investigated by chemical inhibition. RESULTS: In hCMEC/D3 cells, AC, MA and HA were each taken up in a temperature-, time- and concentration-dependent manner, which were reduced by NaN3 and FCCP. Regulation of extracellular and intracellular pH as well as trans-stimulation studies showed that AC, MA and HA were transported by a proton-coupled antiporter expressed at the plasma membrane that could also transport pyrilamine and diphenhydramine. Each uptake was markedly inhibited by various cationic drugs, but insensitive to the prototypical substrates/inhibitors of identified organic cation transporting carriers, such as OCTs, PMAT, MATEs and OCTNs. In addition, silence of OCTN1, OCTN2 and PMAT had no significant inhibitory effect on the uptake of AC, MA and HA. In mice, the brain uptake of each alkaloid measured by in situ brain perfusion was suppressed by diphenhydramine when the transport capacity of P-gp/Bcrp at the BBB was chemically inhibited. CONCLUSIONS: A novel proton-coupled organic cation antiporter plays a predominant role in the blood to brain influx of AC, MA and HA at the BBB, and thus affect the safety of Aconitum species.


Subject(s)
Aconitine/analogs & derivatives , Aconitum , Antiporters/metabolism , Blood-Brain Barrier/metabolism , Organic Cation Transport Proteins/metabolism , Aconitine/pharmacology , Animals , Cell Line , Humans , Male , Mice, Inbred ICR , Organic Cation Transport Proteins/genetics , Protons , RNA, Small Interfering/genetics
13.
Biochem J ; 476(21): 3281-3293, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31652305

ABSTRACT

TMEM165 was highlighted in 2012 as the first member of the Uncharacterized Protein Family 0016 (UPF0016) related to human glycosylation diseases. Defects in TMEM165 are associated with strong Golgi glycosylation abnormalities. Our previous work has shown that TMEM165 rapidly degrades with supraphysiological manganese supplementation. In this paper, we establish a functional link between TMEM165 and SPCA1, the Golgi Ca2+/Mn2+ P-type ATPase pump. A nearly complete loss of TMEM165 was observed in SPCA1-deficient Hap1 cells. We demonstrate that TMEM165 was constitutively degraded in lysosomes in the absence of SPCA1. Complementation studies showed that TMEM165 abundance was directly dependent on SPCA1's function and more specifically its capacity to pump Mn2+ from the cytosol into the Golgi lumen. Among SPCA1 mutants that differentially impair Mn2+ and Ca2+ transport, only the Q747A mutant that favors Mn2+ pumping rescues the abundance and Golgi subcellular localization of TMEM165. Interestingly, the overexpression of SERCA2b also rescues the expression of TMEM165. Finally, this paper highlights that TMEM165 expression is linked to the function of SPCA1.


Subject(s)
Antiporters/metabolism , Calcium-Transporting ATPases/metabolism , Cation Transport Proteins/metabolism , Antiporters/genetics , Calcium/metabolism , Calcium-Transporting ATPases/genetics , Cation Transport Proteins/genetics , Cytosol/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Lysosomes/genetics , Lysosomes/metabolism , Manganese/metabolism , Mutation , Proteolysis , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
14.
Plant J ; 100(3): 487-504, 2019 11.
Article in English | MEDLINE | ID: mdl-31278825

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.


Subject(s)
Antiporters/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , NAD/metabolism , Antiporters/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Biological Transport , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chloroplasts/metabolism , Cytosol/metabolism , Green Fluorescent Proteins , Homeostasis , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutagenesis, Insertional , Nucleotide Transport Proteins , Peroxisomes/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Starch/metabolism
15.
Int J Mol Sci ; 19(11)2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30463253

ABSTRACT

To explore pathophysiology of schizophrenia, this study analyzed the regulation mechanisms that are associated with cystine/glutamate antiporter (Sxc), group-II (II-mGluR), and group-III (III-mGluR) metabotropic glutamate-receptors in thalamo-cortical glutamatergic transmission of MK801-induced model using dual-probe microdialysis. L-glutamate release in medial pre-frontal cortex (mPFC) was increased by systemic- and local mediodorsal thalamic nucleus (MDTN) administrations of MK801, but was unaffected by local administration into mPFC. Perfusion into mPFC of activators of Sxc, II-mGluR, and III-mGluR, and into the MDTN of activators of Sxc, II-mGluR, and GABAA receptor inhibited MK801-evoked L-glutamate release in mPFC. Perfusion of aripiprazole (APZ) into MDTN and mPFC also inhibited systemic MK801-evoked L-glutamate release in mPFC. Inhibition of II-mGluR in mPFC and MDTN blocked inhibitory effects of Sxc-activator and APZ on MK801-evoked L-glutamate release; however, their inhibitory effects were blocked by the inhibition of III-mGluR in mPFC but not in MDTN. These results indicate that reduced activation of the glutamate/NMDA receptor (NMDAR) in MDTN enhanced L-glutamate release in mPFC possibly through GABAergic disinhibition in MDTN. Furthermore, MDTN-mPFC glutamatergic transmission receives inhibitory regulation of Sxc/II-mGluR/III-mGluR functional complex in mPFC and Sxc/II-mGluR complex in MDTN. Established antipsychotic, APZ inhibits MK801-evoked L-glutamate release through the activation of Sxc/mGluRs functional complexes in both MDTN and mPFC.


Subject(s)
Antiporters/metabolism , Aripiprazole/pharmacology , Dizocilpine Maleate/pharmacology , Glutamic Acid/metabolism , N-Methylaspartate/antagonists & inhibitors , Prefrontal Cortex/physiopathology , Synaptic Transmission/drug effects , Thalamus/physiopathology , Acetylcysteine/pharmacology , Animals , Aripiprazole/administration & dosage , Dizocilpine Maleate/administration & dosage , Male , Models, Biological , Perfusion , Prefrontal Cortex/drug effects , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/metabolism , Thalamus/drug effects
16.
JCI Insight ; 3(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-30046015

ABSTRACT

SLC26A3 (downregulated in adenoma; DRA) is a Cl-/anion exchanger expressed in the luminal membrane of intestinal epithelial cells, where it facilitates electroneutral NaCl absorption. SLC26A3 loss of function in humans or mice causes chloride-losing diarrhea. Here, we identified slc26a3 inhibitors in a screen of 50,000 synthetic small molecules done in Fischer rat thyroid (FRT) cells coexpressing slc26a3 and a genetically encoded halide sensor. Structure-activity relationship studies were done on the most potent inhibitor classes identified in the screen: 4,8-dimethylcoumarins and acetamide-thioimidazoles. The dimethylcoumarin DRAinh-A250 fully and reversibly inhibited slc26a3-mediated Cl- exchange with HCO3-, I-, and thiocyanate (SCN-), with an IC50 of ~0.2 µM. DRAinh-A250 did not inhibit the homologous anion exchangers slc26a4 (pendrin) or slc26a6 (PAT-1), nor did it alter activity of other related proteins or intestinal ion channels. In mice, intraluminal DRAinh-A250 blocked fluid absorption in closed colonic loops but not in jejunal loops, while the NHE3 (SLC9A3) inhibitor tenapanor blocked absorption only in the jejunum. Oral DRAinh-A250 and tenapanor comparably reduced signs of constipation in loperamide-treated mice, with additive effects found on coadministration. DRAinh-A250 was also effective in loperamide-treated cystic fibrosis mice. These studies support a major role of slc26a3 in colonic fluid absorption and suggest the therapeutic utility of SLC26A3 inhibition in constipation.


Subject(s)
Antiporters/pharmacology , Constipation/drug therapy , Sulfate Transporters/antagonists & inhibitors , Sulfate Transporters/metabolism , Animals , Antiporters/antagonists & inhibitors , Antiporters/chemistry , Antiporters/genetics , Antiporters/metabolism , Chloride-Bicarbonate Antiporters/pharmacology , Chlorides/metabolism , Cystic Fibrosis , Disease Models, Animal , Drug Evaluation, Preclinical , Epithelial Cells/drug effects , Epithelial Cells/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Ion Transport , Loperamide/pharmacology , Mice , Rats , Rats, Inbred F344 , Sodium-Hydrogen Exchanger 3/pharmacology , Sulfate Transporters/genetics , Sulfate Transporters/pharmacology
17.
Phytother Res ; 32(6): 1004-1013, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29480578

ABSTRACT

The synergistic activity of Houttuynia cordata ethanol extract (HCT) and metformin combination in diabetic rats has been previously reported, but the fundamental causes remain unsolved. Organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) transport metformin to the liver and kidneys. Therefore, pharmacological activity and systemic exposure of metformin in HCT-metformin combination were determined from pharmacokinetic change and glucose-lowering activity using in vitro HEK-293 cells expressing human OCTs or human MATEs and in vivo rats. HCT inhibited human OCT2 and human MATE1-mediated metformin transports in vitro. In in vivo rats, treatment with HCT and metformin for 28 days in rats (28MH rats) reduced the rat Oct2-mediated renal excretion of metformin and thereby the increased systemic exposure of metformin compared with only metformin-treated rats for 28 days (28M rats). In 28MH rats, rat Oct1-mediated metformin uptake into the liver was enhanced, leading to an improved glucose-lowering effect without hypoglycaemia compared with 28M rats. There was no impairment of renal function in HCT and metformin treatments. These results suggest that HCT-metformin combination therapy is applicable in terms of efficacy and safety.


Subject(s)
Antiporters/metabolism , Diabetes Mellitus, Experimental/drug therapy , Drugs, Chinese Herbal/chemistry , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Metformin/therapeutic use , Organic Cation Transport Proteins/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Houttuynia , Humans , Hypoglycemic Agents/pharmacology , Male , Metformin/pharmacology , Rats , Rats, Sprague-Dawley
18.
Microbiology (Reading) ; 163(10): 1477-1489, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28954688

ABSTRACT

Carbon monoxide-releasing molecules (CORMs) are a promising class of new antimicrobials, with multiple modes of action that are distinct from those of standard antibiotics. The relentless increase in antimicrobial resistance, exacerbated by a lack of new antibiotics, necessitates a better understanding of how such novel agents act and might be used synergistically with established antibiotics. This work aimed to understand the mechanism(s) underlying synergy between a manganese-based photoactivated carbon monoxide-releasing molecule (PhotoCORM), [Mn(CO)3(tpa-κ3N)]Br [tpa=tris(2-pyridylmethyl)amine], and various classes of antibiotics in their activities towards Escherichia coli EC958, a multi-drug-resistant uropathogen. The title compound acts synergistically with polymyxins [polymyxin B and colistin (polymyxin E)] by damaging the bacterial cytoplasmic membrane. [Mn(CO)3(tpa-κ3N)]Br also potentiates the action of doxycycline, resulting in reduced expression of tetA, which encodes a tetracycline efflux pump. We show that, like tetracyclines, the breakdown products of [Mn(CO)3(tpa-κ3N)]Br activation chelate iron and trigger an iron starvation response, which we propose to be a further basis for the synergies observed. Conversely, media supplemented with excess iron abrogated the inhibition of growth by doxycycline and the title compound. In conclusion, multiple factors contribute to the ability of this PhotoCORM to increase the efficacy of antibiotics in the polymyxin and tetracycline families. We propose that light-activated carbon monoxide release is not the sole basis of the antimicrobial activities of [Mn(CO)3(tpa-κ3N)]Br.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbon Monoxide/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Manganese/chemistry , Photosensitizing Agents/pharmacology , Antiporters/genetics , Antiporters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon Monoxide/chemistry , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Iron/metabolism , Manganese/pharmacology , Photosensitizing Agents/chemistry
19.
PLoS One ; 12(3): e0172765, 2017.
Article in English | MEDLINE | ID: mdl-28253299

ABSTRACT

Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-ß estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, ß and γ), Na+/K+-ATPase, GPα/ß, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, ß and γ), Na+/K+-ATPase, GPα/ß, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/ß and ENaC (α, ß and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence.


Subject(s)
Body Fluids/drug effects , Body Fluids/metabolism , Electrolytes/metabolism , Gonadal Steroid Hormones/pharmacology , Ovariectomy , Quercetin/pharmacology , Uterus/drug effects , Adenylyl Cyclase Inhibitors , Animals , Antiporters/genetics , Antiporters/metabolism , Bicarbonates/metabolism , Chlorides/metabolism , Cyclic AMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Interactions , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Female , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein beta Subunits/metabolism , Gene Expression Regulation/drug effects , Protein Transport/drug effects , Rats , Rats, Sprague-Dawley , Sodium/metabolism , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Sulfate Transporters , Uterus/metabolism
20.
Plant Cell Physiol ; 57(7): 1530-1543, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27903806

ABSTRACT

Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K+ homeostasis may play a role in regulating the closure of rice flowers. The cation/H+ exchanger (CHX) family from rice was screened for potential K+ transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-ß-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K+, Rb+ and Cs+ in vivo. Our data suggest that OsCHX14 may play an important role in K+ homeostasis during flowering in rice.


Subject(s)
Flowers/metabolism , Homeostasis , Oryza/metabolism , Plant Proteins/metabolism , Potassium/metabolism , Animals , Antiporters/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Flowers/drug effects , Homeostasis/drug effects , Oocytes/drug effects , Oocytes/metabolism , Oryza/drug effects , Potassium/pharmacology , Protein Transport/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL